
Introduction to Quantum Computation and Information
- Lecture Notes -

Giuseppe E. Santoro
SISSA, Trieste

Academic year 2023-2024
- work in progress -

Printed on March 25, 2024

Preface

These are the lecture notes prepared for a course held at SISSA, starting in the spring of 2021.

The main references I have consulted are: The book by David Mermin, Quantum Computer Science
[1], the book by Benenti, Casati, Rossini and Strini Principles of Quantum Computation and Infor-
mation [2], the book by Nielsen and Chuang Quantum Computation and Quantum Information [3],
Scott Aaronson’s lecture notes, John Preskill’s course at CalTech, and Stefano Olivares’ lecture notes,
all available on the web (click on the link).

All you need in this life is ignorance and confidence; then success is sure.
Mark Twain

These are my principles, and if you don’t like them... well, I have others.
Groucho Marx

2

https://www.scottaaronson.com/qclec.pdf
http://theory.caltech.edu/~preskill/ph229/
https://sites.unimi.it/olivares/wp-content/uploads/2020/04/lectures_qc_Olivares_v4.0.pdf

Contents

1. Introduction 7
1.1. Turing machines and classical computation . 9

1.1.1. Computability and decidability . 13
1.2. Probability theory and Quantum Mechanics . 15

1.2.1. Interference in a Mach-Zehnder interferometer 16
1.2.2. Wheeler’s delayed-choice experiment . 20
1.2.3. Which-way experiments and the delayed-choice quantum eraser 21

1.3. Concluding remarks . 24
1.4. Hands-on: EPR-type calculations with entangled particles 24

2. Classical gates and elements of classical computation 29
2.1. Classical bits, probability distributions and Stochastic Matrices 29
2.2. More than one Cbit: tensor products . 31
2.3. More on Cbit operations: connection to digital computer operations 33
2.4. Reversible extensions of Boolean functions . 38
2.5. Elementary logic gates . 40
2.6. A simple algorithm: adding numbers . 41
2.7. Universal classical gates . 42
2.8. Universality vs Efficiency: Tractable vs Intractable problems 45
2.9. Boolean Satisfiability . 47

3. Quantum gates and elements of quantum computation 49
3.1. Computational states and superpositions: the Hilbert space 50
3.2. Unitary operators associated to function evaluation . 51
3.3. Pauli operators and associated single-Qbit unitary gates 53
3.4. The Hadamard gate H . 55

3.4.1. Using only Hadamard and rotations around the z-axis 57
3.5. Drawing quantum circuits . 58
3.6. Two-Qbit states and gates . 60

3.6.1. Bell measurements . 62
3.7. NMR-like Hamiltonian model for 1- and 2-Qbit gates 63
3.8. A variety of 2-Qbit and multi-Qbit unitary gates. 64

3.8.1. Multi-Qbit unitary gates . 65
3.9. Universal quantum gates . 66
3.10. Examples of function evaluation with a QC . 66

3.10.1. The quantum adder . 69
3.11. No-cloning theorem . 70
3.12. The Deutsch’s problem . 71

3.12.1. An interesting “variant” of Deutsch’s problem, and some general remarks on the
role of additional Qbits. 74

3.13. The Bernstein-Vazirani problem . 75
3.14. Teleportation . 78
3.15. Hands-on: state preparation, control-U and Toffoli gates 80

3.15.1. Representing a general 2-Qbit state . 80

3

Contents

3.15.2. Constructing control-unitary operators . 81
3.15.3. Constructing the Toffoli gate out of cNOTs . 82

4. Grover searching with a quantum computer 85
4.1. The Grover iteration . 86
4.2. How to construct the kinetic term K . 89
4.3. Generalisation to the case of several solutions . 91
4.4. Connection to p-spin models and to QAOA . 92

5. Quantum Fourier Transform 95
5.1. The Quantum Fourier Transform circuit . 98
5.2. Period-finding . 102
5.3. Factoring and cryptography . 108

5.3.1. Modular arithmetics: some tools. 109
5.3.2. RSA public-key cryptography . 111
5.3.3. Breaking RSA through period-finding . 113
5.3.4. Period-finding and factoring . 114
5.3.5. Implementing modular exponentials on a Quantum Computer 116

5.4. Phase estimation protocol . 118
5.5. Finding eigenstates and eigenvalues of an Hamiltonian 120

6. Quantum cryptography 125
6.1. To be sure: the Vernam cypher . 125
6.2. Implementing Qbits with photon polarisation . 130
6.3. Exploiting the special nature of Quantum Randomness 134

6.3.1. The BB84 protocol . 135
6.3.2. Important details . 136

6.4. Exploiting quantum correlations due to entanglement 136
6.4.1. CHSH version of Bell’s inequalities . 137
6.4.2. The E91 protocol . 139

7. Hardware implementations of Quantum Computers 141
7.1. DiVincenzo criteria . 142
7.2. A few tools: LC circuits, Josephson’s Junctions, SQUIDS 142

7.2.1. From BCS to the Josephson junction . 143
7.3. The superconding Qbits platforms . 149

7.3.1. Charge Qbits: The Cooper pair box . 149
7.3.2. The transmon . 151

7.4. Variants of JJ Qbits . 154
7.5. Manipulating and coupling superconducting QBits . 155

7.5.1. Manipulating single Qbits . 155
7.6. What can go wrong: the sources of dissipation and decoherence 155
7.7. Circuit QED . 155

8. Density matrices 157
8.1. The density matrix for a pure state . 157
8.2. The density matrix for a mixed state . 159
8.3. Spectral properties of ρ̂ and ambiguity on the ensemble originating ρ̂ 160
8.4. Density matrices after measurements . 162
8.5. Density matrices in statistical mechanics . 164
8.6. Density matrices by tracing out an environment . 165
8.7. Schmidt decomposition . 166

8.7.1. The singular value decomposition (SVD) . 169

4

Contents

8.8. Convex nature of density matrices . 170
8.9. The spin-1/2 case and the Bloch sphere . 172

9. Open Quantum Systems and Quantum Maps 175
9.1. Kraus representation of the dynamics . 175
9.2. Quantum measurements and POVM . 178

9.2.1. von Neumann projective measurements . 178
9.2.2. Generalised quantum measurements . 180
9.2.3. Ambiguity in the preparation of a post-measurement state 182
9.2.4. The von Neumann protocol . 184
9.2.5. POVM and summary of quantum measurement 186

9.3. Inverting Kraus: how to “invent” unitaries . 187
9.4. Quantum maps . 188
9.5. Ambiguity of the Kraus representation and purification 190
9.6. Composition laws of Quantum Maps . 192
9.7. Useful examples of single-Qbit maps . 194

9.7.1. Phase damping (or dephasing) . 194
9.7.2. Amplitude damping (or relaxation) . 196
9.7.3. Depolarising channel . 199

10.Open Quantum Systems and Lindblad Quantum Master Equation 201
10.1. The Markovian condition . 201
10.2. The Lindblad construction . 203

11.Introduction to quantum error correction 207
11.1. Classical error correction and Shannon’s theorem . 207
11.2. Quantum error correction: the simple case of bit flips 210
11.3. Measuring error syndromes: general idea . 212
11.4. More general errors: error digitisation . 214
11.5. The five-Qbit encoding . 217
11.6. General criteria for quantum error correction . 220

11.6.1. Content of the QEC criterion and the quantum Hamming bound 223
11.6.2. Digitization of quantum noise: again . 224

11.7. The stabilizers and the Pauli group . 224
11.8. Unitary transformations and the Clifford group . 226
11.9. Stabilizer codes . 228

11.9.1. Error correction for stabilizer codes . 229
11.9.2. Syndrome detection for stabilizer codes . 231

11.10.The Toric code . 232
11.10.1.The toric code ground states . 233

I. Appendices 237

A. Simple tools from arithmetics 239
A.1. The Euclid algorithm for the greatest common divisor 239
A.2. Finding the multiplicative inverse in modular arithmetics 240
A.3. The probability of two random integers being co-prime 241

B. Uniaxial birefringence 243
B.1. The wave-plate geometry . 246
B.2. The double-refraction geometry . 247
B.3. Quantum optics single-Qbit gates with photon polarisation 249

5

Contents

B.4. Hands-on: Peres’ problems with calcite crystals . 250

C. Superconductivity 251
C.1. The BCS problem . 251
C.2. The Josephson effect . 255
C.3. The Ginsburg-Landau description . 258
C.4. Quantum interference of two JJ: The dc-SQUID . 261

D. Quantum master equations 263
D.1. A general framework: system plus environment . 263
D.2. The Bloch-Redfield quantum master equation . 266
D.3. The secular approximation and the Libdblad form . 268

D.3.1. Rotating-wave (or secular) approximation . 269
D.3.2. The Lindblad form . 271
D.3.3. Non-degenerate spectrum and population dynamics 271

D.4. Application to a two-level system . 272
D.4.1. Lindblad form for the two-level system . 274
D.4.2. Decoherence and relaxation towards equilibrium 275

E. Classical and Quantum Error Correction 277
E.1. Linear codes in classical error correction . 277

E.1.1. Errors induced by the communication channel. 280
E.1.2. More about decoding: cosets and syndromes. 282
E.1.3. The binary Hamming code . 284
E.1.4. The probability of error . 286
E.1.5. Shannon’s theorem: the existence of good codes 288
E.1.6. Dual codes . 288
E.1.7. Construction of new codes from old ones . 290
E.1.8. General properties of linear codes . 290

E.2. Quantum codes . 291
E.2.1. Calderbank–Shor–Steane (CSS) quantum codes 291
E.2.2. The CSS codes seen as stabilizers codes . 294

E.3. Pauli group and stabilizers reloaded . 296
E.3.1. Measurements in the Stabilizer formalism . 301
E.3.2. The construction of logical X and Z for stabilizer codes 302

E.4. The Gottesman-Knill theorem . 304

6

1. Introduction

Digital computers have created the “information age” in which we live. True that the basic building
block of current digital computers is ultimately a quantum device — the transistor. But such smallish
devices — by now having certainly less than 1011 atoms — are used classically: they conduct current
if a certain bias voltage is applied, and this is a bit 1, or not, and this is a bit 0. Hence, each transistor
acts as a two-state classical device, capable of coding a 0 or a 1. With n transistors, we can code the
state of an n-bit classical computer as a string of n binary digits, formally {0, 1}n: e.g., 01001100 is
one of the 28 possible states of an n = 8 bit classical register.

Can quantum mechanics have an impact on the way we process and transmit information? You
should not think of inevitably quantum effects when the size of each transistor gets smaller and smaller:
this is only a nuisance, in some sense. We are asking a much more ambitious question: can we base a
computing device entirely on the law of quantum mechanics (QM)? Would that be good, allowing us
to solve some problems that are difficult to solve using classical digital computers?

One of the distinctive features of QM is the fact that one can form superposition of states. For
a single spin-1/2, not only we can have states |↑〉 and |↓〉, which we could easily identify with the two
states |0〉 = |↑〉 and |1〉 = |↓〉 needed by a digital device, but we can also construct spin states in any
direction n = (sin θ cosφ, sin θ sinφ, cos θ):

|+,n〉 = cos θ2 |↑〉+ eiφ sin θ
2 |↓〉 = cos θ2 |0〉+ eiφ sin θ

2 |1〉 . (1.1)

So, the information encoded into a single such state is equivalent to dealing with C rather than with
the set {0, 1}. With n spins: C2n−1 — discounting for normalisation and an overall phase in front —
rather than just the classical states in {0, 1}n.

But, as Spider-Man would say, with great power comes great responsibility. One of the nice things
about the small-but-not-too-small transistors of our digital devices is their relative insensitivity to
thermal fluctuations or small electrical noise: it takes some effort to turn a bit 0 into a bit 1. Bit flip
errors are important, of course, in classical communication through noisy channels, and this is what
Shannon understood and taught us in 1948: classical information theory was born at that time. But if
our “bits” become quantum — Qbits, from now on — they encode, surely, much more information, but
they are much more prone to errors of all sorts: not only bit flips, but also small phase errors might
accumulate during computation, and lead to disaster. Hence the absolute necessity of a Quantum
Error Correction — a non-trivial fact, by itself, because QM tells us that we mess up our states,
collapsing them if we make measurements to discover errors — in a fully scalable quantum computer.

Another feature of QM which is important is entanglement. Even far-away systems can be
in states that are not simple product states, showing therefore hidden correlations that defeat our
physical intuition based on local realism. In the prototypical re-interpretation of the EPR paradox
given by Bohm, a two-particle spin-singlet state shared by two far-away stations A and B would look
like:

|ψent〉AB =
1√
2

(
|↑〉

A
⊗ |↓〉

B
− |↓〉

A
⊗ |↑〉

B

)
. (1.2)

Upon measuring the spin along the z-axis, if A finds it to be ↑, then the state of the system collapses
and B would necessarily get ↓ if measuring the spin along the same z-axis. But this is not the strange

7

Introduction (Lecture Notes by G.E. Santoro)

side of the story. 1 What is strange is what happens when measurements in different spin directions
are performed. This leads to violations of Bell’s inequalities, which any theory based on local realism
would obey. The final section of this introductory chapter is intended to provide you with a way
of revising your QM, in case you might need, to appreciate a few of these remarkable QM facts.
Experiments with entangled photons [4, 5] have confirmed that Nature behaves in such a quite weird
manner.

Is that all? These two ingredients, superposition of states and entanglement, are enough to lead
to a new paradigm of computation which is indeed more powerful than the classical one behind
our current digital computers?

Question: Superposition and entanglement are enough?

Surprisingly, the answer to this question is negative. A famous result, known as Gottesman-Knill
theorem [6, 7] shows that there are highly entangled and non-trivial quantum operations which can
still be simulated efficiently on a classical computer.

Gottesman-Knill theorem. More precisely, if the quantum algorithm is based on:

1) Preparation of states on the so-called computational basis. a

2) Application of any sequence of quantum gates based on single-Qbit Hadamard and Phase
gate, plus a two-Qbit controlled-NOT gate. b

3) von-Neumann projective measurements in the computational basis.

then, a classical algorithm [7] which is polynomial in n can simulate it. The interesting fact,
which is the reason why we still do Quantum Computation, is that these gates are not universal:
there are possibly interesting Quantum Algorithm which do involve other gates that cannot be
approximated by simply using Hadamard, Phase, and controlled-NOT. The addition of the T-
gate, which is such that T2 = S, would make this set universal, and, as far as we know, most
likely impossible to simulate classically in an efficient way.
aThe computational basis of an n-Qbit system is simply the tensor product basis |σn〉⊗ · · · |σ2〉⊗ |σ1〉 with σj =↑

or ↓. In terms of Boolean variables xj = 0, 1, we would write it as |xn〉 ⊗ · · · |x2〉 ⊗ |x1〉.
bThe Hadamard gate H is a single Qbit gate that implements H|0〉 = 1√

2
(|0〉 + |1〉 and H|1〉 = 1√

2
(|0〉 − |1〉,

hence it is represented on the computational basis by the following 2× 2 matrix:

H =
1
√

2

(
1 1

1 −1

)
.

The phase gates S is a single-Qbit gate that acts by putting a phase factor i when acting on |1〉, hence it is
represented by

S =

(
1 0

0 i

)
.

The controlled-NOT two-Qbit gate implements on the computational basis the classical operation C12|x2〉 ⊗
|x1〉 = |x1 + x2, mod 2〉 ⊗ |x1〉.

i

Nevertheless, while much has still to be learned about the possible power of a quantum paradigm
of computation, there are great expectations in the news on what a Quantum Computer would allow
us to do. To get a feeling for what we could dream to do with a Quantum Computer, let me briefly
discuss, very superficially, what we can do with a classical computer.
1Think of a photocopy of both sides of a coin, which is cut in two: one side is sent to you, the other to a friend of
yours in Japan. Until the envelopes are closed, each of you might have a Tail or a Head. As soon as you receive
your envelope, and see for instance a Tail, you might say that the figure that your friend receives instantaneously
collapses into a Head. This is clear nonsense: there is nothing strange in such classical correlations.

8

(Lecture Notes by G.E. Santoro) 1.1 Turing machines and classical computation

1.1. Turing machines and classical computation

We start with the idea of an algorithm — a set of instructions to carry out a given task —, a notion
known since ancient times (thinks of Euclid’s algorithm for the greatest common division) but made
precise only surprising late, in the 1930s. Before that, mathematicians, including Hilbert in 1900, gave
for granted that an algorithm exists, although possibly very difficult to find, for every mathematical
task. We concentrate here on two kinds of tasks: decision problems and computational problems.
Computational problem can be thought as devising an algorithm to calculate a function f(xin) = yout.
Decision problems are, in some sense, a particular case, where the output yout is binary: True or False.

Decision problems. A classical important decision problem is to decide if a given statement, assuming
a set of axioms, is True (hence a Theorem) or False. You can think of very easy decision problems, as
we now exemplify.

1) Consider the set of strings L = {0, · · · , 0 m times} made of m repeated 0s. Device an algorithm
that accepts the string if m = 2n with n ≥ 0, a multiple of two, rejecting it otherwise. This is
example 3.7 in Sipser [8].

2) Consider strings of the form L = {t] t | t ∈ {0, 1}∗} where {0, 1}∗ denotes the set of Boolean
strings of any length. Device an algorithm that accepts strings of this form, while rejecting any
other string build on the same set of symbols {0, 1,]}. This is example 3.9 in Sipser [8].

3) Element distinctness. Consider strings of the form

L = {t1] t2] · · ·] tn| ti ∈ {0, 1}∗ with ti 6= tj for i 6= j} .

Device an algorithm that accepts strings of this form, i.e, all ti are different, while rejects any
other string build on the same set of symbols {0, 1,]}. This is example 3.12 in Sipser [8].

Existence of integral roots of integer polynomials. Consider polynomials p(x) with
x ∈ Rn with integer coefficients. Given the coefficients, device an algorithm that tests if the
polynomial has integral roots, i.e., p(x) = 0 with x ∈ Zn. This is a famous decision problem:
Hilbert’s 10th problem in his famous address at the International Congress of Mathematicians,
held in Paris in 1900.

i

For a polynomial of a single variable p(x) = cnx
n + · · · c1x + c0 an integral root x = x0 is bound

to be |x0| < (n + 1)|cmax/cn|, where cmax is the maximum coefficient, and an algorithm that tests if
such an integral root exists can be easily devised: test all integers 0, ±1, ±2, · · · up to the previous
bound. A mathematician, Yuri Matijasevic̆, has shown in 1970 that no such algorithm exists for a
general polynomial of many variables.

To do that, however, we need a precise formal definition of “what an algorithm is”, which came only
in the 1930s, through the work of Alan Turing — who introduced the concept of Turing Machine —
and Alonso Church — who described as computable those functions that one can formally describe
as recursive and invented the lambda-calculus. These two approaches have been shown (by Turing) to
be computationally equivalent, leading to the following:

9

Introduction (Lecture Notes by G.E. Santoro)

The Church-Turing thesis.
“The class of all functions computable by means of an algorithm is equivalent to the class of all
functions computable by a Turing machine”. a Very informally: Every computing device can be
simulated on a Turing machine to any desired precision.
aAs such, this might be regarded as the “definition of an algorithm”, more than a theorem of mathematics. In

other words, the concept of a “function computable my means of an algorithm” is too vague, if I do not define
what an algorithm is: hence, it is in some sense impossible to prove the Thesis.

i

A Turing Machine. Let me spend a few words on the concept of a Turing Machine (TM), a subject of
classical computation, which would take an entire course on its own. If you want to learn more about
classical computation, consult the beautiful book by M. Sipser [8], which I will here follow. A TM is
an abstract general model of a classical computing machine, of which our current digital computers are
the most known and relevant hardware implementation: both have equivalent computational power.

A Turing Machine. A TM, schematically illustrated in Fig. 1.1, is specified by:

Tape) A semi-infinite Tape, made of cells containing symbols taken from a given tape alphabet
T. A special symbol t (blank) is used to signal, for instance, the end of the meaningful cells
of the tape.

Input alphabet) A finite set of input symbols A, not containing t, which is a subset of the tape
symbols, A ⊂ T.

States) A finite set of states S = {s0, s1, · · · , sn, saccept, sreject}, which includes a starting state s0,
as well as two special states, saccept and sreject, where the TM accepts or rejects the input
string and halts. Each state of the TM determines a certain behaviour of the machine, as
described below.

Head) At step k of the computation, with the TM in state sk ∈ S, the Head reads a certain
symbol tj from the jth cell of the Tape. Following that, according to a well-defined set of
transition rules (see below), it moves the TM to a (possibly new) state sk+1, writes a new
symbol t̃j on cell j, and moves by one cell left (L) or right (R) along the tape.

Transition rules) The code governing the TM is a set of transition rules of the type (s, t) →
(s̃, t̃,R/L), where s ∈ S is a state of the TM at step k (hence s = sk), and t is the tape
symbol at the cell where the Head is located, s̃ = sk+1 is the new state over which the TM
switches (including s̃ = s), t̃ the new tape symbol written on the current cell, and L/R tells
the Head to move to the left (L) or to the right (R).

i

To illustrate the code you need to write for the 1st simple decision problem above, recognising if
L = {0, · · · , 0 m times} has a power of two,m = 2n, number of 0s, consider the following pseudo-code.

10

(Lecture Notes by G.E. Santoro) 1.1 Turing machines and classical computation

. . . 0 1 1 0 0 0 0 t . . . Input/Output Tape

s0s1

...

sn saccept

sreject

S: States of the TM

sk

Reading and writing Head
(moves in both directions)

Figure 1.1.: Representation of Turing Machine. The tape alphabet is here T = {0, 1,t}. The machine at
time-step k is in state sk = s1 and is reading a cell with a 1. t signals the end of the tape.

Pseudo-code.

1. Sweep the tape left to right, crossing off (changing 0 with a x) every other 0.

2. If in 1. the Tape contained a single 0, accept

3. If in 1. the Tape contained and odd number of 0s, greater than one, reject.

4. Return the Head to the initial position of the tape.

5. Go to step 1. and repeat.

i

The rationale is that Step 1. is a process of division by 2 of the 0s, where half of the 0s are changed
into a new tape symbol x, while half remain 0s. Step 4. allows moving the Head back to the leftmost
position (which you should mark by substituting the 0 in the initial cell with a t), to repeat the
process of division by 2 of the 0s. If the number of 0s at a certain stage is larger than 1 but odd, then
the original number of 0s was not a multiple of 2: for instance, from m = 6, you would reduce to 3,
and therefore eventually reject the string. Figure 1.2 below shows the input string and tape after a
full sweep to the right, for m = 6.

0 0 0 0 0 0 t . . .

t x 0 x 0 x t . . .

Figure 1.2.: Top: The starting input configuration for a string with m = 6 0s. Below: The tape configuration
after a first sweep of the string.

More in detail, we define a TM where A = {0} is the input alphabet, T = {0, x,t} the tape
alphabet, including the symbol x to substitute every other 0. By thinking a bit 2, one comes out
with a set of transition rules between the 5 + 2 states that you need to have for the machine to work.
The full code (transition rules) can be represented by the graph in Fig. 1.3.
2This is the non-trivial part of the design of the actual “code” of the TM.

11

Introduction (Lecture Notes by G.E. Santoro)

s0start s1 s2

s3

s4

sreject saccept

0→ t,R

t→R
x→R

x→ R

0→ x,R

t → R

t → L

x→ R

0→ R 0→ x,R

0→L
x→L

t → R

x→ R

t → R

Figure 1.3.: A Turing Machine code, showing the transition map for deciding if the number of 0s is a multiple
of 2. Verify that you get Fig. 1.2 after a full sweep of the tape from left to right.

Computational problems. Of course, a TM can also be used for computational problems. In that
case, the two states saccept and sreject might be substituted by a single state shalt, where the TM halts.
The output of the calculation, however, should be written, in this case, on the Tape.

Let us illustrate the simplest example of a TM computation: summing two integers. For the sake
of simplicity in the design of the TM, we will use here a very inefficient way of coding the integers
on the Tape: a unary representation, where each integer is represented by as many 1s as the integer
itself: 5, for instance, is written as 11111. To signal the beginning of an integer we use the symbol].
The alphabet is here A = {1,]}, while the tape alphabet is T = {1,],t}.

Suppose we want to sum 2 + 3. We write on the tape the symbols]11]111t, see Fig. 1.4 (top).
The TM starts in state s0 and, upon reading the first] moves to state s1. In state s1, the machine
reads a 1, does not modify it, and moves to the right, until a new] (signalling the second integer) is
met. At this point, the machine switches to state s2, whose duty is to change the 1→], move to the
left and switch to a state s3 which does precisely the opposite: changes]→ 1 and moves to the right.
The combined effect of this action is to have now the tape in configuration]111]11t, with a 1 that
was moved to the left of the second]. Proceeding in this way, the machine switches between s2 and
s3 to keep moving all the 1s to the left of the second], until it stops, entering the state shalt, when
no 1s are left. The machine ends the calculation with the tape in configuration]11111]t, see Fig. 1.4
(bottom), which contains the desired unary representation of 5 = 2 + 3.

The full code (transition rules) for a TM performing the sum of integers in unary representation is
represented by the graph in Fig. 1.5.

12

(Lecture Notes by G.E. Santoro) 1.1 Turing machines and classical computation

] 1 1] 1 1 1 t . . .

] 1 1 1 1 1] t . . .

Figure 1.4.: Top: The starting input configuration of the Tape when summing 2 + 3. Below: The tape
configuration when the TM halts, where you read the integer 5.

s0start s1 s2

s3

shalt

]→],R

1→ 1,R

]→],R

1→],L

]→],−

]→ 1,R

Figure 1.5: A Turing Machine code,
showing the transition map for sum-
ming two integers in unary represen-
tation.

1.1.1. Computability and decidability

The statement of the Church-Turing thesis — with the allusion to “computable by an algorithm”
— effectively implies that there are problems that are “non-computable”.

For the case of decision problems, one would call them undecidable problems. This happens
because the possible outcome of running a TM on a given input string tinput of the tape can be
accept, reject, or loop and never halt, with any simple or complex behaviour which visits the
possible states sj ∈ S but never reaches one of the two halting states saccept or sreject. We saw before
simple decision problems which were decidable, but also a remarkable problem of mathematics —
Hilbert’s 10th problem — which is undecidable for polynomials of more than one variable.

A no-go result. In essence, no TM can be devised such that, upon coding in the input tape the
integer coefficients of an arbitrary polynomial of many variables, the TM decides if the polynomial
has integer roots or not.

!

A very famous undecidable problem was introduced by Turing since the beginning of his theory,
the halting problem: deciding if, given a TM operating on an input, the machine will eventually halt,
or rather loop forever.

Some of these undecidable problems might surprise you, because they are inside the realm of the
quantum theory of many-body systems, like the undecidability of the spectral gap problem: given the
Hamiltonian of a quantum many-body system — say, a translationally invariant spin Hamiltonian on
a square lattice — decide from the knowledge of the interaction coefficients if the model is gapped,
with a unique ground state, or rather gapless (in the thermodynamic limit). 3

3See Cubitt et al., Nature 528, 207 (2015). The precise statement is the following. The spectral gap problem — i.e.,
deciding with an algorithm if a given quantum Hamiltonian has a gapless spectrum, or is gapped with a unique

13

https://en.wikipedia.org/wiki/Halting_problem

Introduction (Lecture Notes by G.E. Santoro)

The formulation of the Church-Turing thesis does not put limits to the running time of the algo-
rithm, or to the memory used. As such, the distinction between computable and non-computable is
too coarse. A computer scientist would ask questions about the efficiency with which one can calculate
a “computable function”, meaning whether the length (or memory usage) of the computation would
scale polynomially, or super-polynomially, with the length of the input.

There are computable but notoriously difficult problems in all disciplines, from computer science
to physics. For instance, in physics, simulating a quantum many-body system. A classification of
computational efficiency can only make sense if it is independent of the computing device you use.
This has led to the following “extended" or “strong” or “quantitative” version of the Church-Turing
thesis:

Extended Church-Turing thesis. Any “physical” computing device can be simulated by a
Turing machine in a number of steps polynomial in the “resources” used by the computing device.

i

The implication is that if a problem cannot be solved with polynomial “resources” on a Turing
machine, then it has no efficient solution on any other “physical” machine. Notice the word “physical”,
which means “which can be built and made to work”. Notice also the other clause alluding to the
“resources”. For digital devices by “resources” one means time (or computational steps), and space
(or memory used). For analog devices, there is an additional “resource”, the precision.

Proposals of analogue devices which violate the extended Church-Turing thesis, seemingly solving
in polynomial time hard problems of computer science, have so far been based on exponentially precise
parts or involved an exponentially large energy cost. See Ref. [9][Sec. 1] for a useful introduction to
these points.

This leads to the crucial question: would a computing device based on the laws of Quantum
Mechanics be a counter-example to the extended Church-Turing thesis?

Question: Why quantum?

One could argue positively on that, following Feynman. After all, Nature is quantum, and, for instance,
a quantum device might be able to simulate efficiently quantum many-body problems.

This sub-field of the “Quantum technology” endeavour is known as Quantum Simulators. Physicists
have now built physical quantum devices on which they have a remarkable degree of control. For
instance, assemblies of Rydberg atoms — e.g., 87Rb — held in desired positionsRi by optical tweezers,
see Refs. [11–13] — which are essentially described by a quantum Hamiltonian of the form:

ĤRydberg =
1

4

∑
i<j

Vij(1− σ̂zi)(1− σ̂zj) +
~Ω

2

∑
i

σ̂xi −
~∆

2

∑
i

(1− σ̂zj) . (1.3)

Here Ω is the so-called Rabi frequency (or coupling) between the atom in the ground state, |g〉 = |↑〉
with a spin-1/2 mapping, and the atom in the highly excited Rydberg state |r〉 = |↓〉, induced by a
two-photon optical transition. ~∆ is the so-called detuning of the laser frequencies in the Rydberg
two-photon transition, and Vij ∼ C6/|Ri −Rj |6 is the (van der Waals) interaction between Rydberg
excited atoms.

ground state — is algorithmically undecidable, in the same sense in which the halting problem for a Turing Machine is
undecidable. This means that there cannot be an algorithm that, given in input a description of the local interactions,
determines whether the corresponding quantum Hamiltonian is gapless or gapped.

14

https://en.wikipedia.org/wiki/Rydberg_atom

(Lecture Notes by G.E. Santoro) 1.2 Probability theory and Quantum Mechanics

Figure 1.6.: Rydberg atoms setup. Figure extracted (including part of the caption) from Fig.1 of Ref. [10].
a) Individual 87Rb atoms are trapped using optical tweezers (vertical red beams). Coherent interactions Vij between
the atoms are enabled by exciting them (horizontal blue and red beams) to a Rydberg state with strength Ω and
detuning ∆. b) A two-photon process couples the ground state |g〉 = |5S1/2, F = 2,mF = −2〉 to the Rydberg
state |r〉 = |70S1/2, J = 1/2,mJ = −1/2〉 via an intermediate state |e〉 = |6P3/2, F = 3,mF = −3〉 with detuning
δ, using circularly polarized 420-nm and 1,013-nm lasers.

But there are issues about the precision which should inevitably be posed, as some of the ingredients
of such a quantum device are analogue: amplitudes of quantum states, which one would like to
manipulate and control, but protect from external noise, etc.

Quantum technologies. Quantum Mechanics might help us not only in simulating quantum
systems, and possibly in computing more efficiently problems that are classically hard, but also
in other important applications like building sensors — Quantum sensors — or having secure
communications — Quantum cryptography.

i

Let us stop here these general considerations, and briefly review a few basic facts of QM which are
useful to have in mind.

1.2. Probability theory and Quantum Mechanics

We choose to examine a phenomenon that is impossible, absolutely impossible, to explain in any
classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only
mystery. We cannot make the mystery go away by “explaining” how it works. We will just tell you how
it works. In telling you how it works we will have told you about the basic peculiarities of all quantum
mechanics.

Richard Feynman, Lectures on Physics, Vol. III

You shoot photons (or electrons, or any quantum particle), even one-by-one, towards a wall with
two narrow slits, and observe interference fringes on the screen that sits behind the wall, after many
individual events are collected.

Where each photon (or particle) lands on the screen is probabilistic. But this is not the strange
side of the story. You might always think that there are unobserved (hidden) variables that, if known,
would make the dynamics totally “deterministic”. Figure 1.7 alludes to such a mental picture, where
you should imagine that the world we observe is only “one of the walls” of a billiard, where a chaotic
but deterministic motion occurs.

What is strange is a non-monotone behaviour of the probability P of observing a particle hitting
a certain region of the screen. Classically, you would think that closing slit 2, and leaving only slit 1

15

Introduction (Lecture Notes by G.E. Santoro)

The world we observe

U
n
ob

se
rv

ed
va

ri
ab

le
s
−→

Figure 1.7: A Sinai billiard, made of a square or rectangle in which
a circular hole is cut in the center. A classical particle bounces elas-
tically from all the walls in the billiard. As proved by Sinai, the
resulting classical motion is ergodic, indeed mixing. Hence, the loca-
tion in which the particle hits one of the walls is chaotic.

open, the probability P1 of observing events in the same region would be smaller: P1 < P. But this
is not true: even places with P ≈ 0 can get a finite, appreciable, P1 if you close slit 1. Indeed, as you
know, probabilities in QM are calculated starting from complex amplitudes:

P = |ψ1 + ψ2|2 . (1.4)

Interference is the key. You might have, say, ψ1 = 1√
2
and ψ2 = − 1√

2
, resulting in P = 0 but

P1 = |ψ1|2 = 1
2 . We will see shortly an explicit demonstration of this weird fact in discussing the

Mach-Zehnder interferometer.

More generally, in a classical world, you would think that if there are two possible ways in which
something (an “event”) can happen, with probabilities P1 and P2, than the total probability is:

P = P1 + P2 . (1.5)

This is false, in the microscopic realm of QM. But if you think of measuring which slit the photon (or
particle) went through — a so-called which-way experiment —, then you would destroy interference.

Decoherence. Our description of the world reverts to classical probabilities when systems
are considered to be coupled to an environment, a highly non-trivial phenomenon known as
decoherence. We will have more to say about it when discussing open quantum system dynamics.

i

Let us discuss these facts in more detail.

1.2.1. Interference in a Mach-Zehnder interferometer

To whet your appetite about weird QM effects, let us consider the following Mach-Zehnder Inter-
ferometer (MZI) setting shown in Fig. 1.8(a). It could view it as a simplified version of a double-slit
experiment, where the continuum of possible paths and possible hits on the screen is substituted by
only two paths and two detectors. No interference will lead to the two detectors having equal counts,
interference to an imbalance in the counts.

A single photon 4 of wavevector, k1 moving along the x-direction is sent onto the first 50-50 beam-
splitter (BS1), a very common device in all Quantum Optics labs, made of a carefully crafted half-
reflecting surface. After BS1, there is a 50-50 probability that the photon is transmitted (T), keeping
4Since photon sources were invented by A. Aspect in 1985, they are nowadays routinely available. They should be
distinguished from strongly attenuated photon sources. If a beam is strongly attenuated so that the average number
of photons is very small, say 〈n〉 = 1

100
, then 99% of the time there is no photon, in 1% of the cases there is one

photon, but, with a Poisson’s distribution, there could also be 2, 3, etc. photons, and the coincidence counts would
reveal the subtle difference with a true single-photon source. See A. Aspect’s public lecture upon receiving the N.
Bohr Gold Medal 2013, available on YouTube. Incidentally, the photon polarisation is assumed to be conserved, and
hence neglected in the following discussion.

16

https://www.youtube.com/watch?v=wcHdLKlybPM

(Lecture Notes by G.E. Santoro) 1.2 Probability theory and Quantum Mechanics

(a)

|k1〉 =⇒

M

M

B

B A

A

BS1

BS2

D2

D1

Nc

(b)

|k1〉 =⇒

M

M

B

B A

A

BS1

D2

D1

Nc

Figure 1.8.: (a) A Mach-Zehnder interferomenter, with two beam-splitters (BS), two mirrors (M) and two
final detectors (D). After BS1, there is a 50-50 probability that the photon is transmitted (T), keeping its k1

and going into path A of the MZI, or reflected (R) into a state of wave-vector k2 along the y-direction, hence
going into path B. If paths A and B have exactly equal lenghts, all photons go into detector D1. Coincidences
are never registered. (b) Same as (a), but without the second beam-splitter BS2. The apparatus now
behaves as a which-way particle detector, with photons ending up in either one of the two detectors with equal
probability, but never in coincidence, as one can verify with a coincidence counter.

its k1 and going into path A of the MZI, or reflected (R) into a state of wave-vector k2 along the
y-direction, hence going into path B. We will denote such states as |k1〉 and |k2〉: they will form the
basis of our simple 2 × 2 calculations. The phase accumulated by these states will not be explicitly
included, because the length of the two arms A and B of the interferometer is assumed to be identical.
Notice how we are effectively using our classical “image” of a “photon going through a path”, typical
of “particle” way of looking at the photon.

Quantum Optics teaches us that such a 50-50 beam-splitter can be described by the following
unitary matrix in the basis {|k1〉, |k2〉} of x- and y-directed wave-vector states:

UBS1 =
1√
2

(
1 ieiϕBS

ie−iϕBS 1

)
. (1.6)

As you see from element 21 of the matrix, the reflected photon gets an extra phase ie−iϕBS , where
ϕBS depends on the reflecting coating. Unitarity, however, constraints the element 12 to be ieiϕBS .
A common choice is to assume ϕBS = 0, as we will do. The two mirrors (assumed identical) simply
reflect momenta, and can be described by the unitary matrix

UM =

(
0 eiϕM

eiϕM 0

)
. (1.7)

Here one could take ϕM = π (the reflection is associated with a change of sign), but this phase will
play no role in our discussion, and we will leave it generic.

No BS2: which-way detector operation. In absence of the second beam splitter, our
description of the MZI — see Fig. 1.8(b) — would not be an interferometer at all. It is leading
to a photon either going along A, ending in D2, or going along B, ending in D1, like a “particle”.
If you measure the coincidence counts of the two detectors you find 0, compatibly with noise.

i

The quantum calculation easily confirms this. The initial state being |ψin〉 = |k1〉 → (1, 0)
T, we get a

final state, in absence of BS2:

|ψfin−no BS2〉 = UMUBS1 |ψin〉 =
1√
2
eiϕM

(
i 1

1 i

)(
1

0

)
=

1√
2
eiϕM

(
i

1

)
. (1.8)

17

Introduction (Lecture Notes by G.E. Santoro)

Calculating the probability that the photon ends up in either one of the two detectors is now easy.
Recalling that |k2〉 → (0, 1)

T, we get:

PD1 = |〈k1|ψfin−no BS2〉|2 =
1

2
and PD2

= |〈k2|ψfin−no BS2
〉|2 =

1

2
.

Essentially, the photon is detected in D1 and D2 with a 50-50 probability. But never, experimentally,
in D1 and in D2.

Now we add the second beam-splitter, operating the MZI like a real interferometer, see again
Fig. 1.8(a). The final state predicted by QM is:

|ψfin〉 = UBS2
UMUBS1

|ψin〉 =
1

2
eiϕM

(
1 i

i 1

)(
i 1

1 i

)(
1

0

)
= eiϕM

(
i

0

)
. (1.9)

The probability of observing the photon in either of the two detectors is strongly modified:

PD1
= |〈k1|ψfin〉|2 = 1 and PD2

= |〈k2|ψfin〉|2 = 0 . (1.10)

|k1〉 =⇒

Phase shift ϕps

M

M

B

B A

A

BS1

BS2

D2

D1

Nc

Figure 1.9: A Mach-Zehnder interferomenter, with
a phase-shifter inserted along arm B and acting on
|k1〉 photons. Physically, it is enough that the pho-
ton passes through a piece of optical fibre of length
L, which has an index of refraction n > 1, leading to
a controllable phase delay with respect to the other
path, where no fibre is present. Coincidences are never
registered.

Interference in MZI. With a perfect MZI, all photons entering the MZI along the x-arm,
end at detector D1. If a phase-shifter, provoking a phase-delay ϕps, is inserted along arm B, see
Fig. 1.9, then you can easily show — as you learn by doing Exercise 1.1 — that

PD1
= |〈k1|ψfin〉|2 = cos2 ϕps

2 and PD2
= |〈k2|ψfin〉|2 = sin2 ϕps

2 . (1.11)

i

Exercise 1.1. Assuming that the phase-shifter is modelled with a unitary matrix:

Ups =

(
eiϕps 0

0 1

)
,

affecting only |k1〉 photons, show that:

|ψfin〉 = UBS2
UpsUMUBS1

|ψin〉 ,

is such that the probabilities in Eq. (1.11) are obtained. Check also what would be the role of a
possible phase ϕBS appearing in the beam-splitter unitary matrix.

Let us now see how we would describe the same process in terms of classical probabilities. 5 The
phase shifter — just a piece of optical fibre inserted in arm B — should make absolutely no difference
5NB: The word “classical” should create no confusion. We do not mean “in terms of classical electromagnetic fields”,
which are waves, and do show interference!

18

(Lecture Notes by G.E. Santoro) 1.2 Probability theory and Quantum Mechanics

at the probability level: if a photon has gone through arm B, it will enter and exit the optical fibre:
that’s it. A 50-50 beam splitter would be described by a transition matrix of the form:

TBS =

(
1
2

1
2

1
2

1
2

)
, (1.12)

a stochastic matrix (SM) typical of Markov chains and classical master equations. The mirrors would
be simply described by a trivial SM of the form:

M =

(
0 1

1 0

)
.

Starting from a probability vector Pin = (1, 0)
T, in absence of the second beam-splitter I would expect:

Pfin−no BS2
= MTBS1

Pin =

(
1
2

1
2

1
2

1
2

)(
1

0

)
=

(
1
2
1
2

)
,

the same conclusion that QM reaches. The big difference with the QM calculation comes when one
includes the second beam-splitter. Classically:

Pfin = TBS2
MTBS1

Pin =

(
1
2

1
2

1
2

1
2

)(
1
2

1
2

1
2

1
2

)(
1

0

)
=

(
1
2
1
2

)
. (1.13)

As perhaps expected, this classical conclusion is identical to that obtained from a single BS and
radically different from that of QM.

|0〉 |0〉

|0〉 |1〉 |0〉 |1〉

|0〉 |1〉 |0〉 |1〉

After 1st BS & M

After 2nd BS

Quantum amplitudes Classical probabilities

− 1√
2

i√
2

1√
2

− i√
2

i√
2

1√
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 1.10.: Left: The amplitudes in the two paths of the interferometer. Here |0〉 is a shorthand for |k1〉,
a photon travelling along x, and |1〉 stands for |k2〉, a photon travelling along y. The phase eiπ = −1 due to
the mirror is included. Right: The corresponding classical probabilities.

Figure 1.10 shows the two paths connecting the initial state |k1〉 = |0〉 to each of the two detector
final states: D1, associated to |k1〉 = |0〉, and D2, associated to |k2〉 = |1〉. Here |0〉 and |1〉 are
shorthands for the two basis states used in our calculations, where all identical accumulated phases
are consistently neglected. The left part shows the QM calculation, with the individual amplitudes
making up A|0〉→|0〉 and A|0〉→|1〉. Here blue denotes arm A and red is associated with arm B. One
gets:

A|0〉→|0〉 =
(−i√

2

)(
1√
2

)
+
(−1√

2

)(
i√
2

)
= −i and A|0〉→|1〉 =

(
− i√

2

)(
i√
2

)
+
(
− 1√

2

)(
1√
2

)
= 0 ,

from which Eq. (1.10) for PD1 = |A|0〉→|0〉|2 and PD2 = |A|0〉→|1〉|2 follows. The right part of Fig. 1.10
shows the corresponding classical probability calculation, where along different paths probabilities are
summed: both paths contribute equally to the final probability.

19

Introduction (Lecture Notes by G.E. Santoro)

Blocking one path. It is worth to remark that while

PD2 = PD2|path A + PD2|path B =
1

4
+

1

4
=

1

2
,

hence if you block path B the probability of getting a photon in D2 is reduced to PD2|path A = 1
4 ,

the same blocking of path B provokes a remarkable increase of the quantum probability PD2
,

from 0 to 1
4 .

!

1.2.2. Wheeler’s delayed-choice experiment

As you saw from the previous calculation, an almost identical apparatus, except for the presence or
absence of the second beam-splitter, acts in two complementary ways: either as a which-way particle
detector (BS2 absent) or as an interferometer (BS2 present). The word “complementary” is used on
purpose. This is, essentially, Bohr’s complementarity principle: A quantum object, depending on the
experimental apparatus, either shows particle-like aspects, or wave-like aspects, but not both. Since
you cannot do two radically different experiments at the same time, there is no source of inconsistency.

But here comes a bright idea by J.A. Wheeler: What if the experimentalist decides to insert or not
insert the second beam-splitter when the photon has already entered the apparatus, passing the first
beam-splitter? The experimentalist, in other words, has delayed the choice of what type of experiment
— which-way particle detector or interferometry — to perform. How? By a very fast electronic
device known as EOM (Electro-Optical modulator), which essentially can act as a beam-splitter or
not depending on a certain voltage V which the system randomly choses when the photon is already
in the middle of the 48 meters long 6 arms of the MZI. Fig. 1.11 shows the apparatus used in 2007
by the Aspect’s group to perform such a Wheeler’s delayed-choice experiment.

Figure 1.11.: Left: Figure 2 from Ref. [14], with a sketch of the experimental apparatus. Right: Figure 3
from the same paper, showing the interference for the counts made “in coincidence” with the presence of the
second beam-splitter, and no interference otherwise.

Needless to say, QM works perfectly. Our classical mental pictures are simply unable to catch up
with the QM rules-of-the-game. It is not that the photon passes BS1, “sees” that you want to do a
“particle experiment” and therefore acts like a particle, or vice-versa, seeing that you want to perform
an interferometric experiment, it behaves as a wave. You do not play tricks to nature by delaying
your choices on “what operators you apply to the state”. The photon simply follows the strange rules
of QM, that govern the object — the quantum state |ψ〉 — containing all the statistical information
on the experiment you perform: if you insert the BS2 along the way, in the middle of the arm of the
MZI, the state |ψ〉 will be acted-upon by UBS2

and the game is over: calculate probabilities, and you
get the correct answers. If you do not insert the BS2, the state is not acted-upon by UBS2 , and the
resulting probabilities are again correct. No dirty tricks are allowed.
6It takes t = 160ns for a photon to travel 48 meters: fast enough electronics can easily cope with that.

20

(Lecture Notes by G.E. Santoro) 1.2 Probability theory and Quantum Mechanics

1.2.3. Which-way experiments and the delayed-choice quantum eraser

Figure 1.12: Sketch of the experimental apparatus
used in Ref. [15], in the spirit of a Young’s double-slit
apparatus, with single photons generating, by a non-
linear Quantum Optics trick known as Spontaneous
Parametric Down Conversion a pair of polarisation-
entangled photons, one sent to a screen (the signal
photon), and one (the idler photon) sent to a complex
apparatus used as a “path-detector”. A very ingenious
way of using entanglement to try and trick Nature,
getting interference on a screen while trying to also
get (or erase) which-way information.

Let us now see what happens if we try to measure the path that the photon has gone, with a
“which-way” measuring device. This time I will discuss a Gedanken 7 experiment, modelling the
problem as suggested in a recent paper by Qureshi, Ref. [16]. The actual experiment was performed
back in 2000 by the group of M. Scully, see Ref. [15], and is sketched in Fig. 1.12. I will not describe
the experiment, which is a bit involved because of the many mirrors/beam-splitters/detectors.

So, let us model the problem as sketched in Fig. 1.13.

|k1〉 =⇒

Measuring device

Pointer

|↑〉 → |↓〉
|ψB〉

|ψA〉

M

M

B

B A

A

BS1

BS2

D2

D1

Nc

Figure 1.13: A Mach-Zehnder interferomenter, with
a spin-1/2 measuring device (pointer). The pointer,
normally in state |↑〉p, flips |↑〉p → |↓〉p, if a photon
goes through path B. Here |ψA〉 = (0,−1)T and |ψB〉 =

(−i, 0)T are the (normalised) states before BS2 “in the
two paths”.

We place along path B a measuring device consisting of a single spin-1/2. Such a device is sometimes
called a pointer. The pointer is normally in the state |↑〉p, but flips into state |↓〉p if the photon goes
through path B. The Hilbert space of the problem includes now the pointer space, with the usual
tensor product. The initial state of the photon+pointer is now |Ψin〉 = |k1〉 ⊗ |↑〉p.

Just before the second BS, in absence of pointer, the photon state would be, as predicted by Eq. (1.8)
which we summarise here, taking ϕM = π:

|ψfin−no BS2
〉 =

1√
2

(
−i
−1

)
=

1√
2

(
|ψA〉+ |ψB〉

)
, (1.14)

where |ψA〉 = (0,−1)T and |ψB〉 = (−i, 0)T are (normalised) states “in the two arms” (neglecting as
usual the the equal-phase accumulated along the paths). In presence of the pointer, the state of the
system before the second BS, but after the photon has possibly interacted with the pointer, would be:

|Ψbefore BS2
〉 =

1√
2

(
|ψA〉 ⊗ |↑〉p + |ψB〉 ⊗ |↓〉p

)
.

7But see a very recent proposal by Qureshi, arXiv:2010.00049, with a realisable experiment based on a simple enough
MZI device, using polarisation-entangled photons.

21

Introduction (Lecture Notes by G.E. Santoro)

As you see, the state is no longer separable: interaction with the pointer has produced entanglement
between the photon and the pointer. Now we let the second beam-splitter act, getting the final state:

|Ψfin〉 = UBS2 ⊗ 1p|Ψbefore BS2〉 =
1√
2

(
UBS2 |ψA〉 ⊗ |↑〉p + UBS2 |ψB〉 ⊗ |↓〉p

)
=

−i√
2

(
1√
2

(1

−i

)
⊗ |↑〉p +

1√
2

(1

i

)
⊗ |↓〉p

)
=

−i√
2

((1

0

)
⊗
|↑〉p + |↓〉p√

2
− i
(0

1

)
⊗
|↑〉p − |↓〉p√

2

)
. (1.15)

The two totally equivalent ways of writing the final state involve different combinations of states.
Recall that we might call |D1〉 = |k1〉 = (1, 0)T and |D2〉 = |k2〉 = (0, 1)T the final states in which the
photon enters one or the other detector. In terms of these, one might define:

|ψ±〉 =
1√
2

(1

±i

)
=

1√
2

(
|D1〉 ± i|D2〉

)
,

to be photon states which are in superposition in the two detectors. Obviously, concerning the pointer
states, we have that

|±〉p =
1√
2

(
|↑〉p ± |↓〉p

)
are pointer spin states in the +x and -x direction. Armed with these shorthands, we can rewrite the
final state as:

|Ψfin〉 =
−i√

2

(
|ψ−〉 ⊗ |↑〉p + |ψ+〉 ⊗ |↓〉p

)
=
−i√

2

(
|D1〉 ⊗ |+〉p + |D2〉 ⊗ |−〉p

)
. (1.16)

These two alternative expressions are both very useful. The first tells us that if I measure the
pointer along the z-axis and find it, say, in state |↑〉p, then the overall state collapses to

|Ψfin〉
measured ↑p−→ |ψ−〉 ⊗ |↑〉p ,

which implies that at the detectors I would measure:

PD1|↑p = PD2|↑p =
1

2
,

and the same for measurement of |↓〉p.

Measuring the pointer. So, getting information on the pointer state, to discriminate the
path taken by the photon, completely washes-out interference.

i

But, what about if we first detect the photon, say in D1, without measuring the pointer? Then, the
second expression in Eq. (1.16) would tell us that the state now collapses to:

|Ψfin〉
measured D1−→ |D1〉 ⊗ |+〉p .

A subsequent measurement of the pointer, to try and infer the path taken by the photon revealed in
D1, would, however, give us:

P↑p|D1
= P↓p|D1

=
1

2
,

and the same for the detection in D2.

22

(Lecture Notes by G.E. Santoro) 1.2 Probability theory and Quantum Mechanics

Detecting the photon. So, upon detecting the photon, I have lost any information on the
path taken by that photon.

i

One further noteworthy point. Suppose we completely disregard the pointer, measuring the detector
hits with the usual von Neumann projectors. For instance, we would get:

PD1 = 〈Ψfin|
(
|D1〉〈D1| ⊗ 1p

)
|Ψfin〉 =

1

2
,

and similarly for PD2
. Hence, the interaction with the pointer, even if you completely disregard the

pointer and do not measure it, completely washes-out interference. And notice that, as soon as the
photon hits the detector, as seen above, which-way information is lost. Nevertheless, interference is
also lost. Quite noteworthy.

The interaction with the pointer. The entanglement with the pointer — a which-way
detector — suffices to destroy interference.

i

Two very final remarks, a consequence of the second form of Eq. (1.16), which possibly demystify
some common lore about delayed-choice quantum eraser experiments.

Quantum Eraser) Suppose I measure the pointer in the x-basis in spin space, which means that I erase
the which-way information. Then, if I find the pointer in |+〉p, the state of the photon collapses to
|D1〉. Hence, all events in which |+〉p is measured do show interference, as those lead to photons
going to D1, as in absence of any pointer. Similarly, if I measure the pointer in |−〉p, still erasing
the which-way information, all particles go to detector D2, showing again interference, but of
opposite sign. Taken together, however, interference is washed-out, consistently with the fact
that no interference is seen when the pointer is ignored.

Coincidence measurements. So, interference would only be seen in coincidence mea-
surements with the pointer measured along the x-direction, to erase which-way information.

i

Delayed-choice Quantum Eraser) We now play a delayed-choice trick: we first detect the photon,
say we find it in D1, and only afterwards we decide what to measure for the pointer. 8 This
is what QM predicts: Which-way information is erased, as we said previously, by the very fact
of detecting the photon. Some information remains on “how which-way information is erased”
in the pointer apparatus: the pointer is for sure in state |+〉p, if the photon was detected in
D1. You could verify this experimentally by measuring the pointer along x, after registering the
photon in “coincidence”: indeed, if photons come at a sufficiently low rate, even if the pointer
is measured “after detecting of the photon” 9 you can uniquely correlate photon detection and
pointer measurement. If you decide to measure the pointer in the z-direction, you find it |↑〉p
and |↓〉p with a 50-50 probability, as previously discussed.

8Again, the scandal is only in our mental picture: there is no “retro-causal” behaviour, as sometimes alluded at, with
profound philosophical implications about the Universe, and all such non-sense, as often discussed in the hundredths
of videos on Youtube on this subject.

9Obviously in a way that is compatible with special relativity, i.e., in all reference frames you would say that the
pointer is measured in the future cone of the photon detection.

23

Introduction (Lecture Notes by G.E. Santoro)

1.3. Concluding remarks

These considerations bring us to a few final remarks. In a classical world, if an event is random,
there is nothing you can do to make randomness disappear. On the contrary, the probabilistic aspect
of measurement in QM brings in some very peculiar randomness in the outcomes of the measurement
which, however, depends on the choice of the operator you measure and the associated basis of states.
It can well happen that by an appropriate change of basis — hence by applying a suitable unitary
operator to the states — a superposition state is transformed into a state with a definite answer. The
Mach-Zehnder example just discussed shows this fact in a rather clear way.

This feature is at the root of the speed-up that QM allows, for instance, in Shor’s Quantum Fourier
Transform algorithm, leading, among other things, to a very efficient period finding algorithm, which
in turn would allow breaking the current RSA public-key crypto-system.

1.4. Hands-on: EPR-type calculations with entangled particles

And now is your turn to try and revisit your QM with a few simple but very instructive calculations.

We consider the setup of the Einstein-Podolsky-Rosen (EPR) Gedanken experiment, in the formu-
lation given by D. Bohm. A spin zero particle decays by emitting two particles with opposite momenta
and opposite spin, which fly away from the emitting source towards two very far away from experimen-
tal stations A and B. In each station, there is a Stern-Gerlach (SG) apparatus which can be rotated
in a direction, nA and nB, respectively, which can be modified at will. The two particles, labelled by
A and B do not interact after the decay while flying towards the corresponding experimental station.
Their total spin being S = 0, the state predicted by quantum mechanics would be the entangled pure
state:

|ψent〉AB =
1√
2

(
|+, z〉A ⊗ |−, z〉B − |−, z〉A ⊗ |+, z〉B

)
. (1.17)

where |+, z〉 = |↑〉 and |−, z〉 = |↓〉.

Exercise 1.2. (Singlet states.)
Show that, consistently with rotational invariance, the singlet state can be equivalently written with
spin-states pointing into an arbitrary direction n:

|ψent〉AB =
1√
2

(
|↑〉

A
⊗ |↓〉

B
− |↓〉

A
⊗ |↑〉

B

)
=

1√
2

(
|+,n〉A ⊗ |−,n〉B − |−,n〉A ⊗ |+,n〉B

)
. (1.18)

Suppose that now A measures the spin along direction nA — hence, technically, the operator
Â = nA · σ̂A — getting the eigenvalue a = +1, with probability 1

2 , before B does his measurement. 10

According to QM, the state collapses to:

|ψent〉AB

collapse−→ |+,nA〉A ⊗ |−,nA〉B , (1.19)

where you should observe that B gets a spin state in a direction determined by the measurement in
A. It turns out that it is useful to describe such a projective measurement and collapse in terms of
density matrices and projectors.

10Obviously, “before” has a unique meaning only if the measurement that B performs is in the future cone of the
measurement of A.

24

(Lecture Notes by G.E. Santoro) 1.4 Hands-on: EPR-type calculations with entangled particles

Von Neumann projective measurement. According to von Neumann, if

Π̂Â
a =

1 + anA · σ̂A

2
⊗ 1B (1.20)

is the projector associated to Â—measuring the spin state with eigenvalue a = ±1 along direction
nA — at station A, and ρ̂ is an arbitrary initial state, then the probability of measuring a for the
measurement at A, which we denote by Prob(Aa|ρ̂), and the final collapsed state ρ̂a are:

Prob(Aa|ρ̂) = Tr(Π̂Â
a ρ̂) and ρ̂

collapse−→ ρ̂a ≡
Π̂Â
a ρ̂Π̂Â

a

Tr
(

Π̂Â
a ρ̂Π̂Â

a

) =
Π̂Â
a ρ̂Π̂Â

a

Tr
(

Π̂Â
a ρ̂
) , (1.21)

where we used, in the denominator, the cyclic property of the trace, and the fact that (Π̂Â
a)2 =

Π̂Â
a .

i

Exercise 1.3. Verify that this indeed leads to Prob(Aa|ρ̂) = 1
2 and to the collapsed state in Eq. (1.19).

Now, after A has measured a and the state has collapsed to ρ̂a, B measures the spin along a
direction nB that he chooses, hence the operator B̂ = nB · σ̂B. As usual, get armed with the projector:

Π̂B̂
b = 1A ⊗

1 + bnB · σ̂B

2
(1.22)

Exercise 1.4. (B measures after A.)
The probability that B measures the eigenvalue b for the spin along direction nB on the collapsed
state ρ̂a is given, following the von Neumann prescription, by:

Prob(Bb|ρ̂a) = Tr(Π̂B̂
b ρ̂a) =

Tr
(

Π̂B̂
b Π̂Â

a ρ̂Π̂Â
a

)
Tr
(

Π̂Â
a ρ̂
) =

Tr
(

Π̂Â
a Π̂B̂

b Π̂Â
a ρ̂
)

Tr
(

Π̂Â
a ρ̂
) . (1.23)

Now use Bayes’ theorem for conditional probabilities

Prob(B ∧A|X) = Prob(B|A ∧X) Prob(A|X) , (1.24)

interpreting X as the state ρ̂ originally prepared, and A ∧ X as the state ρ̂a after collapse, upon
measuring Â on ρ̂. Then show that:

Prob(Bb
←
∧ Aa|ρ̂) = Prob(Bb|ρ̂a) Prob(Aa|ρ̂) = Tr(Π̂Â

a Π̂B̂
b Π̂Â

a ρ̂) , (1.25)

where, in principle, Bb
←
∧ Aa reminds us that the measurement of B occurs after that of A.

Exercise 1.5. (The order of the measurements doesn’t matter.)
Finally show that, since the two projectors acts on different spaces, hence commute, the order in which
the two measurements are performed is actually irrelevant, and:

Prob(Bb
←
∧ Aa|ρ̂) = Prob(Aa

←
∧ Bb|ρ̂)

def
= Prob(Aa ∧Bb|ρ̂) = Tr

(
Π̂A
a Π̂B

b ρ̂
)
. (1.26)

Calculate this probability for the entangled state ρ̂ent = |ψent〉AB〈ψent|. Without loss of generality you
can take a = +1 and b = +1, since you can always change the sign by inverting the corresponding
direction nA or nB. Show that:

Prob(A+ ∧B+|ρ̂) =
1− nA · nB

4
. (1.27)

25

Introduction (Lecture Notes by G.E. Santoro)

Rotational invariance. Notice how the result of the calculation depends only on the scalar
product nA · nB between the two measurement directions nA and nB at the two stations. This is
evidently a consequence of the rotational invariance of the singlet entangled state.

i

Exercise 1.6. (Measurements on a mixed state.)
Contrast the previous result with that obtained by assuming a mixed state of the form:

ρ̂mix =
1

2
|ψ↑↓〉〈ψ↑↓|+

1

2
|ψ↓↑〉〈ψ↓↑| (1.28)

where |ψ↑↓〉 = |+, z〉A ⊗ |−, z〉B and |ψ↓↑〉 = |−, z〉A ⊗ |+, z〉B. Calculate Prob(A+ ∧B+|ρ̂mix).

We will now denote by ZA the event in which A gets the eigenvalue +1 by measuring z · σ̂A = σ̂zA.
Similarly, ΘA denotes the event in which A finds the eigenvalue +1 by measuring nθ · σ̂A, with
nθ = z cos θ+ x sin θ, and XA the event in which A gets the eigenvalue +1 by measuring x · σ̂A = σ̂xA.
Similar definitions apply for B.

Exercise 1.7. (Joint probabilities on the entangled and on the mixed state.)
Show that:

Prob(ZA ∧ΘB|ρ̂ent) =
1

4
(1− cos θ) and Prob(ΘA ∧XB|ρ̂ent) =

1

4
(1− sin θ) . (1.29)

Contrast these results with those calculated on the mixed state, where you should show that:

Prob(ZA ∧ΘB|ρ̂mix) =
1

4
(1− cos θ) and Prob(ΘA ∧XB|ρ̂mix) =

1

4
. (1.30)

Rotational invariance, again. Observe how the result for the entangled state is perfectly
consistent with rotational invariance, since when θ → π

2 − θ, then cos θ → sin θ, in Eq. (1.29).
Remarkably, the mixed state is not rotationally invariant.

!

Evidently, the only non-classical measurement is that of ΘA ∧ XB. How should we pin down,
unambiguously, that QM is right in predicting that the state is entangled and not mixed? More
generally, how would a “classical world” work for these measurements? In a classical world, since
the outcomes of the measurements along the same direction in the two stations are perfectly anti-
correlated, one would be inclined to assume that, for instance, P(ΘA ∧ XB) = P(ΘA ∧ XA). Notice
that, in QM, it would not be possible to measure the spin along nθ and the spin along −x in the same
experiment performed by A, because spin operators along different directions do not commute! But
in a classical world it is quite reasonable to assume that in all events in which B has found +1 when
measuring the spin in the +x direction, A would have a spin in the −x direction, even if that was not
observed at all.

Now comes a very simple theorem of “classical logic”, to rescue us.

26

(Lecture Notes by G.E. Santoro) 1.4 Hands-on: EPR-type calculations with entangled particles

Bell’s inequality. Given three events A, B, and C, the number of times in which A and
not-C = C occurs — which we denote by N(A ∧C) — is not larger that the sum of the number
of times in which A ∧ B occurs plus those in which B ∧ C occurs. In formulas:

N(A ∧ C) ≤ N(A ∧ B) +N(B ∧ C) . (1.31)

By rescaling by the total number of events, a similar inequality works for the corresponding
probabilities:

P(A ∧ C) ≤ P(A ∧ B) + P(B ∧ C) . (1.32)

i

To exemplify. In a large crowd of people assembled in a room, let us consider these three properties:
A = being taller than 165 cm

B = do not wear a pullover

C = do not wear jeans

Then, strange but true:

N(taller than 165 ∧ with jeans) ≤ N(taller than 165 ∧ with pullover) +N(no pullover ∧ with jeans) .

The proof of this inequality is really simple:

N(A ∧ C) = N(A ∧ B ∧ C) +N(A ∧ B ∧ C)

≤ N(A ∧ B ∧ C) +N(A ∧ B ∧ C) +N(A ∧ B ∧ C) +N(A ∧ B ∧ C)

= N(A ∧ B ∧ C) +N(A ∧ B ∧ C)︸ ︷︷ ︸
N(A∧B)

+N(A ∧ B ∧ C) +N(A ∧ B ∧ C)︸ ︷︷ ︸
N(B∧C)

= N(A ∧ B) +N(B ∧ C) . (1.33)

A few comments, to stress the crucial ingredients behind the theorem. In the first equality we added
B, which, even if unobserved, must, in our classical world, be either B or B. Next, we transformed
equality into inequality by adding positive terms and rearranging things. Finally, we used again, twice,
the trick that if both C and C appear, then you can eliminate C and the same for A. Evidently, the
inequality assumes that:

Tertium non datur) Classical logic works: either A or A is true, but not both.

Reality without observation) The reality of objects or of their properties exists independently of our
observation.

Now we return to the EPR experiment. We interpret A 7→ ZA, B 7→ ΘA and C 7→ XA, and we
assume that P(ZA ∧XA) 7→ P(ZA ∧XB), P(ZA ∧ΘA) 7→ P(ZA ∧ΘB), and P(ΘA ∧XA) 7→ P(ΘA ∧XB).

Exercise 1.8. (Inequality for mixed and entangled states.)
Show that for the mixed state, the inequality is perfectly satisfied:

Prob(ZA ∧XB|ρ̂mix) ≤ Prob(ZA ∧ΘB|ρ̂mix) + Prob(ΘA ∧XB|ρ̂mix) . (1.34)

On the contrary, show that for the entangled state the inequality is violated for all θ ∈ (0, π2):

Prob(ZA ∧XB|ρ̂ent)≥Prob(ZA ∧ΘB|ρ̂ent) + Prob(ΘA ∧XB|ρ̂ent) . (1.35)

What is the value of θ for which the violation is maximal?

27

Introduction (Lecture Notes by G.E. Santoro)

Classical vs Quantum correlations. The result of these series of exercises shows that mixed
states encode essentially classical correlations, while entangled states have genuinely quantum
correlations which escape any classical explanation.

i

28

2. Classical gates and elements of classical
computation

I review here some elementary facts about classical computation with logic gates. I start with an
introduction to classical gates, with some excursions into Pauli matrices and quantum mechanics. The
main references are the book by Mermin [1], and the lecture notes by Aaronson.

2.1. Classical bits, probability distributions and Stochastic
Matrices

Consider first a single bit, with a basis of states which we start denoting in a “quantum-like” way,
as {|0〉, |1〉}, where, beware, superpositions are not allowed.

Returning to our discussion of probabilities and stochastic matrices of Sec. 1.2, let us look at
transition matrices in classical probability more closely. A probability distribution for a single classical
bit — from now on a “Cbit” — is described by:

p =

(
p0

p1

)
with p0,p1 ≥ 0, p0 + p1 = 1 .

A 2 × 2 transition matrix would tell us the conditional probability of moving between the states in a
single step:

T =

(
P(0|0) P(0|1)

P(1|0) P(1|1)

)
.

Here are a few examples, some of which we have already encountered.

Bit flips) A transition matrix that flips the state is:

X =

(
0 1

1 0

)
7→ σ̂x , (2.1)

where the right-hand side highlights the immediate connection with one of the Pauli matrices.
Recall that this is precisely what the mirror M does in the classical discussion of the Mach-
Zehnder interferometer in Sec. 1.2.1. By applying X:

pfin = X

(
p0

p1

)
=

(
p1

p0

)
.

Hence, the probability that the Cbit is in |0〉 is equal to the probability that it was in |1〉.

Fair coin-tossing) Consider:

T =
1

2

(
1 1

1 1

)
. (2.2)

It is a kind of fair coin-tossing: independently of the probabilities p0 and p1 we had — for
instance, those with which the bit was generated — after the transformation T we have:

pfin = T
(

p0

p1

)
=

(
1
2
1
2

)
.

29

https://www.scottaaronson.com/qclec.pdf

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

You recognise our classical version of a beam-splitter in Sec. 1.2.1.

Erase) Consider now the transition matrix:

Erase =

(
1 1

0 0

)
.

It describes the erasing of the Cbit, by which the state ends up being |0〉 independently of the
input:

pfin = Erase

(
p0

p1

)
=

(
1

0

)
.

Another example) Suppose we generate a Cbit transformation in the following way. If we get 1, we
generate a new fair random bit, 1

2−
1
2 distributed; If we get 0, we flip it to 1. The transformation

matrix is evidently:

T =

(
0 1

2

1 1
2

)
,

where the two columns encode precisely the prose I have written.

Stochastic matrices. In general, an N ×N stochastic matrix (SM) T must obey the following
conditions:

1) Tij ∈ R 2) Tij ≥ 0 3)
∑
i

Tij = 1 ∀j . (2.3)

In words: a real and non-negative matrix with the elements in each column summing to 1.

i

All these requirements are crucial for T to be a legitimate transition matrix for a probability distri-
bution. In particular 3) is crucial for probability conservation.

Indeed, suppose that Pin is a classical pure state, i.e., a probability distribution all concentrated
into a point, Krönecker-like:

Pin = P(j)
in =

0

0
...

0

1

0
...

0

0

←− jthposition . (2.4)

Then, you immediately deduce that Pfin = TP(j)
in is such that (Pfin)i = Tij , and therefore

∑
i(Pfin)i =

1 indeed requires condition 3).

Unique decomposition of Pin in classical pure states. Observe that the decomposition
of an arbitrary Pin into classical pure states is unique — unlike, as we shall discuss later on,
the decomposition of quantum mixed states ρ̂ into quantum pure states. Hence, by linearity,
probability conservation follows from the SM nature of T quite generally.

i

A noteworthy example of a stochastic matrix is a permutation matrix P, which has exactly a single
1 in each column and each row, all the other elements being zero. We will encounter permutation
matrices later on when discussing swaps of Cbits.

30

(Lecture Notes by G.E. Santoro) 2.2 More than one Cbit: tensor products

2.2. More than one Cbit: tensor products

Let’s examine more closely the case of n = 2 Cbits. The possible configuration space is now 22 = 4-
dimensional: {0, 1}2. Let us insist on our quantum-like notation. We will count the Cbits starting
from 0 — so, Cbit 0 and Cbit 1 — and order the elements in the configuration space of two Cbits
with the convention that Cbit 0 stays to the right of Cbit 1 and increases faster, as follows:

{ |0〉|0〉 ≡ |00〉 , |0〉|1〉 ≡ |01〉 , |1〉|0〉 ≡ |10〉 , |1〉|1〉 ≡ |11〉 } ,

were we will often take the liberty, to spare typing, of joining together the two Cbits inside the same
“ket”.

As you see, this convention is very natural when thinking in terms of binary strings: indeed, you
automatically read the binary strings associated with the numbers from 0 to 2n − 1 = 3.

{ |0〉2 = |00〉 , |1〉2 = |01〉 , |2〉2 = |10〉 , |3〉2 = |11〉 } .

Warning: Observe that to uniquely specify the state with the equivalent “integer notation”,
I need to specify the number of Cbits, hence the subscript 2 in the “kets”. Indeed, the state
associated with the integer 2 for 4 Cbits would be written as: |2〉4 = |0010〉.

!

Now, let us suppose that Cbit-0 has a probability distribution q = (q0, q1)T, and Cbit-1 has a
probability distribution p = (p0,p1)T, and the two Cbits are uncorrelated. How should I describe a
probability distribution in the 4-dimensional space we just wrote? It turns out that mathematics gives
us the tool: just the tensor product of the two vectors p and q. More in detail:

p︸︷︷︸
Cbit 1

⊗ q︸︷︷︸
Cbit 0

=

(
p0q
p1q

)
=

p0q0

p0q1

p1q0

p1q1

 . (2.5)

The structure of the tensor product. Carefully observe the structure of such a tensor
product, which is essentially the same for higher-dimensional vectors. In particular, the central
expression is written in “block-form”, with the vector q not spelt out in components. In the
final expression, all components are spelt out, and the final vector is 4-dimensional, as it should.
Notice, however, how the components of the vector q, related to Cbit 0, advance faster. Notice,
finally, that the final 4-dimensional vector is fully factorised in the two probability distribution,
as indeed appropriate for uncorrelated distribution.

i

Not all probability distributions are factorised in this way. For instance:
1
2

0

0
1
2

 ,

is a legitimate probability distribution which, however, is not separable, as you should try to prove:
hence the Cbits are correlated. 1

1Notice that, with small variants, you get uncorrelated distributions. For instance, take p = (1
2
, 1

2
)T and q = (1, 0)T.

31

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

In a similar manner, we can consider tensor products of operations on the bits. Given a 2-dim
matrix A that we want to apply to Cbit-1, and a 2-dim matrix B to apply to Cbit-0, the A ⊗B is
defined as:

A⊗B =

(
a00B a01B
a10B a11B

)
=

a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11

 . (2.6)

Again, carefully observe the structure, in particular the middle “block-form” which is much easier to
read, and generalised straightforwardly to large matrices.

Python kron. Python does these products for you in one line. Simply call the function
numpy.kron(A,B)—which stands for Krönecker product. You can even do that by using sparse
matrices, with scipy.kron. This is a very handy tool to write a python code that diagonalises
a small spin-1/2 chain model in just a few lines of code, starting from the Pauli matrices, and
using kron to define their tensor product with identities.

i

Exercise 2.1. (Tensor product operations applied to separable states.) Show that:

A⊗B (p⊗ q) = (Ap)⊗ (Bq) .

Hence, tensor products of operations act independently on a two-Cbit separable state.

Let us now consider probably the most important 2-bit operation — or gate — in the entire course:
the control-NOT or cNOT. We will indicate it as:

C10 =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

(
1 0

0 0

)
1

⊗
(

1 0

0 1

)
0

+

(
0 0

0 1

)
1

⊗
(

0 1

1 0

)
0

. (2.7)

You should try to reproduce the 4×4 expression, as an exercise to train your tensor-product abilities.
Notice the extra subscript indices added to the tensor products on the right-hand side, that might be
omitted at this stage: they refer to the Cbit on which the 2 × 2 matrix operates. Incidentally, C10

is a SM, but the very fact that we have an expression involving a sum of two tensor-products implies
that, when acting on a separable state, this operation will lead to a non-separable (correlated) state.
Try to apply it to the separable state (1

2 , 0,
1
2 , 0)T and see what you get.

Projectors on Cbit states. It is useful to introduce the following two 2× 2 operations:

N0 =

(
1 0

0 0

)
and N1 =

(
0 0

0 1

)
(2.8)

which act precisely as projectors would do in QM:

N2
0 = N0 N2

1 = N1 N0N1 = N1N0 = 0 N0 + N1 = 1 . (2.9)

i

Then:

p⊗ q =

1
2
0
1
2
0

 .

32

(Lecture Notes by G.E. Santoro) 2.3 More on Cbit operations: connection to digital computer operations

Notation. The notation used by Mermin [1] is N1 → n and N0 → ñ, useful to spare a
subscript, which you can later use for site indices, but slightly confusing for me. The drawback
of my notation is that I will have to use parenthesis before a site-index subscript, e.g., in (N0)1,
which means the N0 projector on Cbit 1. Choose your own.

!

Armed with this two projectors, we re-examine our C10 expression and we write it as follows.

The C10, a cNOT with 1 as control bit, and 0 as target bit.

C10 = (N0)1 ⊗ 10 + (N1)1 ⊗X0 = (N0)1 + (N1)1X0 , (2.10)

where you should observe that second shorter expression is unambiguous, if you use Cbit-indices as
subscripts, even omitting identities and explicit tensor product signs. Notice the great readability:
The first term tells us that “if Cbit 1 is in |0〉, then C10 acts as the identity”, doing nothing. The
second term tells us that “if Cbit-1 is in |1〉, then C10 flips the target Cbit-0, using X0. To put
it with different words: The control-bit is unchanged. The target-bit is flipped if the control-bit is
in 1.

i

Before proceeding, let us pause for a second to notice that, although not directly involved in a
classical computation (because of a conspicuous minus sign), there is another Pauli matrix which
plays a role in the game.

The Z-Pauli matrix. Similarly to Eq. (2.1), we introduce:

Z =

(
1 0

0 −1

)
7→ σ̂z . (2.11)

This has the nice feature that projectors N0 and N1 have the familiar QM expression:

N0 =
1

2
(1 + Z) 7→ Π̂↑ and N1 =

1

2
(1− Z) 7→ Π̂↓ . (2.12)

Hence the natural identification we will later do is that, in terms of spin-1/2 states: |0〉 7→ |↑〉,
and |1〉 7→ |↓〉. Do not even dare to change this convention: your algebra will be scrambled.

i

Using Z we can equivalently re-express the cNOT as follows:

C10 =
1

2
(1 + Z)1 +

1

2
(1− Z)1X0 , (2.13)

where we have omitted identity and tensor-product signs: the bit-indices make the operation unam-
biguous.

2.3. More on Cbit operations: connection to digital computer
operations

Let us start generalising our notation. If I have n Cbits, I can write integers from 0 up to 2n− 1 =

N − 1, with N = 2n.

33

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

n-Cbit configurations. The space of classical Cbit configurations will be denoted as:

|x〉n = |xn−1〉|xn−2〉 · · · |x1〉|x0〉 ≡ |xn−1xn−2 · · ·x1x0〉 (2.14)

where:

x =

n−1∑
j=0

xj2
j with xj = 0, 1 (2.15)

We will use this identification of integers 0 ≤ x ≤ 2n − 1 with their corresponding binary string
x 7→ (xn−1xn−2 · · ·x1x0) ∈ {0, 1}n very often in the following. Familiarise with it.

i

Quite amusingly, this notation naturally leads to tensor products. Let us review this for n = 1, 2, 3.
For n = 1:

|0〉1 ≡ |0〉 =

(
1

0

)
|1〉1 ≡ |1〉 =

(
0

1

)
, (2.16)

where the 2-dim column vectors on the RHS are the standard column vectors for the chosen basis.
Incidentally, this is how you would write the corresponding σ̂z spinors.

For n = 2:

|0〉2 = |00〉 ≡ |0〉|0〉 →
(

1

0

)
⊗
(

1

0

)
=

1

0

0

0

 |1〉2 = |01〉 ≡ |0〉|1〉 →
(

1

0

)
⊗
(

0

1

)
=

0

1

0

0

|2〉2 = |10〉 ≡ |1〉|0〉 →
(

0

1

)
⊗
(

1

0

)
=

0

0

1

0

 |3〉2 = |11〉 ≡ |1〉|1〉 →
(

0

1

)
⊗
(

0

1

)
=

0

0

0

1

where you observe that the RHS 4-dim column has exactly a single 1 in the position indicated by the
integer, starting from 0. This is not a coincidence. If you want a further example for n = 3 Cbits:

|5〉3 = |101〉 = |1〉|0〉|1〉 7→
(

0

1

)
⊗
(

1

0

)
⊗
(

0

1

)
=

0

0

0

0

0

1

0

0

,

hence a 1 in the 5th-position, assuming that the column arrays are numbered starting from 0, as
python or C++ would do! This works beautifully for any n.

34

(Lecture Notes by G.E. Santoro) 2.3 More on Cbit operations: connection to digital computer operations

Configurations as classical pure states. You can show that:

|x〉n = |xn−1xn−2 · · ·x1x0〉 =

0

0
...

0

1

0
...

0

0

←− a single 1 at position x (2.17)

with the ultra-strong warning that superpositions are not allowed. This is a “must” for a clas-
sical Cbit configuration. Probability distributions in this N -dimensional space — although not
representing computer states — can formally, and uniquely, be decomposed as:

p = (p0, · · · pN−1)T =

N−1∑
x=0

px|x〉n with px ≥ 0 and
∑
x

px = 1 . (2.18)

The normalisation condition can be also re-written as ||p||1 = 1, where you should observe the
presence of the so-called 1-norm, as opposed to the standard 2-norm of QM.

i

X again.) Let us return to bit operations. Consider again X, the bit flip. For a single Cbit:

X|0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉 ,

and similarly X|1〉 = |0〉.

Bit flip alias NOT gate. If x = 0, 1, then we denote x = 1− x, hence 0 = 1 and 1 = 0. You
recognise the NOT of Boolean logic, and this is indeed an alternative name for the X gate. More
generally, denote by Xj ≡ 1⊗ · · ·1⊗X⊗1 · · ·1, where X sits at position j, so as to be free from
the horribly long sequence of identities and tensor products. Then:

Xj |xn−1xn−2 · · ·xj · · ·x1x0〉 = |xn−1xn−2 · · ·xj · · ·x1x0〉 . (2.19)

i

Another useful connection of the X gate is with addition (mod 2), denoted by ⊕, or the Boolean
logic XOR. Indeed, if x = 0, 1:

x = x⊕ 0 and x = x⊕ 1 =⇒ X|x〉1 = |x⊕ 1〉1 , (2.20)

a relationship that will turn out useful later on.

Reversible versus irreversible gates.) Xj and 1j exhaust the reversible single-Cbit gates. By re-
versible we mean that you can invert the operation, so that to each output corresponds a unique input.
Indeed, since

X2 = 1 =⇒ X−1 = X .

Any other single-Cbit operation is not reversible. For instance, the

Erase =

(
1 1

0 0

)

35

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

is a SM, but not invertible, as it sends any input into the output 0. It is used to erase a memory bit,
putting it into a standard state 0. By the Landauer principle, you might recall that such irreversibility
is associated to dissipation: the entropy of the memory is reduced, but the entropy of the environment
has to increase in such a way that ∆Stot ≥ 0, by the 2nd principle of Thermodynamics. More to
our point, since the Schrödinger dynamics is unitary and hence reversible, in thinking about carrying
out calculations with a Quantum Computer, we will look for reversible gates, staying away from
irreversibility. More about this later on.

XOR

COPY of Bit 1

C10 =

x0

x1

x1

x0 ⊕ x1

Figure 2.1: A schematic representa-
tion of C10, involving a COPY and a
XOR.

C10, XOR, and COPY.) Let us revisit the C10 cNOT gate again. On the computational basis of
2-Cbits we might write:

C10|x1x0〉2 = C10|x1〉|x0〉 = |x1〉|x0 ⊕ x1〉 , (2.21)

where you would recall that x0 ⊕ x1 = x0 for x1 = 0 (identity), while x0 ⊕ x1 = x0 for x1 = 1 (bit
flip). This is represented in Fig. 2.1. Observe that the XOR operation

XOR|x1〉|x0〉 = |x1 ⊕ x0〉 = |x1 + x0 (mod 2)〉 ,

by itself, as any function f : {0, 1}2 → {0, 1} in not reversible. But if you supplement it with a COPY

operation
COPY|x〉 = |x〉|x〉 where COPY : {0, 1} → {0, 1}2 ,

then the XOR is made invertible: it is the cNOT operation C10. Incidentally, the cNOT operates
like a copy when acting on the target 0:

C10|x1〉|0〉 = |x1〉|0⊕ x1〉 = |x1〉|x1〉 = COPY|x1〉 .

The SWAP gate.) Consider the gate that swaps two bits:

S10|x1x0〉 = |x0x1〉 .

This time the two bits appear symmetrically in the operation, hence S10 = S01. A 4 × 4 matrix
representation of S10 on the computational basis is:

S10 = S01 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (2.22)

Hence, once again, like for C10, a particular SM which is also a permutation matrix, not surprisingly,
perhaps. Notice that the way we have represented it in block-form does not do justice to the basic fact
that the whole non-trivial action occurs in the central 2× 2 block (recall that 00→ 00 and 11→ 11,
while 01→ 10 and 10→ 01: this is the way you write the matrix representation right away). Unlike
Eq. (2.7), where we decomposed the matrix into a sum of two tensor products, we prefer to suffer a

36

https://en.wikipedia.org/wiki/Landauer%27s_principle

(Lecture Notes by G.E. Santoro) 2.3 More on Cbit operations: connection to digital computer operations

bit more now and free ourselves from the nightmare of explicit tensor products in favour of a much
cleaner and simple tool: the algebra of Pauli matrices, which you learned in QM.

Let’s start. You recall that Pauli matrices anti-commute: ZX = −XZ. This fact, together with
the expressions for the projectors N0 and N1 in terms of Z, see Eq. (2.12), immediately leads to:

XN0 = N1X =

(
0 0

1 0

)
7→ σ̂− and XN1 = N0X =

(
0 1

0 0

)
7→ σ̂+ , (2.23)

where, incidentally, we recognise the familiar σ̂±. Now we look at Eq. (2.22), and we recognise the
following 4 tensor-product ingredients (try yourself):

S10 = (N0)1 ⊗ (N0)0︸ ︷︷ ︸
element 11

+ (N1)1 ⊗ (N1)0︸ ︷︷ ︸
element 44

+ (XN1)1 ⊗ (XN0)0︸ ︷︷ ︸
element 23

+ (XN0)1 ⊗ (XN1)0︸ ︷︷ ︸
element 32

.

Now we substitute the projectors with Z, see Eq. (2.12), and recall that XZ = −iY, where Y = σ̂y,
obtaining (after cancellations):

S10 =
1

4
(1 + Z)1 ⊗ (1 + Z)0 +

1

4
(1− Z)1 ⊗ (1− Z)0 +

+
1

4
(X(1− Z))1 ⊗ (X(1 + Z))0 +

1

4
(X(1 + Z))1 ⊗ (X(1− Z))0

=
1

2
11 ⊗ 10 +

1

2
Z1 ⊗ Z0 +

1

2
X1 ⊗X0 −

1

2
(XZ)1 ⊗ (XZ)0︸ ︷︷ ︸

−Y1⊗Y0

=
1

2
11 ⊗ 10 +

1

2
X1 ⊗X0 +

1

2
Y1 ⊗Y0 +

1

2
Z1 ⊗ Z0

=
1

2
(1 + σ̂1 · σ̂0) . (2.24)

Notice that Y has appeared. Also, notice that in the last expression we got rid of the tensor products:
the 1 is acting on the 4-dimensional space, and σ̂1 · σ̂0 means precisely the same thing as:

σ̂1 · σ̂0 ≡ X1 ⊗X0 + Y1 ⊗Y0 + Z1 ⊗ Z0 .

Heisenberg model. Those of you who have studied the antiferromagnetic Heisenberg model
will recognise its basic 2-site building block. The ground state of such a combination of Pauli
matrices would be the singlet state, but this is a different story. Remember that we are doing
classical computation so far: The SWAP gate is a classical gate! While X is a legitimate 1-Cbit
gate, the Z and even less so the “complex” Y are not classical 1-Cbit gates. Nevertheless, they
are extremely useful in the algebra, to construct the C10 and S10 gates.

i

Sites indices are enough.) We are now grown-up people, and we can get rid of the tensor products,
which can be sometimes very annoying. Imagine that you want to write the SWAP gate, but now for
two generic bits i and j of an n-Cbits state:

Sij |xn−1〉 · · · |xi〉 · · · |xj〉 · · · |x0〉 = |xn−1〉 · · · |xj〉 · · · |xi〉 · · · |x0〉.

The matrix representing such an object would be an awfully large 2n × 2n permutation matrix with
just a few 1s out of the diagonal: the rest is an identity. But now we know that this is simply:

Sij =
1

2
(1 + σ̂i · σ̂j) = Sji ,

37

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

where all identities have been omitted, and the resulting expression is totally unambiguous. Recall,
incidentally, that Pauli matrices operating on different sites commute, and that the meaning, for
instance, of X0X3 is simply:

X0X3 7→ 1n−1 ⊗ · · ·14 ⊗X3 ⊗ 12 ⊗ 11 ⊗X0 .

Quite a sparing of typing. With this freedom we can now write a cNOT gate operating with an
arbitrary control-bit i, and target-bit j.

The Cij cNOT, with i as a control-bit, and j as a target-bit.

Cij =
1

2
(1 + Z)i +

1

2
(1− Z)iXj , (2.25)

which reads in a quite transparent way: if Cbit i, the control-Cbit, is in state |0〉 = |↑〉 then do
nothing; if the control-Cbit i is in state |1〉 = |↓〉, then flip (with Xj) the target-Cbit j. The
control-bit never changes.

i

2.4. Reversible extensions of Boolean functions

In a classical context, reversibility is not required. The reason why we start considering this
issue here is twofold. First, and most importantly, we will later need reversibility in the quantum
case. Second, irreversibility is associated to dissipation, according to the Landauer’s principle. For
instance, every time you erase a memory bit, you have to release/waste at least kBT log 2 of heat
in the environment, to compensate for the reduced memory entropy. Estimates can be made that
the current level of energy dissipation in our digital computers is orders of magnitude higher than
such a Landauer’s bound. 2 The reason for this was pointed out by Bennett, and is not difficult
to appreciate: to change a wire voltage, one must dump it to ground through a resistance. Figure

Ground V = 0

Voltage V0

x1

NOT(x1)

R

T1

i =?

Figure 2.2: A transistor implementation of a NOT gate.
The boolean logic is implemented by associating a reference
voltage V0 to logic value 1 = TRUE, and voltage V = 0 to
the logic value 0 = FALSE. The transistor T1 “conducts”
if its gate terminal is at voltage V0, while it is “closed” at
gate voltage V = 0. If x1 = 1 then T1 “conducts” hence a
current i > 0 passes through the resistor R, and the gate
NOT(x1) is at ground, hence NOT(x1) = 0. If x1 = 0

then T1 does not conduct, no current passes thorough R
and the gate NOT(x1) = 1 (its voltage is V0).

2.2 shows an electronic device that implements the NOT gate classically, with a Transistor and a
Resistor. Our digital computers work by implementing the boolean logic by associating a reference
voltage V0 to logic value 1 = TRUE, and a voltage V = 0 to the logic value 0 = FALSE. The physics

2Roughly, 1012 bit erasures in a second, imply a minimum dissipation, by Landauer’s principle, of ∼ 3×10−9 W. This
is roughly 1011 times smaller than the actual energy consumption of our current desktops.

38

(Lecture Notes by G.E. Santoro) 2.4 Reversible extensions of Boolean functions

of transistors is such that the transistor “conducts” if its gate terminal is at voltage V0, while it is
“closed” (like an infinite resistance) at gate voltage V = 0. It is clear that to change the value of the
bit x1 from 1 → 0, you need to have a current flowing through the resistor, hence provoking some
Joule’s heating. So, lots of energy is wasted through Joules’ heating in resistance elements. Ideally,
a reversible classical computation, although more demanding in terms of bits used, as we shall see,
would not suffer from such a waste of energy.

So, let us start from the reversibility issue: the construction we present here for the classical case
will be used, verbatim, in the quantum case to construct a unitary operator Uf that encodes any
Boolean function f .

Any algorithm or computation in a classical digital computer amounts to computing a Boolean
function:

f : {0, 1}n → {0, 1}m with f(x) = y ,

where x is an input binary string of n bits, and y the output of the computation, a binary string with
m bits. Such a computation is not in general reversible. Think of a memory erase, for instance. More
generally, if n > m, since we are dealing with finite spaces, there must be more than one input x for
the same output y, as we shall soon see for the elementary functions of Boolean logic.

Notation. From now on we will often (but not always) get rid of the underline, and simply
identify a binary string x with the corresponding integer x:

x = (xn−1, · · · , x0) ←→ x =

n−1∑
j=0

xj2
j with xj = 0, 1 . (2.26)

i

Let us illustrate the case of f : {0, 1}2 → {0, 1} which corresponds to the logical AND:

f∧(x1, x0) = x1 ∧ x0 = x1x0 .

As you see, f∧ = 0 for three input pairs, 00, 10, and 01. To make it reversible, we would need to
extend the function in such a way that “it keeps track of the input variable”. Naively, one would be
tempted to define:

f̃∧(x1, x0) = (x1, x0, f∧(x1, x0)) ,

but this also cannot be invertible, since now the image is a space larger than the domain. The way
out is to introduce an ancillary variable y in the input string as well, defining a f̃∧(x1, x0, y) which
now sends {0, 1}3 → {0, 1}3. But how exactly y should enter in the output of the function? Let’s be
slightly more general, and imagine that f : {0, 1}n → {0, 1} has input on a n-bit binary string, f(x).
We extend it as follows:

f̃ : {0, 1}n+1 → {0, 1}n+1 with f̃(x, y) = (x, y ⊕ f(x)) . (2.27)

To show that this works, suppose that you have two different inputs x and x′ which led originally to
the same output z = f(x) = f(x′). Now we have: f̃(x, 0) = (x, z) f̃(x′, 0) = (x′, z)

f̃(x, 1) = (x, z̄) f̃(x′, 1) = (x′, z̄)

, (2.28)

hence, different inputs are associated to different outputs, and f̃ is one-to-one. Notice the crucial role
played by the ancillary bit involved in the XOR in the output: y ⊕ f(x).

39

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

f̃ properties.)

1) f̃ coincides with its inverse, since we can show that f̃ ◦ f̃ = id =⇒ f̃−1 = f̃ . To show this,
observe that:

f̃(f̃(x, y)) = f̃(x, y ⊕ f(x)) = (x, y ⊕ f(x)⊕ f(x)) = (x, y) .

2) Very useful is the fact that:
f̃(x, y = 0) = (x, f(x)) , (2.29)

hence the value of the function f(x) is directly extracted from setting the ancillary bit
y = 0.

i

This tricks works as a standard extension for functions with m output variables.

Invertible extension. For any f : {0, 1}n → {0, 1}m, you can extend it in such a way that it
is invertible by introducing m ancillary bits y, one for each output variable, defining:

f̃ : {0, 1}n+m → {0, 1}n+m with f̃(x, y) = (x, y ⊕ f(x)) , (2.30)

where ⊕ on the RHS indicates an m-bitwise ⊕.
Question: is y ⊕ f(x) the same thing as y + f(x) (mod 2m), as for a single bit?

i

2.5. Elementary logic gates

Let us now review some elementary Boolean logic functions.

Figure 2.3.: Illustration of classical gates. Figure taken from Ref. [17][Fig. 8].

40

(Lecture Notes by G.E. Santoro) 2.6 A simple algorithm: adding numbers

1-bit) For f : {0, 1} → {0, 1} there are only 4 functions. The identity, the NOT, the Erase and its
negation:

id(x) = x NOT(x) = x̄ = 1− x Erase(x) = 0 NOT(Erase(x)) = 1 ,

the first two being the only reversible 1-bit functions. The connection to Logic is through the usual
identification 0 = FALSE, 1 = TRUE.

2-bit) For f : {0, 1}2 → {0, 1} there are only 16 different functions, a handful of which are really
useful.

x y AND(x, y) OR(x, y) XOR(x, y) NAND(x, y) NOR(x, y) Erase(x, y) x · · ·
0 0 0 0 0 1 1 0 0

0 1 0 1 1 1 0 0 0

1 0 0 1 1 1 0 0 1

1 1 1 1 0 0 0 0 1

All of them are not invertible. Simple formulas can be written for the most important logic functions.
Calling the two binary arguments x and y, for simplicity, and recalling that NOT(x) = x̄ = 1−x, we
have:

AND(x, y) = x ∧ y = xy

OR(x, y) = x ∨ y = x+ y − xy

XOR(x, y) = x⊕ y = x+ y (mod 2)

NAND(x, y) = NOT(x ∧ y) = NOT(xy) = 1− xy

NOR(x, y) = NOT(x ∨ y) = NOT(x+ y − xy) = 1− x− y + xy

. (2.31)

Recall also that AND, OR, and NOT are related by De Morgan’s identities:{
NAND(x, y) = NOT(x ∧ y) = x̄ ∨ ȳ

NOR(x, y) = NOT(x ∨ y) = x̄ ∧ ȳ
. (2.32)

Notice also that XOR can be constructed from AND, OR, and NOT:

XOR(x, y) = (x ∨ y) ∧ (x̄ ∨ ȳ) (2.33)

2.6. A simple algorithm: adding numbers

Suppose you want to write an algorithm to add two integers, represented by two binary strings
x = (xn−1, · · · , x0) and y = (ym−1, · · · , y0) — assume without loss of generality n ≥ m — to produce
their sum s which has n+ 1 bits:

s = x+ y = (sn, · · · , s0) .

To do that, we use the elementary one-bit addition rule: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, but 1 + 1 = 0

with a carry-over c = 1. This means:

x+ y = x⊕ y with c = x ∧ y .

For instance, to sum 15 + 7 we have:

1 1 1 1 0

1 1 1 1 +

0 1 1 1 =

1 0 1 1 0

←− ci carry-overs
←− x = 15

←− y = 7

←− s = 22

.

41

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

The algorithm is easy to implement step by step. Here n > m and we set yi>m = 0. At step i = 0,
c0 = 0 and we have:

Step 0 : c0 = 0 =⇒

{
s0 = x0 ⊕ y0

c1 = x0 ∧ y0

.

At step i > 0 the carry-over ci+1 has to be calculated more carefully, because the previous carry-over
ci enters. Indeed ci+1 = 1 in two cases: a) (xi = yi = 1) or b) (xi ⊕ yi = 1 and ci = 1). (Case b)
occurs for bit 3 in the previous example.) Hence the generic step i requires:

Step i ≤ n− 1 : ci =⇒

{
si = xi ⊕ yi ⊕ ci

ci+1 = (xi ∧ yi) ∨
(
(xi ⊕ yi) ∧ ci

)
Finally, at step i = n we simply put sn = cn and we are done.

Figure 2.4: The classical circuit per-
forming addition of two bits xi and yi
with a carry-over ci. Here si = xi⊕yi⊕ci
with ci+1 = (xi ∧ yi) ∨

(
(xi ⊕ yi) ∧ ci

)
as

a carry-over for next step.

As you see, the algorithm requires, at each step, 2 XOR, 2 AND, 1 OR, and a certain number of
COPY, to replicate variables for use in the various gates. Recall also that the XOR can be written
in terms of AND, OR, and NOT.

2.7. Universal classical gates

The previous simple example brings to mind two questions:

Q1) Given a generic computation, encoded by f : {0, 1}n → {0, 1}m, what are the elementary
gates that guarantee that I can construct an algorithm to calculate f?

Q2) What is the minimal set of gates that I need to have in order to construct such an f?

Question:

Q1) will have a simple answer: it is enough to have AND, OR, NOT, and COPY to calculate
any function f . These gates can therefore be regarded as universal.

Q2) has to do with the minimal number of gates that I should be prepared to implement in the
digital hardware. We will see that NAND and COPY are sufficient to reproduce any gate. The
importance of NAND is appreciated when you realise that it is rather easy to fabricate using two
transistors in series, as illustrated in Fig. 2.5.

42

(Lecture Notes by G.E. Santoro) 2.7 Universal classical gates

Ground V = 0

Voltage V0

x1

x0

NOT(x1 ∧ x0)

R

T0

T1

i =?

Figure 2.5: A NAND gate made with two tran-
sistors in series. Recall that NAND(x1, x0) =

NOT(x1 ∧ x0). The voltage at the NAND node is
+V0 (NAND = 1) if no current is flowing (i = 0).
The voltage drops to 0 (NAND = 0) when current
flows (i > 0). This in turns requires that both transis-
tors conduct: the voltages applied at x1 and x0 must
be +V0, hence x1 = x0 = 1. Observe the presence of
the resistor, which will inevitably bring Joules’ heating
when the NAND = 0.

We tackle Q1) by an explicit construction. One should keep in mind that this construction is,
by no means, the best algorithm you can come about to calculate f . It simply shows that you can
calculate f using only AND, OR, NOT, and COPY. The construction is very simple. First of all,
it is sufficient to consider m = 1, since an m-valued function is built from the m components functions
f1 · · · fm : {0, 1}n → {0, 1}.

I have 2n possible input strings, which we denote by x(0) = (0, 0 · · · , 0), up to x(2n−1) = (1, 1, · · · , 1).
Imagine you construct a table for the function f as follows: 3

xn−1 · · · x1 x0 f

x(0) → 0 0 · · · 0 0 0 ← a0

x(1) → 0 0 · · · 0 1 1 ← a1

x(2) → 0 0 · · · 1 0 0 ← a2

... · · ·
...

...

x(J) · · · 1 ← aJ = f(x(J))
... · · ·

...
...

x(2n−1) → 1 1 · · · 1 1 0 ← a2n−1

The values that that function f attains on any input x(J), f(x(J)) = aJ, are encoded in a 2n-dimensional
binary string (a2n−1, · · · , a1, a0).

3The notation here is a bit baroque, and could be simplified, at the price of some possible ambiguity. For instance,
the index J = 0, · · · 2n − 1 is simply the integer x associated to a binary string x. Hence I could denote xJ → x,
aJ → ax, and even introduce the Krönecker as Kx(x′) = δx,x′ and go on writing:

f(x′) =

2n−1∑
x=0

axKx(x′) ,

instead of Eq. (2.35). The reason why I didn’t do that, is because of the possible ambiguity with the bit variables
xj . No notation is perfect. Choose what you prefer.

43

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

How many different f? Evidently, since each aJ = 0, 1, there are 22n different functions f that
you can write. The function f = 0 erases all bits, and will be considered separately. Obviously,
the Erase of a bit xj can be written in terms of AND(xj , x̄j), hence by using COPY, NOT and
AND.

i

Among these, there are 2n very special “pure functions”, the exact analogues of the Kronecker-δ: a
function KJ which is always 0, except for a single 1 on input x(J), with J = 0 · · · 2n − 1:

KJ(x) = δx,x(J) =

{
1 for x = x(J)

0 otherwhise
. (2.34)

Evidently, an arbitrary function f can be decomposed as a “sum over the pure (Krönecker) compo-
nents”:

f(x) =

2n−1∑
J=0

aJKJ(x) , (2.35)

where, in reality, the number of terms in the sum is equal to the number of elements 1 in the binary-
string a:

Kf =

2n−1∑
J=0

aJ = Number of non-zero elements in f with 0 ≤ Kf ≤ 2n . (2.36)

Suppose that Kf > 0, i.e., we are not considering the function f = 0. Now denote by Jk, for
k = 1 · · ·Kf , the terms where aJk = 1, all other aJ vanishing. Totally equivalently to writing
Eq. (2.35), we can express f through Kf logical OR of the appropriate “Krönecker”, as follows:

f(x) = KJ1(x) ∨KJ2(x) ∨ · · · ∨KJKf
(x) . (2.37)

This expression requires Kf − 1 logical OR, and Kf COPY, to replicate the input in each of the
KJk(x). To conclude, we need to see how we can calculate each pure component KJk(x). This is a
very simple Boolean satisfiability problem: you can write KJk(x) using n AND for the variables xi,
possibly negated, using NOT. This form of the function f is known as disjunctive normal form: a
disjunction (OR) of formulas written, in turn, in terms of conjuction (AND) of literals.

As an illustration, for n = 5, K13(x) is given by:

13 = (01101) =⇒ K13(x) = x̄4 ∧ x3 ∧ x2 ∧ x̄1 ∧ x0 ,

since you are guaranteed that you will get 0 unless the bits xi satisfy the formula encoded by K13.
This concludes our proof: OR, AND, NOT and COPY are enough to construct any f .

Warning: The proof has some conceptual interest, but is somewhat devoid of practical applica-
tions. It does not show at all how to construct an efficient algorithm to calculate f . Quite the
opposite, you are supposed to know the whole table for f , and in general Kf can be as large as
2n−1, hence an exponential complexity emerges from the construction. Imagine, to exemplify the
point, the function fadd(x, y) = s which adds two integers x and y, producing the sum s. If x has
n bits, and y has m ≤ n bits, then s has n+ 1 bits, hence we have fadd : {0, 1}n+m → {0, 1}n+1.
Now, you do not certainly construct the table for fadd to proceed: you should know the answer,
for all x and y, to do that. You rather find a smart iterative way of obtaining the bit-string for
s bit-by-bit, as discussed before, with a number of operations that scales as O(n), the length of
the input.

!

44

(Lecture Notes by G.E. Santoro) 2.8 Universality vs Efficiency: Tractable vs Intractable problems

Question Q2) Let us discuss now what is the minimal set of gates necessary to implement any digital
calculation. Here things are quite simple:

1: OR) De Morgan’s identities imply that OR can be obtained from NOT and AND.

2: NOT) Interestingly NOT can be obtained from NAND and COPY. If x = 0, 1 is a bit:

COPY(x) = (x, x)→ NAND(x, x) = 1− x2 = 1− x = x̄ = NOT(x) .

3: AND) I leave to you, as an exercise, to show that you can construct AND from NAND and
COPY. Hence, using De Morgan, you can construct also OR from NAND and COPY.

Minimal set of universal gates. This shows that NAND and COPY constitute a minimal
set of universal gates, in terms of which you can express any other gate, in particular OR, AND,
and NOT, and therefore express any function f .

i

2.8. Universality vs Efficiency: Tractable vs Intractable
problems

As already discussed, our proof of universality of the classical gates tells us nothing about the
minimal number of gates needed to calculate f , an information in turn connected to the running
TIME and memory SPACE needed in the calculation. Recall that, the number of OR of Krönecker
terms Kf being Kf ≤ 2n, this implies, potentially, an exponential (in n) complexity.

But sometimes much easier algorithms exist. For instance, as discussed, fadd(x, y) uses a number
of operations of O(n), the length of the input. Another simple function to calculate is fmul(x, y) = xy:
in elementary school we learned an algorithm that requires tmul = O(n2).

You never know ...) In 1971, Schönhage and Strassen found an algorithm to multiply two
numbers based on Fast Fourier Transform (FFT) that scales as O(n(log n)(log log n)) and Fürer
in 2007 found a novel method with a slightly better asymptotic behaviour. This is just to remark
that is never guaranteed that someone will not come out, in a given problem, with a much better
algorithm! And since we mentioned FFT, this is another interesting case: the Discrete Fourier
Transform of a set of N data has a complexity which scales, superficially, as N2. But then, in
1965, Cooley and Tukey (re)-discovered the FFT algorithm, which apparently also Gauss had
used in some unpublished astronomical work of his. And this lead to an algorithm, FFT, that
scales as N logN , and is nowadays recognised as one of the 10 most important algorithms of the
last century.

i

Both addition and multiplication are very simple algorithms, with complexity that scales polyno-
mially with n: improving on the power of poly(n) is always possible by smarter algorithms yet to
come.

Classically intractable problems. There are problems for which no polynomial algorithm
has ever been found, and people suspect it does not exist (but, as we said, “you never know ...”).
Such problems are known as “classically intractable”.

i

45

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

Sometimes the difficulty is associated to “inverting” a simple operation. For instance, we know that
z = fmul(x, y) = xy is simple. But if I give you a very large integer z, and I ask you to find its factors
x and y, if they exist? In one version of this integer factorisation problem, you could formulate a
(simpler) decision problem:

Primality decision problem.) Give z, an n-bit integer, is z a prime number? More formally,
you are asked to write an algorithm to calculate the following function:

fprimality(z) =

{
1 (TRUE) if z is prime

0 (FALSE) otherwise
.

i

With the table-idea used in the universality proof, you could think of having something like this: 4

xn−1 · · · x1 x0 fprimality

x(0) → 0 · · · 0 0 0 0

x(1) → 0 · · · 0 0 1 0

x(2) → 0 · · · 0 1 0 1

x(3) → 0 · · · 0 1 1 1

x(4) → 0 · · · 1 0 0 0

x(5) → 0 · · · 1 0 1 1
...

...
...

x(J) → · · · ?
...

...
...

x(2n−1) → 1 · · · 1 1 1 ?

Simple algorithms like the Sieve of Erathosthenes would typically require checking for division by
integers up to

√
z, and with z as large as N = 2n, this definitely implies an algorithm which is

super-polynomial in n, the number of bits.

But in 2002-2004 Agrawal, Kayal & Saxena (AKS) invented an algorithm for testing primality
which scales as O(n12), later refined (also by others) to O(n6). So, the primality decision problem is,
in the end, polynomial in n, the number of bits of the integer.

But what about the problem of integer factorisation? If an AKS primality test tells you that z is
composite and not prime, you would like to go ahead and find its factors! Here the problem is much
harder. You are asked to construct a function f(z) which returns 1 if z is prime, and, say, the smaller
of its factors if z is not prime. The best known algorithm, so far, requires:

tfactorisation ∼ exp
(
O(n

1
3 (log n)

2
3)
)
.

The largest “semi-prime” (i.e., product of two primes) yet (as of Feb. 2020) factored is an 829-bit
number with 250 decimal digits. 5 People believe that with ∼ 1024-bit integers finding factors
is essentially impossible by classical computers. And this is a crucial ingredient in the public-key
cryptography based on the RSA algorithm, of which we will have more to say later on.

Shor’s algorithm. Probably the most remarkable application of Quantum Computing to date is
Shor’s algorithm for period-finding (and factorisation) which scales as tShor ∼ O(n2(log n)(log log n)).
This finding, which we will discuss in some detail, gave an enormous boost to the Quantum Com-
putation idea.

i

4Incidentally, the ? in the primality of 2n − 1 is an interesting problem. Prime numbers of this kind are known as
“Mersenne primes”. Sometimes 2n − 1 is prime, like 7 or 31, sometimes not, like 15.

5It required ∼ 2700 core-years of computing with INTEL XEON Gold 6130 at 2.1 GHz.

46

(Lecture Notes by G.E. Santoro) 2.9 Boolean Satisfiability

2.9. Boolean Satisfiability

A typical objection to the importance of factorising integers is that, if you find an algorithm to do
that, breaking therefore RSA public-key cryptography, people would simply change the cryptographic
algorithm, turning to a different classically intractable problem. This of course does no justice to
Shor’s remarkable achievement, which should not be regarded simply as an algorithm for breaking
RSA, but has profound and important potential applications in various problems.

Nevertheless, if you want to mention a classically intractable problem for the importance of which
people would never raise any objection of any kind, this is probably Boolean Satisfiability, or SAT,
for short. The importance of such a problem is multifold. In theoretical Computer Science, it was
the first problem proven — Cook’s theorem — to be NP-complete. On the application side, it is a
typical problem for which people at Boeing or Lockheed Martin would pay you a lot, if you give them
a very good algorithm. The reason is that they need efficient algorithms to test if the many pieces of
their complicated machines all satisfy the appropriate safety tests, otherwise the airplane would, for
instance, blow-up.

Let me explain what a SAT problem is. You consider the usual n-bit binary strings x. You take
k-bits and form a so-called clause C(xj1 , · · · , xjk) depending on such k variables only, by using logical
OR and possible NOT of the variables. To illustrate this, with the important case of k = 3, you
take, for instance:

C(xj1 , xj2 , xj3) = ζj1 ∨ ζj2 ∨ ζj3 with ζj = xj or x̄j .

Next, you consider m such k-clauses, C1,C2, · · · ,Cm, each depending from its k variables — possi-
bly/usually shared by some of the clauses —, and you take the AND of them, forming the following
Boolean formula:

fk−SAT(x) = C1 ∧ C2 ∧ · · ·Cm , (2.38)

where I have omitted indicating the variables in each clause to avoid a messy multi-index notation.
This is known as conjunctive normal form, and the resulting Boolean formula is known as a k-SAT
formula. The k-SAT decision problem consists in “deciding” if an assignment x exists which makes
the given formula TRUE. The corresponding optimisation problem is to actually find one or more
satisfactory assignments, if they exist, or, otherwise, find one that minimises the number of clauses
which are not satisfied. As you see, the logical AND pose conflicting requirements — or constraints
— on the variables involved in the various clauses. If the number of such clauses/constraints is very
small, many satisfying assignments exist, and the problem is generally easy to solve. When the ratio

α =
m

n
,

of clauses-to-bits increases, the problem starts to be harder.

2-SAT is easy, k-SAT with k ≥ 3 intractable. It turns out that the problem is still
polynomial for k = 2, but starts being classically intractable for k ≥ 3.

i

Many studies have been devoted to the k = 3 case, particularly in the case in which the 3 variables
in each clause are chosen randomly, the so-called Random 3-SAT, for which a well studied phase
diagram — through spin-glass techniques of Statistical Physics — as a function of α is known. In
particular, for α > αc ≈ 4.267 — the so-called UNSAT phase — no satisfying assignment is found, for
large n. Within the SAT phase with α < αc, there is a window 4.15 ≈ αG < α < αc ≈ 4.267 where
satisfying assignment exist, with probability 1 for large n, but finding them is extremely hard. If you
want to know more about these beautiful applications of Statistical Physics to Information Science,
you should read the book by Mézard & Montanari, Information, physics, and computation [18].

47

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/NP-completeness

Classical gates and elements of classical computation (Lecture Notes by G.E. Santoro)

Interestingly, the algorithms that people used for solving k-SAT problems, before the statistical
physicists introduced quite powerful cavity-method-based algorithms, were incredibly simple. They
are known as GSAT and WalkSAT, and are closely related. Here is how WalkSAT works.

WalkSAT.

1) Choose a random initial string x. If it satisfies the formula, you are done. Otherwise go to 2).

2) Pick at random a clause among those that are unsatisfied.

3) Flip a variable within that clause. The way you pick the variable to be flipped is:

1. either randomly, with some probability q;

2. or, with probability 1−q, you flip the variable that will result in the fewest previously
satisfied clauses becoming unsatisfied.

4) Repeat until a solution is found or a maximum number of iterations is reached.

i

48

3. Quantum gates and elements of
quantum computation

Here I will start discussing Quantum Computation (QC), including quantum gates and the most
elementary quantum algorithms. As previously announced, QC is potentially richer than Classical
Computation because of the possibility of forming superpositions of states, and of using unitary
operations, a much larger set than classical operations on Cbits. To exploit such a richness I must be
able to create such superposition states out of standard product states, and build any possible unitary
in a standard way, so that one can implement it on a suitable hardware.

The starting point are two classical Cbit states {|0〉, |1〉} — previously prematurely written with
the ket-notation — which we now upgrade to the two orthogonal basis states of a single spin-1/2
Hilbert space: 1 {

|0〉 = |↑〉, |1〉 = |↓〉
}
,

the so-called computational basis of the Qbit. The states |ψ〉1 of the single-Qbit Hilbert space H1 are
obtained as complex normalised superpositions of such two states:

|ψ〉1 = z0|0〉+ z1|1〉 with |z0|2 + |z1|2 = 1 .

Up to an overall phase factor in front, you can identify them with the spin states |+,n〉 in Eq. (1.1),
taking z0 = cos(θ/2) and z1 = eiφ sin(θ/2).

Before moving to the many-Qbit Hilbert space, let me make a few comments on the nature of
such a “spin-1/2” in practical implementations. You should really not think that we can do quantum
computation by working with the spin-1/2 degree-of-freedom of the electrons in a piece of matter,
as we would have no control of them. So, depending on the hardware on which we would base our
Quantum Computer, the nature of “the spin-1/2” Qbit changes. Here are a few of the proposals that
have been investigated to date. We will return to these issues later on, in a series of lectures given by
Prof. Rosario Fazio.

NMR) This was an early proposal, based on the vast abilities that physicists had demonstrated,
since the 1950’s, in controlling nuclear spins in molecules. This amazing control has led to the
remarkable success of NMR as a sophisticated medical imaging technique. Although the level of
control of a few nuclear-spin/Qbits in a molecule is impressive, the technique is not scalable: if
you need to increase the number of Qbits you need to change molecule.

Two-level atoms) Quantum optics and the control of atom-photon interactions have advanced tremen-
dously since the middle 1980’s. The two levels which make the Qbit are simply two levels of an
atom, the ground state and some excited state, which are controlled and manipulated with the
use of coherent radiation. Trapping atoms in optical lattices has created a sufficiently scalable
platform for the coherent manipulation of many atoms.

1This identification is almost mandatory. Think of the mess that would come out from the opposite convention
{|0〉 = |↓〉, |1〉 = |↑〉}, when I start writing the “Pauli-Z” matrix as:

Z =

(
−1 0

0 +1

)
.

49

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Polarisation of photons) An all-optical implementation of the Qbit exploits the two polarisation
states of photons. Beam-splitter, mirrors, polarisers, non-linear crystals generating entangled
photons and all these machinery allow a great flexibility, which enjoys also from the fact that
photons suffer very little from interactions with external agents that could lead to loss of coher-
ence. See, for instance, the Xanadu website.

Trapped ions) Similar to the coherent control of atoms, but with ions, for instance 40Ca+, which are
then trapped with radio-frequency traps (Paul traps) and manipulated with coherent radiation.
Blatt’s group experimental expertise at U. of Innsbruck has lead — through their spin-off Alpine
Quantum Technology — to a commercial general purpose Quantum Computer based on trapped
ions.

Rydberg atoms) Atoms that can stay in long-lived highly excited Rydberg states are natural can-
didates for two-level atoms. This is also a very promising platform, especially for Quantum
Simulators.

Superconducting Qbits) This is the platform which has more overlap with traditional solid-state
systems. It exploits the fact that with small superconducting Josephson junctions one can create
tiny loops — like in a SQUID — where current can circulate in two opposite directions, and
the two states can be coherently manipulated. In some sense, this is a mesoscopic, rather than
microscopic, implementation of a Qbit, but the ability to maintain coherence in such systems is
remarkable.

3.1. Computational states and superpositions: the Hilbert
space

Recall that, for n Cbits, the space of the 2n classical configurations was denoted as:

|x〉n = |xn−1〉|xn−2〉 · · · |x1〉|x0〉 ≡ |xn−1xn−2 · · ·x1x0〉 = |x〉n (3.1)

where:

x =

n−1∑
j=0

xj2
j with xj = 0, 1 . (3.2)

As repeatedly mentioned we will often identify 0 ≤ x ≤ 2n − 1 with their corresponding binary string
x 7→ x = (xn−1xn−2 · · ·x1x0) ∈ {0, 1}n.

The n-Qbit Hilbert space. This is, essentially, the basis set of the n-Qbit Hilbert space

Hn = H1 ⊗H1 ⊗ · · · ⊗H1
def
= H⊗n1 ,

obtained as tensor product of the single-Qbit Hilbert space H1. The most general state of Hn

will be a complex normalised superposition of computational basis (product) states:

|ψ〉n =

1∑
xn−1=0

· · ·
1∑

x0=0

ψxn−1···x1x0 |xn−1 · · ·x1x0〉 =

2n−1∑
x=0

ψx|x〉n (3.3)

with the normalisation condition reading:

2n−1∑
x=0

|ψx|2 = 1 . (3.4)

i

50

https://www.xanadu.ai/
https://en.wikipedia.org/wiki/Quadrupole_ion_trap
https://www.aqt.eu/
https://www.aqt.eu/
https://en.wikipedia.org/wiki/SQUID

(Lecture Notes by G.E. Santoro) 3.2 Unitary operators associated to function evaluation

This allows to identify quantum states with elements of C2n−1, the wave-function amplitudes ψx = ψx,
the “-1” discounting from an overall normalisation and global phase. In some sense, the Quantum
Computation scheme is a “simplified” finite-dimensional version of a general QM setting. You can
proceed by just studying complex linear algebra with a few extra rules (Quantum Measurements),
which is indeed Mermin’s approach in his superbe account of the subject for computer scientists [1].

Notation. A word on the many equivalent notations we will use. Sometimes, we will associate
an explicit number to the various kets appearing in |x〉n. For instance:

|01 · · · 100〉 = |0〉n−1|1〉n−2 · · · |1〉2|0〉1|0〉0 = |0〉n−1 ⊗ |1〉n−2 ⊗ · · · ⊗ |1〉2 ⊗ |0〉1 ⊗ |0〉0

is a product state (the ⊗ will be often omitted) in which the Qbit-0 is in state |0〉, Qbit-1 in state
|0〉, Qbit-2 in state |1〉, etc. Notice that we typically count the n Qbits from 0 to n− 1, and we
order them from right to left. This notation has sometimes a potential clash with |ψ〉n, which
might indicate a generic n-Qbit state, but notice the roman n. For instance, you should remark
the difference between |0 · · · 0〉n ≡ |0〉n, a n-Qbit product state with all Qbits in state |0〉, from
the single-Qbit state |0〉m, where the m-th Qbit is in state |0〉.

!

3.2. Unitary operators associated to function evaluation

Let us recall the result we got in Sec. 2.4. For any f : {0, 1}n → {0, 1}m, you can extend it in such
a way that it is invertible by introducing m ancillary bits y, one for each output variable, defining:

f̃ : {0, 1}n+m → {0, 1}n+m with f̃(x, y) = (x, y ⊕ f(x)) , (3.5)

where ⊕ on the RHS indicates an m-bitwise ⊕. As you recall, such f̃ is self-inverse and gives the
function f(x) when the ancillary bits are all set to 0, f̃(x, 0) = (x, f(x)).

The extension of such an invertible function f̃ to a unitary operator Uf on Hn⊗Hm is very simple.
Define Uf on the computational basis vectors in the obvious way:

Uf

(
|x〉n ⊗ |y〉m

)
= |x〉n ⊗ |y ⊕ f(x)〉m . (3.6)

Next, define the linear extension of such Uf to any state |ψ〉n ∈ Hn as follows:

Uf

(
|ψ〉n ⊗ |y〉m

)
= Uf

(2n−1∑
x=0

ψx|x〉n ⊗ |y〉m
)

=

2n−1∑
x=0

ψxU
(
|x〉n ⊗ |y〉m

)
=

2n−1∑
x=0

ψx|x〉n ⊗ |y ⊕ f(x)〉m . (3.7)

Unitarity of the extension. It is very simple to prove that this linear extension defines a
unitary operator. The reason for that is simple:

1) The 2n+m basis states |x〉n ⊗ |y〉m are orthogonal.

2) The map f̃ being invertible, it maps distinct inputs into distinct output elements, which are
still orthogonal computational basis elements, just permuted.

3) Any transformation that maps an orthonormal basis into another orthonormal basis is unitary,
as you recall from QM.

i

51

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Observe that we have not, so far, taken linear combinations of the ancillary bits |y〉m. Sometimes,
later on, it will prove convenient to do so. For the time being observe that when operating on
|y〉m = |0〉m we get:

Uf

(
|ψ〉n ⊗ |0〉m

)
=

2n−1∑
x=0

ψx|x〉n ⊗ |f(x)〉m , (3.8)

which has a very deceptive quantum parallelism appearence: in one application of Uf to a superposition
input state, we get a superposition of all possible output states where |x〉n ⊗ |f(x)〉m appears for all
x.

The reason why such quantum parallelism is totally useless has to do with the nature of the quan-
tum states and to the rules of Quantum Measurements. Recall that |ψ〉n encodes all the statistical
information on the measurements that I might decide to perform on the quantum state, but I am not
allowed to think that I can read all coefficients of such a state in a single shot. Quite the opposite,
to learn |ψ〉n I have to do measurements. Measurements in the computational basis (essentially, mea-
surements of commuting products of Z-operators for each of the n spins), according to von Neumann,
will result in getting, each time, a collapse into one of the eigenstates |x〉n ⊗ |f(x)〉m, with a proba-
bility Prob(x|ψ) = |ψx|2. Hence, not only I get, upon measurement, only one component of the final
superposition, but I am not able to predict which one will come out! The intrinsic randomness of the
Quantum Measurement makes the parallelism, as such, utterly useless.

Smart transformations needed. As we learned in the introduction — recall the role of the
output beam-splitter in the Mach-Zehnder interferometer — the randomness intrinsic in QM is
very special, unlike classical randomness. If I am able to device some transformation — effectively
changing the basis of states on which I measure — by applying suitable gates to the input and/or
output Qbits, in such a way that the final superposition is transformed into a certain outcome, or
one in which I can read the answer easily, then the quantum parallelism turns into an amazingly
effective tool. This is the goal of any smart QC algorithm.

i

Having done the general theory, let us turn to one instructive example. Consider the Boolean
functions f : {0, 1}2 → {0, 1} which we have already examined in Chap. 2, and which we repeat here
in slightly more systematic fashion. As you know, there are 222

= 16 of them. Here they are:

x1 x0 f0 f1 f2 f3 f4 f5 f6 f7 f8 · · ·
0 0 0 0 0 0 0 0 0 0 1 · · ·
0 1 0 0 0 0 1 1 1 1 0 · · ·
1 0 0 0 1 1 0 0 1 1 0 · · ·
1 1 0 1 0 1 0 1 0 1 0 · · ·

We stopped at f8 because f15−i = NOT(fi). You recognise most of them: f0 = Erase, f1 = f∧ =

AND, f3 = x1, f5 = x0, f6 = XOR, f7 = OR, f8 = NOR, etc. Let us consider the AND, and
write explicitly its reversible extension. Since f∧(x1, x0) = x1 ∧ x0 = x1x0 we conclude that:

Toffoli gate.
f̃∧(x1, x0, y) = (x1, x0, y ⊕ f∧(x1, x0)) = (x1, x0, y ⊕ x1x0) . (3.9)

Such a doubly-controlled 3-bit reversible classical gate — the reversible extension of the AND —
is known as Toffoli gate. It is of some relevance in classical computation, where you can prove
that it belongs to the minimal set of universal gates for reversible classical computation: 2-bit
gates are not enough. a

aAs you would learn from studying Sec. 3.15.3 a Toffoli gate can be re-expressed in QC in terms of 6 cNOTs plus
single-Qbit unitaries. But this is not possible in CC, i.e., by using only classical gates.

i

52

(Lecture Notes by G.E. Santoro) 3.3 Pauli operators and associated single-Qbit unitary gates

To get a more standard ordering of the bits, we redefine x1 → x2, x0 → x1, y → x0, and write:

f̃∧(x2, x1, x0) = (x2, x1, x0 ⊕ x2x1) .

The corresponding unitary operator is defined on the basis as:

Uf∧(|x2〉|x1〉|x0〉) = |x2〉|x1〉|x0 ⊕ x2x1〉 ,

and then linearly (and unitarily) extended. Recall that the ⊕ does the same action as a NOT, when
x2x1 = 1, otherwise you get x0 ⊕ 0 = x0, hence the identity.

We will use a notation for Uf∧ = C21,0 which will be later useful when constructing other control-
gates in QC. It is the generalisation of the C10, where now the two Qbits before the comma, 2 and
1, are the two control-Qbits, and 0, after the comma, is the target-Qbit. One might even write an
explicit expression in terms of projectors and X, as follows:

C21,0 = (N0)2(N0)110 + (N0)2(N1)110 + (N1)2(N0)110 + (N1)2(N1)1X0 .

Even after expressing the projectors in terms of Z, we still have a gate in which operators have
to be applied to three Qbits, something that is not ideal in hardware implementations. We will
later on explore, see Sec. 3.15.3, how to express Toffoli by using 6 (cNOT) Cij 2-Qbit gates applied
appropriately one after the other. This will be just a demonstration of a general principle:

Universal quantum gates. Any unitary can be decomposed in terms of single-Qbit unitaries
— Hadamards and rotations around the z-axis are enough — and Cij gates, which are therefore
universal gates for QC.

i

I will not prove this theorem, see [2] or [19]. More about this later on, when we will investigate
quantum gates more systematically.

3.3. Pauli operators and associated single-Qbit unitary gates

Let us review some basic properties of the Pauli operators, and the associated spin-rotation (unitary)
matrices. Here I count on your previous QM studies.

As you know, the 3 Pauli matrices form the basis for the traceless Hermitian 2× 2 matrices, and,
supplemented by the identity, the 4 of them form a basis of all Hermitian 2× 2 matrices. Hence I can
write the most general Hermitean 2× 2 matrix as:

a01 + a · σ̂ with a0 ∈ R, a ∈ R3 . (3.10)

As a consequence, I can write the most general unitary 2× 2 matrix by exponentiating this, with an
imaginary i:

U = e−i(a01+a·σ̂) = e−ia0e−ia·σ̂ .

Now we express the vector a as a = |a|n where n = a/|a| is the associated versor. Hence:

U = e−ia0e−i|a|n·σ̂ = e−ia0

(
1 cos |a| − i(n · σ̂) sin |a|

)
= e−ia0

(
1 cos θ − i(n · σ̂) sin θ

)
= e−ia0

(
1 cos γ2 − i(n · σ̂) sin γ

2

)
︸ ︷︷ ︸

def
= Un(γ)

, (3.11)

53

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

where we expanded the exponential, and used the property that (n · σ̂)2 = 1 when |n| = 1, hence
(n · σ̂)2k+1 = (n · σ̂) and (n · σ̂)2k = 1. In the second expression, we used the fact that |a| enters
periodic trigonometric functions so that we can restrict |a| = θ ∈ [0, 2π) without loss of generality.
The third and final expression, where we posed 2θ = γ, hence with γ ∈ [0, 4π), is probably very
well-known to you from spin-physics: it represents a rotation in spin-space along direction n by an
angle γ, which will denote by Un(γ) from now on. And, as you remember, there is this curious fact
of spin-1/2 that a rotation by γ = 4π is needed to get the identity. Get to work yourself, now, to
discover some of the particular unitaries that you can write by choosing different n and θ.

Exercise 3.1. (Pauli and Hadamard as rotations by π in spin-space.)
Obviously, for θ = 0, you have that U = e−ia01, a diagonal phase factor. Show that by eating-up
factors of i with the choice of a0 = −π2 , and setting θ = π

2 , or γ = π, you can get

n = (1, 0, 0) → U = X n = (0, 1, 0) → U = Y n = (0, 0, 1) → U = Z , (3.12)

and

n = (
1√
2
, 0,

1√
2

) → U =
1√
2

(X + Z)
def
= H =

1√
2

(
1 1

1 −1

)
. (3.13)

The last matrix obtained, the so-called Hadamard H, is so useful that deserves a section by itself,
see Sec. 3.4. Remember that all of these matrices represent rotations by γ = π in spin space, in the
direction associated to n, with an extra factor e−ia0 = i. Since X2 = Y2 = Z2 = 1, you immediately
deduce that not only the Pauli matrices are unitary (as well as Hermitean), but they coincide with
their inverse:

X−1 = X† = X Y−1 = Y† = Y Z−1 = Z† = Z . (3.14)

By using the fact that XZ = −ZX — or, equivalently, that ZXZ = −X, which fits well with the
π-rotation story — show that:

H2 = 1 =⇒ H−1 = H† = H . (3.15)

Show also that, as a nice rotation by π around n = (1√
2
, 0, 1√

2
), H rotates Z into X and viceversa:

HZH = X and HXH = Z . (3.16)

Warning: Don’t be surprised that I told you that “the Pauli matrices represent rotations by π”
in the direction associated to the Cartesian versor n, and that, for instance, X2 = 1, while you
know that you need a γ = 4π rotation, and not 2π, to the get the identity! Indeed, it is the factor
i coming from e−ia0 that fixes everything.

!

Exercise 3.2. (Rotations around the y-axis.)
There is another very interesting particular case of U that you can find. Take n = (0, 1, 0) and a0 = 0,
but now leave θ = γ/2 arbitrary, to get:

U = e−ia0e−iθσ̂
y

= 1 cos θ − iσ̂y sin θ =

(
cos θ − sin θ

sin θ cos θ

)
def
= Rθ ≡ Uy(2θ) , (3.17)

a very familiar rotation matrix Rθ, which is now also regarded as a rotation by an angle γ = 2θ

around the y-direction in spin-space, Uy(2θ). More about this later on.

54

(Lecture Notes by G.E. Santoro) 3.4 The Hadamard gate H

3.4. The Hadamard gate H

This section highlights two basic sides of the Hadamard transformation, both immensely useful in
Quantum Computation. The first is that it creates very simple superposition states, aligned along the
x-direction in spin space, starting from the computational states |0〉 = |↑〉 and |1〉 = |↓〉, which can
be regarded as spin states in the z-direction. The second is that it serves as a generator of powerful
identities between different gates.

ŷ

ẑ

x̂

n = (1√
2
, 0, 1√

2
)

π

|1〉 = |↓〉

|0〉 = |↑〉

|+, x̂〉

|−, x̂〉
Figure 3.1: The Hadamard transformation H

regarded as a rotation by π around the axis
n = (1√

2
, 0, 1√

2
), which transforms Z eigen-

states into X eigenstates, and viceversa. As
we will later discuss, this is the Bloch sphere
picture for spin-1/2 states.

Let us start from the rotation of computational states, a kind of anticipation of the future QC story.
Observe that, while, as you know |0〉 7→ |↑〉, by applying H you get:

H|0〉 =
1√
2

(X + Z)

(
1

0

)
=

1√
2

(
1

1

)
=

1√
2

(|0〉+ |1〉) 7→ |+,x〉 . (3.18)

Similarly, while |1〉 7→ |↓〉, by applying H you get:

H|1〉 =
1√
2

(X + Z)

(
0

1

)
=

1√
2

(
1

−1

)
=

1√
2

(|0〉 − |1〉) 7→ |−,x〉 . (3.19)

This “rotation by π” interpretation, illustrated in Fig. 3.1, leads to the very useful relations, that we
have already found, which I repeat here:

H Z H = X and H X H = Z . (3.20)

We will use them shortly to deduce important identities between gates.

But before doing that, let me remark that there is an alternative way to picture the rotation of
Z eigenstates into X eigenstates, which is slightly more comfortable for our classical intuition of
orthogonality and elementary rotations. This is shown in Fig. 3.2. Notice the nice aspect of it. The
two orthogonal states |0〉 = |↑〉 and |1〉 = |↓〉 are now shown as orthogonal, and the same occurs for
the |±,x〉 states. And the rotation that brings one to the other is Rθ=π

4
, which can be equivalently

regarded as a rotation by π
2 around the y-axis in spin space, Uy(γ = 2θ = π

2). Notice also how we
immediately appreciate that you need a γ = 4π rotation in spin-space to return to the original state,
since a γ = 2π corresponds to a Rθ=π rotation, which leads to a change of sign. The only drawback of
this picture, is that it works for x-z spin-states only, the real combinations, and y-states are missing.
On the contrary, the Bloch-sphere more traditional viewpoint of Fig. 3.1 allows y-states to be drawn,
but orthogonal spin-states are shown as antipodean points on the sphere. Choose what you like most,
but get used, in principle, to both.

55

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

|+, x̂〉−|−, x̂〉

|−, x̂〉

|0〉−|0〉

|1〉

−|1〉

π
4

π
4

π
4

π
4

Rθ = Uy(2θ)

Figure 3.2: A representation of spin-states in the
x- and z-direction that shows, more conventionally,
the orthogonal nature of the two eigenstates of Z

and X, as well as the fact that a θ = π rotation Rπ,
corresponding to a γ = 2π rotation in spin space,
leads to a change of sign.

Now we return to C10, which I report below for convenience, adding an 10 for clarity:

C10 =
1

2
(1 + Z)110 +

1

2
(1− Z)1X0 . (3.21)

Application of H0 on both sides. Let us start applying H0 on both sides. Since H2
0 = 10 the first

term is unchanged. But the second term, since H0X0H0 = Z0, leads to:

H0C10H0 =
1

2
(1 + Z)110 +

1

2
(1− Z)1H0X0H0

=
1

2
(1 + Z)110 +

1

2
(1− Z)1Z0

def
= CZ

10 . (3.22)

This is not a gate of relevance for Classical Computation, but will be useful later on: it is a control-Z
gate. We will encounter later a whole family of control-unitary, or control-U, operators: we leave it
for the time being, except for observing that the control-Z gate is symmetric in the two-bit indices,
since:

CZ
10 =

1

2
(1 + Z)110 +

1

2
(1− Z)1Z0 =

1

2
(1 + Z)011 +

1

2
(1− Z)0Z1

def
= CZ

01 ,

as you can immediately verify by arranging terms.

Application of H1H0 on both sides. Let us insist on applying H, this time H1H0 on both sides.
We get:

H1H0C10H1H0 =
1

2
H1(1 + Z)1H110 +

1

2
H1(1− Z)1H1H0X0H0

=
1

2
(1 + X)110 +

1

2
(1−X)1Z0

=
1

2
(1 + Z)011 +

1

2
(1− Z)0X1

def
= C01 , (3.23)

i.e., a cNOT with the role of the bits exchanged: bit-0 is now the control, bit-1 the target. Entirely
similar algebra for general ij shows that:

HiHjCijHiHj = Cji . (3.24)

This is very useful.

56

(Lecture Notes by G.E. Santoro) 3.4 The Hadamard gate H

Order of commuting operators is irrelevant. Notice as, on several occasions, the site-index
notation has freed us from putting operators in the conventional order as appropriate for a tensor
product. As you know, for instance, Z0X1 stands, as a matrix in the 4-dim space, for X1 ⊗ Z0,
and no possible confusion arises.

i

3.4.1. Using only Hadamard and rotations around the z-axis

Now we would like to do something similar to what you do when you express ordinary rotations
in three-dimensions in terms of Euler angles and rotations about particular axes. More precisely, we
will use only rotations around the z-axis and Hadamard transformations.

Notice that:

Uz(γ) = 1 cos γ2 − iZ sin γ
2 =

(
e−i

γ
2 0

0 ei
γ
2

)
.

It is convenient to multiply by an overall phase factor ei
γ
2 and define the standard rotation matrix

around the z-axis as follows:

The phase gate.

Rz(γ) = ei
γ
2 Uz(γ) =

(
1 0

0 eiγ

)
, (3.25)

which leaves |0〉 unchanged, and adds a phase γ to |1〉.

i

We have already discussed rotations around the y-axis in Sec. 3.3: we will not repeat the discussion
here. We recall instead the all-important Hadamard transformation, a rotation by π around nH =
1√
2
(x + z).

The Hadamard.

H = ei
π
2 UnH

(π) = nH · σ̂ =
1√
2

(X + Z) =
1√
2

(
1 1

1 −1

)
. (3.26)

i

Observe that, since HZH = X you immediately deduce that:

HRz(θ)H = Rx(θ) = ei
θ
2 Ux(θ) = ei

θ
2

(
1 cos θ2 − iX sin θ

2

)
= ei

θ
2

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
. (3.27)

Next we consider a phase-gate with angle π
2 + φ:

Rz(π2 + φ) =

(
1 0

0 ei(
π
2 +φ)

)
=

(
1 0

0 ieiφ

)
. (3.28)

Applied successively:

Rz(π2 + φ)HRz(θ)H = ei
θ
2

(
cos θ2 −i sin θ

2

eiφ sin θ
2 ieiφ cos θ2

)
. (3.29)

This implies:

57

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Rotating spin-states. You obtain spin eigenstates in arbitrary direction n by starting from
the computational basis and applying Rz and H:

Rz(π2 + φ)HRz(θ)H|0〉 = ei
θ
2

(
cos θ2 |0〉+ eiφ sin θ

2 |1〉
)

= ei
θ
2 |+,n〉

Rz(π2 + φ)HRz(θ)H|1〉 = iei
θ
2

(
− sin θ

2 |0〉+ eiφ cos θ2 |1〉
)

= iei
θ
2 |−,n〉

. (3.30)

i

Why not 4 parameters? You might be worried that we used just two parameters in the
previous story. The most general unitary obviously involves four parameters (see also below).
One is an overall phase e−ia0 , that we might omit indicating below. The other one is, in principle,
an extra phase that you can put in the two orthogonal states |±,n〉, by considering

U = Rz(π2 + φ)HRz(θ)HRz(−π2 + λ)

which sends:
|0〉 → U|0〉 = ei

θ
2

(
cos θ2 |0〉+ eiφ sin θ

2 |1〉
)

= ei
θ
2 |+,n〉

|1〉 → U|1〉 = ei(
θ
2 +λ)

(
− sin θ

2 |0〉+ eiφ cos θ2 |1〉
)

= ei(
θ
2 +λ)|−,n〉

. (3.31)

!

Exercise 3.3. Show that if n1 and n2 are two directions parameterised by spherical angles (θ1, φ1)

and (θ2, φ2), then the unitary operator that rotates |+,n1〉 into |+,n2〉, is given by:

|+,n2〉 = U|+,n1〉 with U = Rz(π2 + φ2)HRz(θ2 − θ1)HRz(−π2 − φ1) . (3.32)

This concludes our effort concerning single-Qbit unitaries, showing that an arbitrary rotation of
spin-states can be expressed in terms of phase gates Rz(γ) and Hadamard H. Before ending, we
mention a few useful gates, all related to the phase-gate.

π
4 and π

2 phase gates. The T-gate, or π
4 -gate, is defined by:

T = Rz(π4) = ei
π
8 Uz(π4) =

(
1 0

0 ei
π
4

)
=⇒ T4 = Z . (3.33)

The S-gate, or π
2 -gate, is defined by:

S = Rz(π2) = T2 =

(
1 0

0 i

)
=⇒ S =

√
Z . (3.34)

i

3.5. Drawing quantum circuits

Before moving on, let us review C10 again, and introduce the circuit notation to draw gates in QC.

The circuit notation is explained in Fig. 3.4 where you should notice the left-to-right convention,
while the standard convention in writing the corresponding equations — as well as the standard for
linear algebra — is right-to-left.

58

(Lecture Notes by G.E. Santoro) 3.5 Drawing quantum circuits

Figure 3.3.: Illustration of single QBit quantum gates. Figure taken from Ref. [17][Fig. 9].

|φ〉 U |ψ〉 means |ψ〉 = U|φ〉

|φ〉 V U |ψ〉 ≡ |φ〉 UV |ψ〉

Figure 3.4: Top: The left-
to-right convention in draw-
ing a unitary U applied to a
state |φ〉, resulting in a state
|ψ〉 = U|φ〉. Bottom: When
joining unitaries into a single
square, you have to reverse
their order.

The C10 and its variants. Figure 3.5 shows two possible ways of drawing the C10 gate acting on 2-
Qbit computational basis states |x1x0〉. The top drawing highlights the connection to the logical XOR

C10 ≡
|x0〉

|x1〉

|x0 ⊕ x1〉

|x1〉

C10 ≡
|x0〉

|x1〉

X Xx1
0 |x0〉

|x1〉

Figure 3.5: Two alternative drawing conventions
for the cNOT gate C10. Top: This highlights the
arithmetic nature related to the XOR gate, with
the target sent to |x0 ⊕ x1〉. Bottom: This high-
lights the control-NOT nature, where Xx1

0 means
10 for x1 = 0 and X0 for x1 = 1. The ordering
convention of Qbits is from 0 to 1, bottom-to-top.
The solid circle indicated that Qbit-1 is the control
Qbit. The linear (unitary) extension to arbitrary
2-Qbits states is the usual one.

and arithmetic⊕, while the bottom drawing highlights the connection to a control-X, or control-NOT.
The solid circle on Qbit-line 1 means that Qbit-1 is the control-Qbit, which is unchanged.

Observe that there is a closely connected variant of C10 which acts non-trivially on the target when
the control-bit is |0〉 rather than |1〉. We will denote as C1̄0 and reads:

C1̄0 = (N1)1 ⊗ 10 + (N0)1 ⊗X0 = (N1)1 + (N0)1X0 . (3.35)

Figure 3.6 shows a circuit representation of C1̄0, where the empty circle indicates the reversed control.
Since X is such that XZX = −Z, hence XN0X = N1 and XN1X = N0, you can immediately
conclude this two variants are related as follows:

C1̄0 = X1C10X1 , (3.36)

which is the second form shown in Fig. 3.6.

Recall, finally, that you can exchange control and target using Hadamards:

H1H0C10H1H0 = C01 . (3.37)

59

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

C1̄0 ≡
Qbit-0

Qbit-1

X

≡
X X

X

Figure 3.6: The C1̄0 variant of
C10. The control now acts non-
trivially only when the control-
Qbit 1 is in state |0〉, as denoted
by the empty circle. On the right
we used Eq. (3.36).

This identity is illustrated in Fig. 3.7, together with a second form which follows from observing that
HXH = Z.

X

≡
H H

H HX

≡
H H

Z

Figure 3.7: The identity in Eq. (3.37), illus-
trating how to exchange control- and target-
Qbit by a sandwich with H on both lines. The
second form (below) comes from observing that
HXH = Z.

Finally, to practice with multiply-controlled gates, we show the Toffoli gate in Fig. 3.8.

C21,0 ≡

|x0〉

|x1〉

|x2〉

|x0 ⊕ x1x2〉

|x1〉

|x2〉 Figure 3.8: The Toffoli gate, the 3-bit reversible
extension of the 2-bit logical AND. Qbits 1 and
2 are control-Qbits, Qbit 0 is the target. Here the
action on the computational basis is shown. The
linear (unitary) extension is defined as usual.

3.6. Two-Qbit states and gates

When you start considering 2-Quit states, you realise immediately the role of entanglement. The
most general product state of 2-Qbit might be written as

|ψprod〉 = U1 ⊗U0|00〉 ←→ |+,n1〉 ⊗ |+,n0〉 ,

requiring essentially 2×2 = 4 real parameters to be specified, up to a non-interesting global phase. On
the contrary, the most general normalised superposition state for two Qbits depends on 2×22−1−1 = 6

real parameters, again up to a global phase. The situation becomes exponentially amplified for general
n.

Exponential growth of entanglement complexity. A separable n-Qbit state depends only
on 2n R-parameters, or n C-parameters, while a general (normalised) superposition state in the
2n-dimensional Hilbert space of n-Qbits has (2n − 1) C-parameters, up to an overall phase.

i

Returning to our n = 2 problem, I can presumably make reference to your knowledge of 2-site spin
states, with their total spin eigenstates |ψS,M 〉, triplet S = 1 and singlet S = 0. Rewritten in our

60

(Lecture Notes by G.E. Santoro) 3.6 Two-Qbit states and gates

language they would be the following 4 states:

|ψ1,+1〉 = |↑〉1|↑〉2 = |00〉

|ψ1,0〉 = 1√
2

(
|↑〉1|↓〉0 + |↓〉1|↑〉0

)
= 1√

2
(|01〉+ |10〉)

|ψ1,−1〉 = |↓〉1|↓〉2 = |11〉

|ψ0,0〉 = 1√
2

(
|↑〉1|↓〉0 − |↓〉1|↑〉0

)
= 1√

2
(|01〉 − |10〉)

. (3.38)

Notice that the two states with M = ±1 are indeed product states. If you do not care much about
working with proper spin eigenstates, you can work with appropriate entangled combinations of them,
as we will:

|ψ1,+〉 = 1√
2

(
|ψ1,+1〉+ |ψ1,−1〉

)
= 1√

2
(|00〉+ |11〉)

|ψ1,−〉 = 1√
2

(
|ψ1,+1〉 − |ψ1,−1〉

)
= 1√

2
(|00〉 − |11〉)

. (3.39)

These 4 entangled combinations form the so-called Bell basis: you could write any states of H1 ⊗H2

in terms of them, instead of working with the 4 computational basis states {|x1x0〉}.

The Bell basis.

|ψ1,+〉 = 1√
2
(|00〉+ |11〉) = |β00〉

|ψ1,0〉 = 1√
2
(|01〉+ |10〉) = |β01〉

|ψ1,−〉 = 1√
2
(|00〉 − |11〉) = |β10〉

|ψ0,0〉 = 1√
2
(|01〉 − |10〉) = |β11〉

, (3.40)

where the RHS introduced an alternative notation — the β reminding us of “Bell” — explained
below.

i

The notation |βx1x0
〉 will be now explained. Let us start from |β00〉. It is simple to verify that you

obtain it as:

C10H1|00〉 = C10
1√
2

(|0〉1 + |1〉1)|0〉0 =
1√
2

((|0〉1|0〉0 + |1〉1|1〉0) = |β00〉 ,

which clearly demonstrates the power of C10 in creating entanglement when working on superposition
states of the control Qbit, in turn created by H1.

Exercise 3.4. Show that:
|βx1x0

〉 = C10H1|x1x0〉 . (3.41)

By using that |x1x0〉 = Xx1
1 Xx0

0 |00〉, that H1X1 = Z1H1, and both Z1 and X1 commute with C10

show that you can also rewrite the previous expression as:

|βx1x0〉 = C10H1|x1x0〉 = C10H1X
x1
1 Xx0

0 |00〉 = Zx1
1 Xx0

0 C10H1|00〉 . (3.42)

|x1〉1 H

|x0〉0 X

≡
|0〉1 H Zx1

|0〉0 X Xx0

|βx1x0
〉

Figure 3.9: The circuit be-
hind Eq. (3.42), generating
the four Bell’s states.

Interestingly, this is the general structure of 2-Qbit states, as you will learn in Sec. 3.15.1. More
precisely, you can show that you can generally represent any 2-Qbit state as:

|Ψ〉 = z00|00〉+ z01|01〉+ z10|10〉+ z11|11〉 = U1V0C10W1|00〉 , (3.43)

61

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

where U1, V0 and W1 are suitable unitaries operating on the respective Qbits. This shows that to
construct an arbitrary entangled 2-Qbit state you can use just 1-Qbit unitaries — hence in the end Rz

and H, as see previously — together with the cNOT 2-Qbit gate C10, which therefore starts playing
a leading role in the story.

3.6.1. Bell measurements

The first form of Eq. (3.41) is very useful to answer to the following question. Suppose I give you
a Bell state |ΨBell〉 but I do not tell you which one. How would you recognise it?

No point in doing measurements right away. As we have already stressed, and will
repeatedly do, there is no point in trying to “learn” a quantum state by doing measurements! You
would just get (randomly) collapsed components with certain probabilities. What you always
want to do is to find an appropriate transformation to apply before measurement, in such a way
that the outcome becomes certain. Recall the Mach-Zehnder interferometer example.

!

Here the unitary transformation you need to do before measurement is suggested by Eq. (3.41).

Exercise 3.5. [Inverting the Bell’s construction.] After proving that C2
10 = 1, and using that

H2
1 = 11, show that:

|x1x0〉 = H1C10|βx1x0
〉 . (3.44)

Eq. (3.44) tells us that after having applied H1C10 you would obtain a single product state, and
not a superposition. Hence, a measurement in the computational basis — measuring commuting σ̂z

on the two Qbits — would immediately tell you which Bell’s state you were given, since you know x1

and x0.

Bell’s measurement. This mechanism is known as Bell measurement and is the basic building
block of the Quantum Teleportation protocol, which will be discussed in Sec. 3.14.

i

At this point I want to pose for a while, to satisfy a legitimate curiosity.

How would we implement such 1-Qbit unitaries — for instance Rz and H — and the 2-Qbit
cNOT C10 in the actual hardware of a Quantum Computer?

Question:

The question is a crucial one, especially in the light of the fact which we will later show: Not only
you can represent 2-Qbit states and transformations using 1-Qbit unitaries and the cNOT C10, but
an arbitrary n-Qbit unitary transformation can always be decomposed in terms of such ingredients,
which act therefore as universal gates.

The answer to such a question really depends on the hardware on which you implement a QC. But
for any hardware, is essentially one of the first questions that those who build the QC ask themselves.
I will here provide — for the purpose of a mere illustration of principle — a demonstration of how
such a question might be answer in an NMR setting, where you act and control true spin-1/2 objects
which respond to static and time-dependent magnetic fields.

62

(Lecture Notes by G.E. Santoro) 3.7 NMR-like Hamiltonian model for 1- and 2-Qbit gates

3.7. NMR-like Hamiltonian model for 1- and 2-Qbit gates

Consider a single spin-1/2 in a circularly polarised in-plane magnetic field B⊥(t), together with a
longitudinal (usually larger) Bz-field. This is a standard set-up when discussing NMR. We take, for a
single spin-1/2, the Hamiltonian to be: 2

Ĥ = −µBzσ̂
z − µB⊥

(
σ̂x cos(ωt) + σ̂y sin(ωt)

)
. (3.45)

This model allows for an exact solution when you move to a rotating frame. A similar model with a
linearly polarised in the x-direction, B⊥ = (B⊥, 0, 0) cos(ωt), would allow only approximate solutions.

Exercise 3.6. [Exact solution in a circularly polarised field.] By making a transformation
to a rotating frame moving with the in-plane field, hence transforming the problem into a time-
independent one (but be careful to the fact that the transformation being time-dependent, you have
to account for the appropriate derivative in the Schrödinger equation), show that the spin state evolves
as |ψ(t)〉 = Û(t)|ψ(0)〉 with a unitary evolution operator

Û(t) = e−i
ωt
2 σ̂

z

e−i
(ω0−ω)t

2 σ̂z−iµB⊥t
~ σ̂x , (3.46)

and
ω0 =

2µBz
~

is the Zeeman splitting frequency in the Bz longitudinal field.

The resonance condition ω = ω0 simplifies the result to:

Ûres(t) = e−i
ω0t
2 σ̂ze−i

ΩRabit

2 σ̂x where ΩRabi =
2µB⊥
~

, (3.47)

is the so-called Rabi frequency, which you control by the in-plane magnetic field strength.

Exercise 3.7. [Parameter choice for X and H.] Determine what choice of parameters you need
to make for the operator Û(t), acting for a time t = τ , to implement:

1) The X (or NOT) unitary.

2) The H Hadamard.

[Hint: while X can be done at resonance, H requires having ω 6= ω0...]

To construct the cNOT C10 we need two interacting spins. We label the target spin by 0, and the
control by 1, as usual. At this point we might proceed in two ways.

First route. We write a 2-Qbit Hamiltonian with an Ising interaction, of the form:

Ĥ = −µ0B0σ̂
z
0 − µ1B1σ̂

z
1 + Jσ̂z0 σ̂

z
1 − µ0B⊥

(
σ̂x0 cos(ωt) + σ̂y0 sin(ωt)

)
, (3.48)

where, notice, the in-plane field is applied only to the target Qbit-0. Observing that there is no term
that could change the spin of the control Qbit-1, you can simplify the problem by working with two
different single-spin Hamiltonians for Qbit-0. For σ̂z1 → ±1 we have:

Ĥ± = ∓µ1B110 − (µ0B0 ∓ J)σ̂z0 − µ0B⊥
(
σ̂x0 cos(ωt) + σ̂y0 sin(ωt)

)
. (3.49)

2For electrons µ = −µB , the Bohr magneton. Nuclei have a positive µ which is however, due to their large mass, much
smaller than a µB .

63

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Python exercise 3.1. Now you observe that Ĥ± have different longitudinal fields (µ0B0∓J), hence
different resonance conditions: you can make the resonance effective in turning the Qbit-0 when Qbit-1
is in state |1〉 (i.e., for Ĥ−) and not for the Qbit-1 in state |0〉. Analise this numerically, for instance
with a python notebook.

Alternative route. The alternative is to notice that C10 = H0CZ
10H0, where the symmetric CZ

10

control-gate reads:

CZ
10 =

1

2
(1 + Z1 + Z0 − Z1Z0) . (3.50)

So, up to Hadamards acting on the target Qbit-0, you can concentrate your effort in building a
Hamiltonian implementing CZ

10. Notice that this operator is diagonal, i.e., it provokes no transitions:
it simply brings controlled-phase changes to the state.

One useful thing to notice is that (CZ
10)2 = 1, hence, with algebra totally identical to that used for

the exponential of Pauli matrices, you can show that:

eiC
Z
10θ = cos θ + iCZ

10 sin θ . (3.51)

From this you deduce that:
CZ

10 = e−i
π
4 ei

π
4 (Z1+Z0−Z1Z0) . (3.52)

It is now clear that a time-independent Hamiltonian of the form:

Ĥ = −µ0B0σ̂
z
0 − µ1B1σ̂

z
1 + Jσ̂z0 σ̂

z
1 ,

will do the job, if acting for a controlled time t.

If you want to avoid Ising interactions, because they are hard to implement, you can also proceed
with fully-rotational-invariant Heisenberg interactions: read Appendix H of Mermin’s book [1] to
learn how to do that.

3.8. A variety of 2-Qbit and multi-Qbit unitary gates.

Let us resume our journey into 2-Qbit unitary gates. We have already discussed C10 and C1̄0 and
the interchanged control versions C01 and C0̄1 where the target is Qbit-1 (the second element) and
the control is Qbit-0 in its |1〉0 state or in its |0〉0 (the C0̄1-version). Once can also show that the
SWAP (symmetric) gate can be written as:

S10 = S01 = C10C01C10 . (3.53)

Perhaps more intuitive is the fact that a SWAP transforms C10 into C01 and viceversa:

C01 = S10C10S10 . (3.54)

Exercise 3.8. Prove Eq. (3.53) and (3.54). [Hint: An operator way of proving Eq. (3.53) is to write the
control in terms of projectors N0 and N1, substitute, and do the algebra.]

Control-phase gates. We have seen already CZ
10. One can generalise it to an arbitrary phase γ by

defining:
Cγ

10 = (N0)1 ⊗ 10 + (N1)1 ⊗
(
Rz(γ)

)
0

(3.55)

64

(Lecture Notes by G.E. Santoro) 3.8 A variety of 2-Qbit and multi-Qbit unitary gates.

where the phase-gate appears:

Rz(γ) =

(
1 0

0 eiγ

)
.

Similar definitions can be given for Cγ
1̄0
, Cγ

01, and Cγ
0̄1
.

Cπ
10 control-phase gate. Observe that:

Cπ
10 = CZ

10 . (3.56)

This operator is sometimes denoted as CMINUS

10 and could be much simpler to implement in the
hardware than C10. As mentioned previously, it is connected to C10 by a pair of H0:

C10 = H0Cπ
10H0 . (3.57)

i

General control-U gates. Given a general 1-Qbit unitary U, you can define the obvious generalisa-
tion of C10 and its variants as follows:

CU
10 = (N0)1 ⊗ 10 + (N1)1 ⊗U0 (3.58)

For U = X we recover the C10 — the default control-U —, while for U = Z we have the Cπ
10.

Exercise 3.9. Show that CU
10 can be written in terms of C10 and 1-Qbit unitaries.

Finally, observe the useful fact that, in the computation basis you can write:

CU
10|x1x0〉 = Ux1

0 |x1x0〉 , (3.59)

with the usual understanding that U0
0 = 10.

3.8.1. Multi-Qbit unitary gates

When the number of Qbits n > 2, it turns out to be important to be able to implement operations
on a target-Qbit that depend on two or more control-Qbits. Multiply-controlled unitary-gates can be
defined in similar ways, but are increasing hard to construct directly. An example is given by the
Toffoli gate, the doubly-controlled-NOT, the reversible extension of the logical AND we have already
encountered: read Sec. 3.15.3 to learn how to write it in terms of 6 cNOTs.

Other examples will be seen later on, for instance when discussing the Grover algorithm. For
instance, Fig. 3.10 illustrate the multi-controlled Z gate which is useful in the context of Grover’s
searching for the construction of the crucial operator K, the universal “kinetic energy”. These multi-
controlled gates, with the addition of ancillary gates, and by paying a poly(n) number of gates, can
be transformed into circuits with at most doubly-controlled gates.

Multiply-controlled unitary gates acting on a single target Qbit are in principle defined in a very
similar way. For instance, CU

632̄0,4 would be a gate acting with U on target-Qbit 4, controlled by
Qbit-6,3,0 (in the standard way), and by Qbit-2 in the reversed way. On the computational basis it
would act as:

CU
632̄0,4|xn−1 · · ·x6, x5, x4, x3, x2, x1, x0〉 = Ux6x3x̄2x0

4 |xn−1 · · ·x6, x5, x4, x3, x2, x1, x0〉 . (3.60)

I could also express it in terms of projectors N0 and N1, but the real question is how to “simplify”
it, reducing it, with tricks similar to those used for the Toffoli and for the other multiply-controlled
gates, eventually to single-Qbit unitaries and cNOT Cij gates. This can be done, in principle.

65

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

1− 2|0〉n〈0| =

−Z

=

X Z X

X X

X X

X X

X X

X X

Figure 3.10: The circuit for 1 − 2|0〉n〈0|.
When the controls are all in |0〉, the lower
−Z0 changes the sign of state |0〉0; otherwise,
it acts like an identity. The form on the right,
with addition of X gates to the left and right
of each control bit transforms the controls to
the standard case (action when the control is
|1〉), and Z into −Z, since XZX = −Z.

3.9. Universal quantum gates

Recall that, for classical computation of a Boolean function, NAND and COPY are universal
gates. Recall also that the issue of efficiency has nothing to do with that of universality.

For the 2-Qbit case we already showed that C10 and 1-Qbit unitaries — hence H and Rz(γ),
ultimately — are sufficient to express any 2-Qbit unitary, and construct any 2-Qbit state. The same
result holds for the n-Qbit case.

Universality of cNOT and 1-Qbit unitaries. Any n-Qbit unitary transformation U can
be reduced to 1-Qbit unitaries and Cij cNOT-gates, in a number that, in principle, is of order
O(n24n).

i

Details of this construction are given for instance in Ref. [2][Sec. 3.7], or in Ref. [19]. Notice, how-
ever, that the exponential number of gates involved in this construction is not good news. Efficient
algorithms will have to use smart tricks to employ only a poly(n) number of gates.

Which unitaries can be efficiently computed? A fundamental and open problem of QC
is to identify special classes of n-Qbit unitaries U that can be implemented, in the circuit model,
using a poly(n) number of elementary gates.

i

3.10. Examples of function evaluation with a QC

This section simply illustrates, through a few additional examples taken from Ref. [2], the general
theory presented in Sec. 3.2. We return to the n = 2 bit functions f : {0, 1}2 → {0, 1} which we
already looked at, which we rewrite here for convenience:

x1 x0 f0 f1 f2 f3 f4 f5 f6 f7 f8 · · ·
0 0 0 0 0 0 0 0 0 0 1 · · ·
0 1 0 0 0 0 1 1 1 1 0 · · ·
1 0 0 0 1 1 0 0 1 1 0 · · ·
1 1 0 1 0 1 0 1 0 1 0 · · ·

where, as you recall, f0 = Erase, f1 = f∧ = AND, f3 = x1, f5 = x0, f6 = XOR, f7 = OR,
f8 = NOR, etc. We already considered the AND, and wrote explicitly its reversible extension,

f̃∧(x1, x0, y) = (x1, x0, y ⊕ f∧(x1, x0)) = (x1, x0, y ⊕ x1x0)

66

(Lecture Notes by G.E. Santoro) 3.10 Examples of function evaluation with a QC

corresponding to the Toffoli gate, whose action on the computational basis, ordered as |x1〉2|x0〉1|y〉0,
reads:

C21,0|x1, x0, y〉 = Xx1x0
0 |x1, x0, y〉 . (3.61)

Exercise 3.10. 1) Show that the circuit for f2 = x1∧ x̄0, with the usual shift in the Qbit numbering
such that the ancilla y is Qbit-0, is C21̄,0 and that:

C21̄,0|x1x0〉 ⊗ |0〉 = |x1x0〉 ⊗ |x1 ∧ x̄0〉 .

2) Similarly show that f4 → C2̄1,0 and f8 → C2̄1̄,0.

Reversible extension of the XOR. Let us consider the case of the XOR: f6 = x0 ⊕ x1. To encode
f̃6

f̃6(x1, x0, y = 0) = (x1, x0, x0 ⊕ x1) ,

we need to proceed in two steps:

Step 1) We put x0 in Qbit-0 by a C10 operating with |y = 0〉0 as a target (ancilla) input, which acts
like a COPY of bit-1 into bit-0. 3 At this point we have the ancilla in |x0〉0.

Step 2) We next operate with C2,0, which now does the ⊕ (which you recall is essentially the X or
NOT).

Figure 3.11 illustrates the circuit, showing its action in the computational basis: as you see, we have
to use two cNOT gates here.

|x1〉2 |x1〉2

|x0〉1 |x0〉1

|0〉0 X X |x0 ⊕ x1〉0
|x0〉0

Figure 3.11: The quantum circuit to represent
the reversible extension of f6 = XOR, with its
action on the computational basis. The ancilla y
is here Qbit-0, initially set to |0〉0.

Exercise 3.11. Draw the circuit for f3 = x1, f5 = x0 and f0 = 0.

An example of a f with 3 arguments. To get more feelings about how many quantum gates a
function evaluation might require, consider the f : {0, 1}3 → {0, 1} so defined:

x2 x1 x0 f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

←− x(1) = (0, 0, 1)

←− x(4) = (1, 0, 0)

←− x(5) = (1, 0, 1)

. (3.62)

3This is not a violation of the famous no-cloning theorem, as we will discuss later on in Sec. 3.11.

67

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Here, on the RHS we have highlighted the only input strings on which the function is 1. If you recall
the discussion we have in Sec. 2.7, this preludes to the fact that we decompose f into its Krönecker
components.

|x2〉3

|x1〉2

|x0〉1

|0〉0 X X X

≡

X X

Figure 3.12.: The quantum circuit to represent the function f in Eq. (3.62). The ancilla y is here Qbit-0,
initially set to |0〉0. Notice, however, that the names of the variables have not been shifted here. The dotted
ellipse on the left shows the nodes that simplify because x0 + x̄0 = 1.

The Krönecker components. The basic idea is that C3̄2̄1,0 will take care of giving you f = 1

on the input x(1), and only on that input! Similarly, C32̄1̄,0 does the job on x(4) and C32̄1,0 on x(5).
You realise that, in general, such a circuit coding of a function f involves an exponentially large
number of fully-controlled cNOTs, as Eq. (2.36) for Kf , the number of Krönecker components in
the truth table of an f , immediately tells you.

i

In the present case, some of the fully-controlled gates simplify, as we highlight with the ellipse in
the left part of Fig. 3.12. Indeed, when the same control line, here that of Qbit-1, has the control in
both possibilites (the first acts for x0 = 0, the second for x0 = 1), all the other controls being the
same, than, since x0 + x̄0 = 1 you can actually simplify the circuit by eliminating the two controls
from line 1, leaving in the end the circuit on the right, involving only two doubly-controlled cNOTs,

Designing optimised circuits. The design of optimised circuits is a basic problem of compu-
tation. Simplification rules are given in Lee et al. (1999).

i

A final example: evaluating f(x) = x2. As a final example consider evaluating f(x) = x2 for
x = 0, 1, 2, 3 (a 2-bit integer). The output x2 is in [0, 9], hence requires m = 4 bits (and ancillas,
for a reversible circuit). More generally, for an input x ∈ [0, N − 1] we need n = [log2N] + 1 bits,
while x2 ∈ [0, (N − 1)2] requires m = 2n bits, hence the reversible circuit would have n + m bits:
f̃ : {0, 1}n+m → {0, 1}n+m. Here is the table for f :

x1 x0 x x2 f

0 0 0 0 0000

0 1 1 1 0001

1 0 2 4 0100

1 1 3 9 1001

We have m = 4 ancillas, y0, y1, y2, y3, initially set to 0, each taking care of the corresponding bit in
the output. With the Krönecker components trick, acting in parallel for each of the output bits, we
would have the circuit shown in Fig. 3.13, where the color-codes suggest which ancilla is taking care
of which bit.

68

(Lecture Notes by G.E. Santoro) 3.10 Examples of function evaluation with a QC

|y0 = 0〉

|y1 = 0〉

|y2 = 0〉

|y3 = 0〉

|x0〉

|x1〉

X X

X

X

≡

X

X

X

Figure 3.13.: The circuit for a reversible computation of f : {0, 1}2 → {0, 1}4 where f(x) = x2. Notice the
simplification alluded at by the dotted ellipse.

Warning: In general, evaluating a function can require many gates, and the goal is to find
cases where, with smart superposition tricks, we can use much less gates that the corresponding
classical computation, by “concentrating the answer”. We will see examples of this phenomenon
later on.

!

3.10.1. The quantum adder

The examples given above are for illustration-of-principle only: you should not think of the Krönecker-
δ trick as a standard tool to construct a quantum algorithm: quite the opposite. The reason is that
you need to construct first the computational basis TRUTH table of your computation, which is in
general non-trivial (and part of the reason to have a routine is to avoid constructing such an object
case-by-case).

To better understand this point, imagine that you want to construct a quantum algorithm to add
numbers, s = x + y. As already discussed for the classical case, see Sec. 2.6, you do not construct
truth tables, but rather:

1) If ci is the carry-over from previous step, construct a circuit for the bitwise sum

si = ci ⊕ xi ⊕ yi .

2) Construct a circuit for the next step carry-over

ci+1 = (xi ∧ yi) ∨
(
(xi ⊕ yi) ∧ ci

)
= (xi ∧ yi) ∨ (ci ∧ xi) ∨ (ci ∧ yi) .

Step 1) involves the standard cNOT, and you can show that it involves the circuit shown in

|ci〉2 |ci〉2

|xi〉1 |xi〉1

|yi〉0 X X |ci ⊕ xi ⊕ yi〉0
|xi ⊕ yi〉0

Figure 3.14: The quantum circuit to repre-
sent the bitwise sum si = ci ⊕ xi ⊕ yi. Notice
that it is precisely the reversible XOR circuit
of Fig. 3.11, where the previous ancilla y, at
Qbit-0, is set to |yi〉0.

Step 2) involves the non-reversible OR and AND, which need to be made reversible with the
ancilla trick.

69

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Exercise 3.12. 1) Write the quantum circuit for ci+1. 2) To practice, build the full circuit to sum
an n = 2-bit x and an m = 2-bit y.
[Ans: Ref. [2][Fig.3.21, 3.22]

3.11. No-cloning theorem

We saw that the COPY gate was useful in classical computation (CC): it belongs to the universal
set of gates. As a matter of fact, we already noticed that in principle, it can be realised by a cNOT:

C10|x1〉1 ⊗ |0〉0 = |x1〉1 ⊗ |x1〉0 .

While this is a waste of resources in CC, because simpler strategies can be adopted in the digital
hardware to implement COPY, it suggests the wrong impression that C10 acts as a quantum-
COPY machine. This is wrong: no such machine can exist, as we will now discuss.

The point is simple: while, as the previous expression for C10 in the computational basis shows,
certainly I can copy |0〉 and |1〉 and any computational basis state, I cannot copy unknown arbitrary
superposition of computational basis states. We will prove this no-go theorem — known as no-cloning
theorem — in three different ways.

No-cloning theorem. A unitary operator Ucopy which operates the copy of an arbitrary n-bit
quantum state |ψ〉n

Ucopy|ψ〉n ⊗ |0〉n = |ψ〉n ⊗ |ψ〉n ∀ψ (3.63)

cannot exist.

i

Proof 1 (with emphasis on orthogonality). Take two states |ψ〉n and |φ〉n and assume that

Ucopy|ψ〉n ⊗ |0〉n = |ψ〉n ⊗ |ψ〉n and Ucopy|φ〉n ⊗ |0〉n = |φ〉n ⊗ |φ〉n .

Next, consider the scalar product 〈φ|ψ〉n. We have:

〈φ|ψ〉n = 〈0| ⊗ 〈φ|ψ〉n ⊗ |0〉n
= 〈0| ⊗ 〈φ|U†copyUcopy|ψ〉n ⊗ |0〉n
= 〈φ| ⊗ 〈φ|ψ〉n ⊗ |ψ〉n ≡ 〈φ|ψ〉2n , (3.64)

where in the first line we have inserted 1 = 〈0|0〉n for the copy Qbit registers, and in the second we
inserted an identity U†copyUcopy = 1. So, this limits the pair of states |ψ〉n and |φ〉n to be such that
〈φ|ψ〉n = 0 — orthogonal states —, or 〈φ|ψ〉n = 1 — identical states.

Non-orthogonal states cannot be copied. This implies that I can construct such a unitary
operator to copy all the states of, for instance, the computational basis — a multiple set of cNOT
gates would do that, as discussed — or of any other basis, but I cannot use it to copy arbitrary
non-orthogonal states.

i

Proof 2 (with emphasis on linearity). Take again two states |ψ〉n and |φ〉n. When acting on a linear
superposition α|ψ〉n + β|φ〉n, Ucopy should do the following:

Ucopy

(
α|ψ〉n + β|φ〉n

)
⊗ |0〉n = αUcopy|ψ〉n ⊗ |0〉n + βUcopy|φ〉n ⊗ |0〉n

= α|ψ〉n ⊗ |ψ〉n + β|φ〉n ⊗ |φ〉n . (3.65)

70

(Lecture Notes by G.E. Santoro) 3.12 The Deutsch’s problem

But, on the other hand, by its very definition of copy-operator, Ucopy should do this:

Ucopy

(
α|ψ〉n + β|φ〉n

)
⊗ |0〉n =

(
α|ψ〉n + β|φ〉n

)
⊗
(
α|ψ〉n + β|φ〉n

)
(3.66)

= α2|ψ〉n ⊗ |ψ〉n + β2|φ〉n ⊗ |φ〉n + αβ
(
|ψ〉n ⊗ |φ〉n + |φ〉n ⊗ |ψ〉n

)
.

The equality of Eqs. (3.65)-(3.66) requires in turn:
αβ = 0

α2 = α

β2 = β

⇐⇒
{
α = 1

β = 0
OR

{
α = 0

β = 1
. (3.67)

Exercise 3.13. Apply C10 to a state |+〉1 ⊗ |0〉0 = H1|00〉. What is the resulting state? Observe
how different it is from the non-entangled (product) state |+〉1 ⊗ |+〉0.

A possible objection. To these proofs one might object that, perhaps, the quantum-copy-
machine involves another (larger) Hilbert spaceHC , and that the initial state is |ψ〉n⊗|0〉n⊗|Cin〉C
and the unitary works as follows:

Ucopy|ψ〉n ⊗ |0〉n ⊗ |Cin〉C = |ψ〉n ⊗ |ψ〉n ⊗ |Cψ〉C ∀ψ , (3.68)

with a final state |Cψ〉C which depends on the state ψ.

i

Exercise 3.14. Repeat the linearity-based proof in this more general setting, showing that the no-
cloning theorem still holds.

Proof 3 (with emphasis on measurement). Suppose, for concreteness of argumentation, that the
state that we plan to copy is a single Qbit state

|ψ〉 = |+,n〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉 .

The Measurement Postulate of QM tells us that with a single measurement I can only obtain one
of the eigenvalues of the operator which is being measured, with an ensuing collapse of the state.
For instance, with a measurement performed on |+,n〉 in the computational basis (i.e., measuring
1
2 (1 − σ̂z)) I get 0 or 1, with probabilities P0 = cos2 θ

2 and P1 = sin2 θ
2 , collapsing the state to |0〉

or |1〉, respectively. Usually, one imagines of repeating the measurement over-and-over again on an
ensemble of identically prepared states |ψ〉, which requires following a certain recipe of experimental
preparation procedure to get |ψ〉: this should not be confused with quantum-cloning. 4

Now, by contradiction: Suppose that quantum-cloning is possible. Then, the experimentalist could
construct a very complex measurement apparatus that includes the quantum-cloning-machine, mea-
sure on these copies of |ψ〉 the average spin 〈ψ|Ŝ|ψ〉 = 1

2 (sin θ cosφ, sin θ sinφ, cos θ), and therefore get
full information on the state |ψ〉, i.e., the values of θ and φ, from a single preparation of |ψ〉. This
violates the Measurement Postulate.

For useful remarks on how cloning would impact on “faster than light” communication in Bell’s pair
EPR experiments, see [2][Sec. 5.2.1]. A useful reading is also [2][Sec. 5.2.2-5.2.4].

3.12. The Deutsch’s problem

So far we have illustrated how to write quantum circuit to make computations that a classical digital
computer would do even more efficiently, at least from the point of view of the memory involved: recall
4“Quantum-cloning” is about applying a unitary operator to make identical copies of an unknown state |ψ〉.

71

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

that reversibility requests using ancillary bits in the computation. Now we come to illustrating the
first problem — admittedly very simple and academic — where you can show a definite quantum
speedup of the QC. Here is the problem, known as Deutsch’s problem.

Consider the 4 single-bit function f : {0, 1} → {0, 1}, which I rewrite here for convenience:

x0 f0 f1 f2 f3

0 0 0 1 1

1 0 1 0 1

You recognise that f0(x0) = Erase(x0) = 0, f1(x0) = x0, f2(x0) = x̄0 = NOT(x0), f3(x0) =

NOT(f0) = 1. We make all of them reversible with the usual extension procedure: f̃(x0, y) =

(x0, y ⊕ f(x0)). The corresponding circuits are shown in Fig. 3.15.

(f0)

|x0〉1

|y = 0〉0

|x0〉1

|0〉0

(f1)

|x0〉1

|y = 0〉0

|x0〉1

|x0〉0X

(f2)

|x0〉1

|y = 0〉0

|x0〉1

|x̄0〉0X X

(f3)

|x0〉1

|y = 0〉0

|x0〉1

|1〉0X

Figure 3.15: The four cir-
cuits for the reversible com-
putation of the single-bit
functions. The red dotted
rectangles allude to the fact
that we should start think-
ing to such circuits as a
“black box”, of which we do
not know the details. Con-
stant functions are on the
left, non-constant on the
right.

Suppose — this is the rule of the game — that Uf is coded into some “black box” — often called a
oracle, because I can interrogate it, getting an answer, but without further information on the inner
mechanism — and I can call the black box to know if the f coded by Uf is constant (like f0 or f3) or
not-constant (like f1 of f2).

Qbit 1

Qbit 0
Uf

Figure 3.16: The “black box” encoding Uf , of which we do not know
the constructive details.

In a classical computation, I would need to invoke the oracle Uf twice, calculating:

Uf |0〉1|0〉0 = |0〉1|f(0)〉0 and Uf |1〉1|0〉0 = |1〉1|f(1)〉0 ,

to know the function and hence answer the question. On a quantum computer, we can exploit
superpositions — but we have to do this wisely — and answer with a single call of the oracle Uf .

Naif application of superpositions. The naif application of superpositions offers no advan-
tage. If you start from |ψin〉 = H1|0〉1|0〉0 = 1√

2
(|0〉1 + |1〉1)|0〉0, you would get:

Uf |ψin〉 = UfH1|0〉1|0〉0 =
1√
2

(|0〉1|f(0)〉0 + |1〉1|f(1)〉0) ,

which suffers from the general problem. It is a fake quantum parallelism: when I make a mea-
surement, I either get |0〉1 or |1〉1, with probability 1

2 , and I have no control of what I get! So,
no advantage whatsoever on the classical computation.

!

72

(Lecture Notes by G.E. Santoro) 3.12 The Deutsch’s problem

Notice, however, the magic that occurs if we start from:

|ψin〉 = H1H0X0|0〉1|0〉0 = H1H0|0〉1|1〉0 =
1

2

(
|00〉+ |10〉 − |01〉 − |11〉

)
.

Then, by linearity:

Uf |ψin〉 =
1

2

(
Uf |00〉+ Uf |10〉 −Uf |01〉 −Uf |11〉

)
=

1

2

(
|0〉1|f(0)〉0 + |1〉1|f(1)〉0 − |0〉1|f(0)〉0 − |1〉1|f(1)〉0

)
. (3.69)

Now you observe that if f(0) = f(1) (no matter the values), then:

Uf |ψin〉 =
1

2
(|0〉1 + |1〉1)

(
|f(0)〉0 − |f(0)〉0

)
if f(0) = f(1) .

Otherwise, for f(0) 6= f(1), since f(0) = f(1) and f(1) = f(0):

Uf |ψin〉 =
1

2
(|0〉1 − |1〉1)

(
|f(0)〉0 − |f(0)〉0

)
if f(0) 6= f(1) .

Hence, if you act with a final Hadamard on Qbit-1, after acting with Uf , you get:

H1Uf |ψin〉 =

1√
2
|0〉1

(
|f(0)〉0 − |f(0)〉0

)
for f(0) = f(1)

1√
2
|1〉1

(
|f(0)〉0 − |f(0)〉0

)
for f(0) 6= f(1)

. (3.70)

You see the miracle, similar to the phenomenon observed when acting with the final beam-splitter in
the Mach-Zehnder interferometer discussed in the Introduction: a superposition has been transformed
into a certain outcome. By measuring Qbit-1 in the computational basis, if I find 0, I know that
f(0) = f(1), hence the function is constant; if I find 1, then f(0) 6= f(1).

What we gain and what we pay. By measuring the output register Qbit-0 we do not
learn anything useful on the actual value, say, of f(0). Indeed, the result is equally likely to
give a collapse to |f(0)〉0 or to |f(0)〉0. To exemplify, suppose I got 0 in measuring Qbit-1, so
f(0) = f(1). Then, if f(0) = f(1) = 0 (as for f0) the collapsed state is

|0〉1
1√
2

(
|0〉0 − |1〉0

)
.

If f(0) = f(1) = 1 (as for f3), the collapsed state is:

|0〉1
1√
2

(
|1〉0 − |0〉0

)
,

which differs from the previous by an unobservable minus sign. Thus, the price paid for being
able to answer with a single call of Uf is that we actually do not know the value of f(0) or f(1).
What a QC can give us is the ability to discriminate between constant and non-constant f with
a single call of Uf : no classical computation can do that.

!

If we want to give to the treatment of the two Qbits a more symmetric look, it is appropriate to
add a final H0. We can easily show that this leads to:

H1H0Uf |ψin〉 = H1H0UfH1H0|0〉1|1〉0 =

 (−1)f(0)|0〉1|1〉0 for f(0) = f(1)

(−1)f(0)|1〉1|1〉0 for f(0) 6= f(1)
. (3.71)

It is instructive to see what happens to the circuits “inside” the black-box Uf for the cases shown
in Fig. 3.15, when the H1H0UfH1H0|0〉1|1〉0 is considered. The results — obtained by using simple
identities like H2 = 1, HXH = Z, and H1H0C10H1H0 = C01 — are shown in Fig. 3.17.

73

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

(f0)

|0〉1

|1〉0

|0〉1

|1〉0

(f1)

|0〉1

|1〉0

|1〉1

|1〉0

X

(f2)

|0〉1

|1〉0

|1〉1

|1〉0Z

X

(f3)

|0〉1

|1〉0

|0〉1

|1〉0Z

Figure 3.17: The four cir-
cuits for the reversible com-
putation of the single-bit
functions, in the version
for H1H0UfH1H0. Notice
that change in Qbit-1, from
|0〉1 → |1〉1, for the two non-
constant functions, on the
right.

The Deutsch-Jozsa problem. An n-Qbit variant of the problem is the following. A function
f : {0, 1}n → {0, 1} is either constant or balanced — i.e., on half of the input strings f(x) = 0, on
the other half f(x) = 1. One can discriminate between these two situations with a single call of
an oracle. See Ref. [2][Sec. 4.1.1]

i

3.12.1. An interesting “variant” of Deutsch’s problem, and some general
remarks on the role of additional Qbits.

As formulated, the problem is eminently academic: nobody would have constructed a QC to solve
it. Still academic, but less trivial is the following formulation. Take f(x) : {0, 1} → {0, 1}m where
f(x) =

√
2 + x, written as an m-bit binary of the form 1.y1y2y3 · · · ym, where now increasing bits

refer to less significant binary digits. Now I consider n < m but very large, like n = 106, and I ask
something about the n-th binary digit of f . More precisely, I define fn : {0, 1} → {0, 1} so defined:

fn(x) = n-th binary digit of
√

2 + x .

The Deutsch’s problem for fn would then be: is fn(0) = fn(1)? In other words, we are asking if the
n-th digit of

√
2 and

√
3 coincide or not. Now, to calculate anything about fn, you certainly need

many more than two Qbits, |x〉1|y〉0, as done so far.

What would these Qbits do during the Deutsch’s problem computation, as described so far?
Would they become entangled with the output register, ruining the magic we saw before?

Question:

The question can be formulated in more general terms, and is useful to do so, because it applies
equally well to the general scheme for Uf proposed in Sec. 3.2. So, let us suppose that we implement
a function f : {0, 1}n → {0, 1}m with Uf , which on the computational basis would read:

Uf |x〉n ⊗ |y〉m = |x〉n ⊗ |y ⊕ f(x)〉m .

This is represented by the circuit in Fig. 3.18.

|x〉n

|y〉m

|x〉n

|y ⊕ f(x)〉m
Uf

Figure 3.18: A Uf acting on an n-Qbit input reg-
ister |x〉n and an m-Qbit output register |y〉m, de-
noted by thick lines.

74

(Lecture Notes by G.E. Santoro) 3.13 The Bernstein-Vazirani problem

|ψ〉r

|x〉n

|y〉m

|φ〉r

|x〉n

|y ⊕ f(x)〉m

Wf

Figure 3.19: A more realistic unitary Wf act-
ing on the n-Qbit input register |x〉n, the m-Qbit
output register |y〉m, and the r-Qbit register of ad-
ditional Qbits involved in the computation.

Imagine, now, that the computation involves many other Qbits, say r of them. A more realistic
way of thinking at the calculation would be therefore:

Warning: A crucial requirements for this more general Wf to do its proper job is that |ψ〉r and
|φ〉r are pure states independent of the initial content of |x〉n|y〉m, so that, when restricted to the
lower (n + m) Qbits, the resulting transformation is the unitary Uf we want.

!

For instance, if we can arrange things such that |ψ〉r = |0〉r, a standard fixed reference state
for the extra Qbits, and |φ〉r = |0〉r as well, so that we return to the initial reference state, then
〈0|Wf |0〉r = Uf does the desired job on the lower (n + m) Qbits. Figure 3.20 illustrates a possible
way of doing this trick.

|0〉r

|x〉n

|y〉m

|ψx〉n+r−m

|f(x)〉m |f(x)〉m

|0〉r

|x〉n

|y ⊕ f(x)〉m

Vf V†f

Cm

Figure 3.20.: A fully reversible computation with extra Qbits initially set in the standard reference state
|0〉r. The unitary Vf prepares |f(x)〉m while leaving (n + r −m)-Qbits in a pure state ψx which depends on
the initial input x. This state is however sent back to |0〉r by the final V†f . In the lower part, the box labelled
Cm is simply a multi-bit version of a standard C10 cNOT, which transfers the m-th control Qbit of |f(x)〉m
in the corresponding target Qbit of the output register |y ⊕ f(x)〉m.

Warning: For the Deutsch’s problem, the 2-to-1 speed-up of QC with respect to CC would be
wasted by this necessity of applying V†f after Vf to return to the original reference state |0〉r.
Nevertheless, problems with a larger quantum speed-up would still maintain the advantage of QC
over CC.

!

3.13. The Bernstein-Vazirani problem

Here is another academic problem of no intrinsic arithmetic interest which, once again, shows a
quantum speed-up: this time from n classical calls to 1 quantum call. The problem is the following.
Given an assigned but unknown n-bit integer a ∈ {0, 1, · · · , 2n− 1}, hence an associated binary string
a = (an−1, · · · , a0) with aj = 0, 1, and given an n-bit integer x←→ x = (xn−1, · · · , x0) we define the
bitwise (mod 2) scalar product of a and x to be the function f : {0, 1}n → {0, 1} given by:

f(x) = a · x def
= a0x0 ⊕ a1x1 ⊕ · · · ⊕ an−1xn−1 . (3.72)

75

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Example with n = 5. For a = (1, 0, 1, 1, 0) ≡ 22, and x = (0, 1, 1, 1, 1) ≡ 15 then

a · x = 0⊕ 0⊕ 1⊕ 1⊕ 0 = 1⊕ 1 = 0 .

i

Suppose you want to discover the unknown value of a by calling f(x) repeatedly. How many calls
would you need?

Question:

With a classical computer, I would need n calls. The best strategy is to call f(x) for x = 2j which
corresponds to x(j) = (0 · · · 01j0 · · · 0), where 1j means “a 1 at position j”. Indeed in this case:

f(x(j)) = aj1 = aj .

Here is, for instance, a circuit for f(x), assuming that n = 5 with a = (1, 0, 1, 1, 0).

a4 = 1 |x4〉 |x4〉

a3 = 0 |x3〉 |x3〉

a2 = 1 |x2〉 |x2〉

a1 = 1 |x1〉 |x1〉

a0 = 0 |x0〉 |x0〉

|y〉 |y ⊕ f(x)〉X X X

=⇒ Uf

Figure 3.21: The
circuit for evaluating
the Bernstein-Vazirani
f(x) = a · x for n = 5

with a = (1, 0, 1, 1, 0), as
you immediately verify by
working on computational
states of the form x(j).
The right-hand-side re-
minds us that this should
be considered as a “black
box” (oracle) where the
positions of the control
Qbits in the various
cNOT is unknown.

Let us now observe what happens if we use Hadamards before and after Uf . We do that directly
at the circuit level, for the same example shown in Fig. 3.21. Recall the identity in Eq. (3.24), which
we repeat here for convenience:

HiHjCijHiHj = Cji . (3.73)

This is expressed by the circuit identity in Fig. 3.22.

H H

H X H

≡
X

Figure 3.22: The identity in Eq. (3.73).

Applying this identity repeatedly, we therefore get the circuit shown in Fig. 3.23. Notice how,
starting from the initial state |ψ0〉 = |0 · · · 0〉n ⊗ |y = 1〉, we get directly the value of a in the final
values of the input registers, with a single application of Uf .

One of the ingredients that helps in getting the solution is the following. When the ancilla Qbit
is in the state H|1〉, the application of Uf amounts to encoding the value of f(x), for any function

76

(Lecture Notes by G.E. Santoro) 3.13 The Bernstein-Vazirani problem

H H

H H

H H

H H

H H

H H

Uf =⇒

|0〉 |1〉

|0〉 |0〉

|0〉 |1〉

|0〉 |1〉

|0〉 |0〉

|y = 1〉 |y = 1〉

X

X

X a4 = 1

a3 = 0

a2 = 1

a1 = 1

a0 = 0

Figure 3.23.: The circuit for the Bernstein-Vazirani problem when Hadamards are used before and after Uf .
The value of the unknown a is read directly from the input register at the end of the transformation.

f : {0, 1}n → {0, 1}, into an overall sign:

Uf |x〉n ⊗ (H|1〉) = Uf |x〉n ⊗
1√
2

(|0〉 − |1〉)

=
1√
2
|x〉n ⊗ (|f(x)〉 − |f(x)〉) = (−1)f(x)|x〉n ⊗

1√
2

(|0〉 − |1〉)

= (−1)f(x)|x〉n ⊗ (H|1〉) . (3.74)

This transformation will be also useful in the Grover’s search problem we will later discuss.

The following exercise will guide you in discovering why the special nature of the Bernstein-Vazirani
f(x) leads to the solution we found diagrammatically.

Exercise 3.15. [The Bernstein-Vazirani problem.]

1) Show that, for a single Qbit:

H|x〉1 =
1√
2

(
|0〉1 + (−1)x|1〉1

)
=

1√
2

1∑
k=0

(−1)kx|k〉1 .

2) Generalising to n Qbits, show that:

H⊗n|x〉n = Hn−1 · · ·H0|xn−1〉 · · · |x0〉 =
1

2n/2

2n−1∑
k=0

(−1)k·x|k〉n .

[Hint: (−1)
∑
j kjxj = (−1)k·x in terms of the bitwise- (mod 2) scalar product.]

3) Prove that:
1

2n

2n−1∑
x=0

(−1)a·x+k·x =
1

2n

n−1∏
j=0

(1∑
xj=0

(−1)(aj+kj)xj
)

= δa,k . (3.75)

4) Finally show that:
H⊗(n+1)UfH

⊗(n+1)|0〉n ⊗ |1〉 = |a〉n|1〉 . (3.76)

77

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

Simon’s problem. The problem has to do with a two-to-one function f : {0, 1}n → {0, 1}n−1

which is periodic under bitwise modulo-2 addition, i.e., such that:

f(x⊕ a) = f(x) .

The goal is to find the n-bit integer “period” a. Here QC leads to an exponential speed-up: O(n)

calls are enough, against the O(2n/2) calls needed in CC. Since this is a less interesting version
of Shor’s period-finding algorithm, where the periodicity is with respect to ordinary addition, we
will not discuss it here. If you are interested, see Mermin [1][Sec. 2.5].

i

3.14. Teleportation

Suppose that two parties, A and B, share a Bell state, say |β00〉. Assuming that A has Qbit 1,
while B has Qbit 0, we write:

|β00〉 =
1√
2

(|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0) = C10H1|0〉1 ⊗ |0〉0 . (3.77)

Assume that A also holds a Qbit 2 in the (unknown) state |ψ〉2. The overall state is therefore:

|Ψin〉 =
1√
2
|ψ〉2 ⊗

(
|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0

)
= C10H1|ψ〉2 ⊗ |0〉1 ⊗ |0〉0 . (3.78)

The goal of teleportation. The goal is to device a protocol by which the unknown state
|ψ〉2 = z0|0〉2 + z1|1〉2 of A is transferred to B, as |ψ〉0 = z0|0〉0 + z1|1〉0. How to do that?

i

Here is the protocol to be used. A first applies C21, and then H2 to |Ψin〉. The state is then
transformed as follows:

H2C21|Ψin〉 = H2C21
1√
2

(
z0|0〉2 ⊗

(
|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0

)
+ z1|1〉2 ⊗

(
|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0

))
=

1√
2
H2

(
z0|0〉2 ⊗

(
|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0

)
+ z1|1〉2 ⊗

(
|1〉1 ⊗ |0〉0 + |0〉1 ⊗ |1〉0

))
=

1

2

(
z0

(
|0〉2 + |1〉2

)
⊗
(
|0〉1 ⊗ |0〉0 + |1〉1 ⊗ |1〉0

)
+ z1

(
|0〉2 − |1〉2

)
⊗
(
|1〉1 ⊗ |0〉0 + |0〉1 ⊗ |1〉0

))
=

1

2
|0〉2 ⊗ |0〉1 ⊗

(
z0|0〉0 + z1|1〉0

)
+

1

2
|1〉2 ⊗ |0〉1 ⊗

(
z0|0〉0 − z1|1〉0

)
+

1

2
|0〉2 ⊗ |1〉1 ⊗

(
z0|1〉0 + z1|0〉0

)
+

1

2
|1〉2 ⊗ |1〉1 ⊗

(
z0|1〉0 − z1|0〉0

)
=

1

2
|0〉2 ⊗ |0〉1 ⊗ |ψ〉0 +

1

2
|1〉2 ⊗ |0〉1 ⊗ Z0|ψ〉0

+
1

2
|0〉2 ⊗ |1〉1 ⊗X0|ψ〉0 +

1

2
|1〉2 ⊗ |1〉1 ⊗X0Z0|ψ〉0 . (3.79)

Following that, A measures the two Qbits (2 and 1) in the computational basis. If the result of the
measurement is (00), the state is collapsed to:

H2C21|Ψin〉
A measures (00)
−−−−−−−−−−−−−→ |0〉2 ⊗ |0〉1 ⊗ |ψ〉0 ,

78

(Lecture Notes by G.E. Santoro) 3.14 Teleportation

hence B has directly the state |ψ〉0. Similarly, for the measurement outcome (10):

H2C21|Ψin〉
A measures (10)
−−−−−−−−−−−−−→ |1〉2 ⊗ |0〉1 ⊗ Z0|ψ〉0 ,

hence B has the state Z0|ψ〉0. A communicates the outcome of the measurement, and B can apply Z0

to the state in his possession, reconstructing once again |ψ〉0. For the measurement outcome (01):

H2C21|Ψin〉
A measures (01)
−−−−−−−−−−−−−→ |0〉2 ⊗ |1〉1 ⊗X0|ψ〉0 ,

hence B has the state X0|ψ〉0, and needs to apply X0 to the state to reconstruct |ψ〉0. Finally, for the
measurement outcome (11):

H2C21|Ψin〉
A measures (11)
−−−−−−−−−−−−−→ |1〉2 ⊗ |1〉1 ⊗X0Z0|ψ〉0 ,

hence B needs to apply Z0X0 to the state to reconstruct |ψ〉0. Figure 3.24 illustrates the protocol we
have discussed.

|0〉1 or |1〉1

|0〉2 or |1〉2

|ψ〉0

|ψ〉2

|0〉1

|0〉0

H

H

M

M

X

X

X Z

Figure 3.24: The circuit for the
quantum teleportation protocol
discussed in the text. Assuming
that the two parties are far away,
the control-gates applied in the fi-
nal state of the protocol should be
intended to follow an explicit clas-
sical communication of the mea-
surement outcome from A to B.

Warning: You should notice a few facts.

1) The original state |ψ〉2 has been destroyed, hence this is not a cloning machine, obviously;

2) The price paid for transferring the state was that the original entanglement between Qbit-1
and 0 has been destroyed;

3) Finally, A had to send to B two classical bits of information, the results of the measurements
of Qbits 2 and 1, in order for B to apply the appropriate gates and recover |ψ〉0.

!

Interestingly, if the various Qbits are not really belonging to two separate parties A and B, but are
part of the same quantum hardware, then the teleportation protocol can be implemented in a totally
automatic fashion, as illustrated in Fig. 3.25.

|ψ〉0

|ψ〉2

|0〉1

|0〉0

H

H

X

X

X Z

Figure 3.25: The automated version of the
circuit for the quantum teleportation protocol,
without the measurements.

Finally, since the control-gates by definition do not change the state of the control-Qbits, we can
eventually perform a measurement of Qbit-1 and 2, obtaining exactly the same result as in the original
protocol, where the measurements were performed before the control-gates, in turn activated by B
after being informed by A about the outcome of the measurements. This last possibility is shown in
Fig. 3.26.

79

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

|0〉1 or |1〉1

|0〉2 or |1〉2

|ψ〉0

|ψ〉2

|0〉1

|0〉0

H

H

M

M

X

X

X Z

Figure 3.26: The automated ver-
sion of the circuit for the quan-
tum teleportation protocol, with
the measurements performed at
the very end.

3.15. Hands-on: state preparation, control-U and Toffoli gates

The goal of this section is to let you practice. You will first learn, in Sec. 3.15.1, how to construct
general 2-Qbit states, generalising the Bell’s state construction of Sec. 3.6.

Exponential complexity of quantum state preparation. A warning is appropriate here.
Constructing a desired n-Qbit quantum state is a generally very complex task, of exponential
difficulty, essentially equivalent to representing a general n-Qbit unitary U in terms of single-
Qbit unitaries and cNOTs. Ref. [2][Sec. 3.7.1] shows the 3-Qbit case, if you are interested.

The standard preparation, which is simple and immensely useful, is the democratic superposi-
tion of all computational states, obtained by applying n Hadamards:

|+〉n = H⊗n|0〉n =
1√
2n

2n−1∑
x=0

|x〉n . (3.80)

!

Next, you will learn, in Sec. 3.15.2-3.15.3, how to construct a general control-U gate, and also a
doubly-controlled-NOT (the Toffoli gate) out of standard cNOTs and single-Qbit rotations.

These are the typical instructive-but-boring applications which a teacher would never like to lecture
on: instructive if you do them yourself, boring otherwise.

3.15.1. Representing a general 2-Qbit state

Consider a general 2-Qbit state, which we write as:

|Ψ〉 = z00|00〉+ z01|01〉+ z10|10〉+ z11|11〉
= |0〉1 ⊗ (z00|0〉0 + z01|1〉0)︸ ︷︷ ︸

|ψ′〉0

+|1〉1 ⊗ (z10|0〉0 + z11|1〉0)︸ ︷︷ ︸
|φ′〉0

= |0〉1 ⊗ |ψ′〉0 + |1〉1 ⊗ |φ′〉0 , (3.81)

where we have rewritten |Ψ〉 as an entangled superposition of the two computational states of Qbit-1
with two states of Qbit-0, |ψ′〉0 and |φ′〉0, which are generally not orthogonal.

Exercise 3.16. Show that with a suitable unitary U1 acting on Qbit-1 only, you can always write:

U†1 ⊗ 10|Ψ〉 = a0|0〉1 ⊗ |ψ〉0 + b0|1〉1 ⊗ |φ〉0 (3.82)

where now |ψ〉0 and |φ〉0 are orthogonal, 〈ψ|φ〉0 = 0, and normalised.
Hint: Write a general 2× 2 unitary matrix U†1 on the computational basis {|0〉1, |1〉1} as:

U†1 =

(
u −v∗

v u∗

)
with |u|2 + |v|2 = 1 ,

and show that you can impose orthogonality on the Qbit-0 states by solving a quadratic equation for u/v∗.

80

(Lecture Notes by G.E. Santoro) 3.15 Hands-on: state preparation, control-U and Toffoli gates

Being |ψ〉0 and |φ〉0 now orthogonal and normalised, a unitary transformation V0 acting on Qbit-0
must exist which transforms the standard computational basis {|0〉0, |1〉0} into {|ψ〉0, |φ〉0}.

Exercise 3.17. By applying U1 to both sides of Eq. (3.82), show that we can write:

|Ψ〉 = U1V0C10

(
a0|0〉1 + b0|1〉1

)
⊗ |0〉0 . (3.83)

Now you observe that the state |Ψ〉 is normalised, and all the operators acting are unitaries, hence
the state a0|0〉1 + b0|1〉1 is also normalised, which means that a third rotation W1 must exist, for
Qbit-1, such that:

a0|0〉1 + b0|1〉1 = W1|0〉1 .
Hence, finally:

Representing |Ψ〉 with 1-Qbit unitaries and C10. We have shown that, for a general 2-Qbit
state |Ψ〉, three 1-Qbit unitaries U1, V0 and W1 must exist such that:

|Ψ〉 = U1V0C10W1|00〉 . (3.84)

The corresponding circuit is show in Fig. 3.27. This shows the central role played by C10 in
creating entanglement.

i

|0〉1 W U

|0〉0 X V
|Ψ〉

Figure 3.27: The circuit representing Eq. (3.84), gener-
alising the Bell’s states construction of Fig. 3.9.

3.15.2. Constructing control-unitary operators

Consider two operators A = a · σ̂ and B = b · σ̂, with |a| = |b| = 1: essentially, two spin operators
in directions a and b. As you already know, it is simple to show that:

A2 = B2 = 1 .

This means that not only A and B are Hermitian, but they are also unitary, since A−1 = A† = A,
and B−1 = B† = B. Assuming that b 6= a, you can always define a unit vector m orthogonal to both:

a× b = m sin θ ,

where θ is the angle from a to b, hence a · b = cos θ.

Exercise 3.18. 1) Show that by considering the spin rotation by θ around the axis m:

Um(θ) = e−i
θ
2 m·σ̂ = 1 cos θ2 − i(m · σ̂) sin θ

2 ,

you can “rotate A into B”:
Um(θ)(a · σ̂)U†m(θ) = (b · σ̂) . (3.85)

In particular, taking b = x, this shows that you can rotate any A into a σ̂x.

2) Show that you can similarly “rotate CA
10 into CB

10” by U0 = 11 ⊗
(
Um(θ)

)
0
:

U0C
A
10U

†
0 = CB

10 . (3.86)

For b = x, this shows that we can write U0C
A
10U

†
0 = C10.

81

Quantum gates and elements of quantum computation (Lecture Notes by G.E. Santoro)

A

=

BU0 U†0

Figure 3.28: The circuit representing Eq. (3.86).
When B = X we have the relationship between any
controlled spin operator A = a · σ̂ and the standard
C10.

Consider now CU
10 with a general 1-Qbit U, which we can always write as:

U = eiαei
γ
2 n·σ̂ = eiα

(
1 cos γ2 + i(n · σ̂) sin γ

2

)
.

Exercise 3.19. Show that by taking two vectors a1 and a2 in the plane orthogonal to n, with an
angle γ

2 between a1 and a2, you can write:

U = eiα
(
1 cos γ2 + i(n · σ̂) sin γ

2

)
= eiα(a1 · σ̂)(a2 · σ̂) . (3.87)

[Hint: Use the Pauli identity: (a1 · σ̂)(a2 · σ̂) = (a1 · a2)1 + i(a1 × a2) · σ̂.

Exercise 3.20. Define now a (m1, θ1) to “rotate a1 into x”, and a similar (m2, θ2) which rotates a2

into x. Show that:
U = eiαU†m1

(θ1)σ̂xUm1
(θ1)U†m2

(θ2)σ̂xUm2
(θ2) . (3.88)

Consider now the phase-gate Rz(α) = eiαN1 : as you recall, it is the unitary operator adding a
phase α when the Qbit is in state |1〉. Define as a shorthand Um1

(θ1) = U1 and Um2
(θ2) = U2.

Exercise 3.21. Show that the circuit for CU
10 is that shown in Fig. 3.29.

Summary of control-U. We have shown that a CA
10, when A

2 = 1, can be written in terms of a
one cNOT supplemented by single-Qbit rotations. A general CU

10 needs two cNOTs, supplemented
by single-Qbit rotations and a phase-gate Rz(α).

i

U

=

X XU2 U†2 U1 U†1

Rz(α)
Figure 3.29: The
circuit representing
Eq. (3.88), in terms of
the standard C10.

3.15.3. Constructing the Toffoli gate out of cNOTs

The goal here is to construct the Toffoli gate CX
21,0 in terms of six standard cNOT gates, plus

single-Qbit unitaries.

Consider, as before, two spin operators A = a · σ̂ and B = a · σ̂, with |a| = |b| = 1, such that
A2 = B2 = 1.

Exercise 3.22. Show that:
CB

10C
A
20C

B
10C

A
20 = C(BA)2

21,0 . (3.89)

Hint: Work on the computational basis |x2〉|x1〉|x0〉 and apply the operators on the LHS. For instance:

CA
20|x2〉|x1〉

(
Ax2 |x0〉

)
.

82

(Lecture Notes by G.E. Santoro) 3.15 Hands-on: state preparation, control-U and Toffoli gates

Exercise 3.23. Take now, for instance, b = z and a = 1√
2
(z− y). Verify that:

BA = cos π4 + iσ̂x sin π
4 =⇒ (BA)2 = iσ̂x . (3.90)

Hence, by applying the previous exercise, we see that:

CB
10C

A
20C

B
10C

A
20 = CiX

21,0 .

We still need to get rid of the phase due to the imaginary i, which we can do by using a phase gate
unitary U = Rz(−π2). This has to be done, however, in a controlled fashion: it has to act only when
Qbit-2 is in |1〉2. Since Rz(−π2) already acts non-trivially only on |1〉, we can include a CU

21 which
will apply the right phase only when needed. Hence:

CU
21C

B
10C

A
20C

B
10C

A
20 = CX

21,0 , (3.91)

represented by the circuit in Fig. 3.30. Notice that the seemingly trivial controlled-phase gate, since
U = Rz(−π2) is not a Pauli-unitary like A and B, might require two extra cNOTs and further single-
Qbit rotations to be implemented. Each CB

10 and CA
20, on the other hand, require a single cNOT,

plus single-Qbit unitaries. This brings, in principle, the total count of cNOTs necessary to six, for
each Toffoli gate.

X

=

A B A B

U

Figure 3.30: The circuit representing
Eq. (3.91), expressing the Toffoli gate C21,0

in terms of singly-controlled gates. Here
A = a · σ̂, with a = 1√

2
(z − y), and

B = b · σ̂ = Z are Pauli unitaries (each
requiring a single cNOT), while the phase-
gate U = Rz(−π

2
) is not a Pauli unitary, see

comments in the text.

Controlled-phase gates vs general control-U gates. It might appear that a simple
controlled-phase gate is as complex as a general control-U gate, requiring necessarily two cNOTs.
This is a too swift view. Indeed, controlled-phase gates are much simpler objects, requiring cer-
tainly 2-Qbit interactions, but not provoking Qbit transitions: they can be implemented with
σ̂zj σ̂

z
j′ interactions. Quoting from Mermin’s book [1][pag. 62]:

If quantum computation ever becomes a working technology, it might well be easier to
construct controlled-phase gates as fundamental gates in their own right — pieces of
2-Qbit hardware as basic as cNOT gates.

!

83

4. Grover searching with a quantum
computer

Quantum mechanics helps in searching for a needle in a haystack.
Lov K. Grover, Phys. Rev. Lett. 79, 325 (1997).

Suppose you are given a strange Boolean function which is almost constant, except for a single
integer input value a where it does something different. To be definite, imagine an f : {0, 1}n → {0, 1}
so defined:

Standard: f(x) =

{
1 (TRUE) for x = a

0 (FALSE) for x 6= a
Golf-yard minimum: f(x) =

{
0 for x = a

1 for x 6= a
, (4.1)

with x =
∑n−1
i=0 xj2

j , as usual.

I have given the problem in two equivalent formulations. The first formulation (standard) imagines
a single “satisfying assignment” a which makes a certain condition TRUE (=1), while all other assign-
ments x 6= a lead to a FALSE (=0). The second formulation is more in the framework of “searching
for a minimum in an energy landscape”, with the important caveat that the landscape is totally flat,
except for a single minimum somewhere, a kind of “golf-yard” situation: you get no clue on where that
minimum might be from looking at the “gradient”.

|y〉 |y ⊕ f(x)〉

|x0〉 |x0〉

|x1〉 |x1〉

|x2〉 |x2〉

...
...

|xn−1〉 |xn−1〉

p = 4k + 1 prime

Calculate b =
√
p− x2

IF b is integer: f(x) = 1

ELSE: f(x) = 0

Figure 4.1: The “black box” that outputs f(a) =

1 (TRUE) when a second integer b exists such that
a2 + b2 = p = 4k + 1, with p prime, and f(x) = 0

(FALSE) otherwise.

To illustrate the first formulation, here is a simple arithmetic example presented by Mermin. An
odd integer p which is a sum of two squared positive integers p = a2 + b2 is necessarily of the form
p = 4k + 1. 1. However, not all integers of the form p = 4k + 1 might be expressible as p = a2 + b2:
perfect squares of odd integers, are among them. 2 A fairly elementary theorem of number theory
guarantees that if p = 4k+1 is prime, then there is a unique way of writing it as p = a2+b2. Examples,
with small numbers: 5 = 4 + 1, 13 = 9 + 4, 17 = 16 + 1, 29 = 25 + 4, 37 = 36 + 1, 41 = 25 + 16,
53 = 49 + 4, 61 = 36 + 25, and so on.

1First, a and b cannot be both odd, as otherwise the sum of their squares is even. Next, suppose a = (2l + 1) and
b = 2m. Then p = a2 + b2 = 4(l2 + l +m2) + 1 = 4k + 1.

2For instance, a square of a single odd integer, p = (2k + 1)2, is such that p = 4k(k + 1) + 1.

85

Grover searching with a quantum computer (Lecture Notes by G.E. Santoro)

Now suppose you have a prime p of the form 4k+ 1 which is very very large, say p < 2N2 = 22n+1,
with N = 2n very large. Then, a simple-minded-approach of looking for the a and b such that
p = a2 + b2 would be to loop over all integers x = 1 · · ·N = 2n, and see if b =

√
p− x2 is integer

or not. If so, you are done. As an alternative route, select a random x repeatedly, and “hope for the
best”. Figure 4.1 illustrate a “black-box” routine, already in the format proper for a QC call, which
would restitute the value f(x) according to the strategy described. As already discussed, alternative
name for such a “black-box” is “oracle”: you can invoke it to get answers, but there is no way of
learning “how and why”. Used “classically”, as a classical computer routine, this would imply checking
an exponentially large number ∼ N of integers.

And here I cannot refrain from quoting two paragraphs from Mermin’s book, because his prose is
perfect and should not contaminated by a paraphrase in my broken English.

Mathematically well-informed friends tell me that for this particular example there are ways to
proceed with a classical computer that are much more efficient than random testing, but the quantum
algorithm to be described below enables even mathematical ignoramuses, equipped with a quantum
computer, to do better than random testing by a factor of 1/

√
N . And Grover’s algorithm will provide

this speed-up on arbitrary problems.

Alternatively, the black box could contain Qbits that have been loaded with a body of data — for
example alphabetically ordered names with phone numbers — and one might be looking for the name
that went with a particular number. It is with this kind of application in mind that Grover’s neat trick
has been called searching a database. Using as precious a resource as Qbits, however, merely to store
classical information would be insanely extravagant, given our current or even our currently foreseeable
ability to manufacture Qbits. Finding a unique solution — or one of a small number of solutions, as
described in Section 4.3 — to a tough mathematical puzzle seems a more promising application.

N. David Mermin, Quantum Computer Science, Chapter 4

I now move to explaining how you would use the “black-box” encoding f in a smart way, discovered
by Grover [20].

4.1. The Grover iteration

a4 = 1 |x4〉 |x4〉

a3 = 0 |x3〉 |x3〉

a2 = 1 |x2〉 |x2〉

a1 = 1 |x1〉 |x1〉

a0 = 0 |x0〉 |x0〉

|y = 0〉 |f(x)〉X

=⇒ Uf

Figure 4.2: Left: A “Quantum Circuit”
which would output f(a) = 1 and f(x) = 0

for all other x, here with n = 5 bits and
a = (1, 0, 1, 1, 0). With addition of a X on
the output register (lower line) to the right of
the first X, it becomes a circuit for the second
“incarnation” of the Grover search: finding a
minimum f(a) = 0 in an otherwise totally flat
“energy landscape” f(x) = 1. Needless to say,
a circuit like this is just for illustration: to
design it, I have to know the solution a.

The Bernstein-Vazirani (BV) example could be solved by devising a transformation, with appro-
priate gates, such that the output of the “oracle” would give you directly the a you are searching.
Unfortunately, such an approach does not work here. Imagine that you would be able to “look inside”
the black-box, discovering that it looks like depicted in Fig. 4.2. What would you do with such a
fully-controlled gate? Nothing useful. Needless to say, to “design” such a circuit, you would have to
know the solution beforehand. So, let us abandon the idea of inventing tricks similar to the BV case.

86

(Lecture Notes by G.E. Santoro) 4.1 The Grover iteration

The only useful transformation we can apply is that of working with superpositions of the ancilla
(output) register, more precisely start with H|1〉 instead of |y = 0〉. Indeed, as already discussed in
the context of the Deutsch’s problem, see Eq. (3.74), this would give:

Uf |x〉n ⊗ (H|1〉) =
1√
2

(
Uf |x〉n ⊗ |0〉 −Uf |x〉n ⊗ |1〉

)
=

1√
2

(
|x〉n ⊗ |f(x)〉 − |x〉n ⊗ |f(x)〉

)
= (−1)f(x)|x〉n ⊗ (H|1〉) , (4.2)

as you can readily verify for both formulations of the problem, standard and golf-yard. So, upon
postulating that the ancilla register is set forever in H|1〉 you can completely neglect it and consider
only the restriction V of Uf to the physical register:

V|x〉n = (−1)f(x)|x〉n , (4.3)

a clear unitary operator that encodes the value of the function into a sign multiplying the computa-
tional basis states. One can write an explicit “formal” expression for V as follows:

Standard: V = 1− 2|a〉n〈a| Golf-yard minimum: V = −1 + 2|a〉n〈a| . (4.4)

Grover’s idea was to invent a sort of “kinetic energy” (unitary) operator K which would allow
exploring appropriately the Hilbert space of the problem. For that, he introduced the following:

Standard: K = 2|+〉n〈+| − 1 Golf-yard minimum: K = 1− 2|+〉n〈+| . (4.5)

Notice that the two minus signs cancel, and the product KV is identical in the two cases.

Universality of K. It is worth stressing, once again, that you should regardV as an “unknown”
unitary depending on the projector operator P̂a = |a〉〈a| on an “unknown” state |a〉. On the
contrary, K is totally universal: it does not know anything about the unknown state |a〉.

!

The initial state is |ψ0〉 = |+〉n, which is very simple to prepare: |ψ0〉 = |+〉n = H⊗n|0〉n.

Next, let us see what we get by “applying the oracle” V. We do that calculation in the “golf-yard”
case. Recalling that, no matter what |a〉n is, we have that 〈a|+〉n = 1√

N
, we get:

V|ψ0〉 =
(
− 1 + 2|a〉n〈a|

)
|+〉n =

2√
N
|a〉n − |+〉n .

Now we apply K and we get:

|ψ1〉n = KV|ψ0〉 =
(
1− 2|+〉n〈+|

)(2√
N
|a〉n − |+〉n

)
=

2√
N
|a〉n +

(
1− 4

N

)
|+〉n .

As you see, we keep obtaining combinations of |a〉n and |+〉n, which are however not orthogonal, since
〈a|+〉n = 1√

N
. The goal would be to apply KV repeatedly:

|ψq〉n = KV|ψq−1〉n = (KV)q|ψ0〉n (Grover algorithm) . (4.6)

To make the algebra simpler, we better work in a basis of orthogonal states {|a〉n, |a⊥〉n}, where the
unitary matrix KV must look like a 2 × 2 rotation matrix, thus making further applications of KV
completely straightforward. To get |a⊥〉n we use a Gram-Schmidt orthogonalisation to subtract to
|+〉n its component along |a〉n:

|a⊥〉n = α
(
|+〉n − |a〉n〈a|+〉n

)
,

87

Grover searching with a quantum computer (Lecture Notes by G.E. Santoro)

with α = ±
√

N
N−1 to normalise the state. We get: 3

|a⊥〉n =
1√
N − 1

|a〉n −
√

N

N − 1
|+〉n =⇒ |+〉n =

1√
N
|a〉n −

√
N − 1

N
|a⊥〉n . (4.7)

Very simple algebra is needed to show that the matrix representing KV in the basis {|a〉n, |a⊥〉n} is
a 2× 2 orthogonal matrix: 4

KV =⇒ RθR =

 1− 2
N −2

√
N−1
N

2
√
N−1
N 1− 2

N

 , (4.8)

where the rotation angle is

θR = arcsin 2

√
N − 1

N
≈ 2√

N
. (4.9)

The approximation in the previous equation is entirely appropriate in the limit of a very large N =

2n.

Exercise 4.1. Verify the algebra behind Eq. (4.8), by applying KV to |a〉n and to |a⊥〉n.

|a〉

|a⊥〉

θ0
θR

θR

· · ·

|ψ0〉 = |+〉
|ψ1〉

|ψ2〉

sin
(
π
2 − θ0

)
=
√

N−1
N

sin θR = 2
√
N−1
N

Figure 4.3: The Grover iteration in the plane
|a〉 − |a⊥〉 (both unknown, beforehand) where the
iterations induced by the unitary operator KV in-
duce rotations. The starting point |ψ0〉 = |+〉n
is nearly orthogonal to the wanted |a〉. Each ap-
plication of KV rotates the vector by an angle
θR ≈ 2/

√
N . Hence of order (π/4)

√
N applica-

tions of KV are needed to rotate the initial vector
by nearly π

2
.

The algorithm in Eq. (4.6), consisting of repeated applications ofKV to the initial state |ψ0〉 = |+〉n
is illustrated in Fig. 4.3. The initial state, as per Eq. (4.7), forms an angle θ0 with the −|a⊥〉n direction,
where:

sin
(π

2
− θ0

)
=

√
N − 1

N
=⇒ θ0 = arcsin

1√
N
≈ 1√

N
. (4.10)

The number NGrover of applications of the operator KV to the initial state that one needs, in order to
come as close as possible to a rotation by π

2 − θ0, is:

NGrover = nint
(π

2 − θ0

θR

)
≈ nint

(π
4

√
N
)
. (4.11)

3We select α = −
√

N
N−1

so that the initial state |+〉n is nearly opposite to |a⊥〉n only for the purpose of drawing
Fig. 4.3.

4Show that:

KV|a〉n =
(
1−

2

N

)
|a〉n + 2

√
N − 1

N
|a⊥〉n

KV|a⊥〉n = −2

√
N − 1

N
|a〉n +

(
1−

2

N

)
|a⊥〉n .

88

(Lecture Notes by G.E. Santoro) 4.2 How to construct the kinetic term K

Here, once again, the final approximation applies in the limit of a large N , where θ0 ≈ 1√
N

can be
neglected and θR ≈ 2√

N
. Remarkably: O(

√
N) applications of KV — “call of the oracle” V, followed

by the universal kinetic term K — are needed to arrive very close to the wanted unknown state |a〉n.

Very close? Notice that, in general, |ψq〉n with q = NGrover does not coincide precisely with
|a〉n. However, by measuring the final state on the computational basis, the probability of getting
|a〉n is overwhelmingly higher than that of any other computational state. As we will see later
also for the Shor’s algorithm, Quantum Computation algorithms are often probabilistic.

i

Exercise 4.2. Consider the Grover iteration for n = 2 (N = 4). Show that the initial angle with
−|a⊥〉 is θ0 = π/6 and that a single application of KV is enough to reach |a〉 exactly.

4.2. How to construct the kinetic term K

1− 2|0〉n〈0| =

−Z

=

X Z X

X X

X X

X X

X X

X X

X X

Figure 4.4: The circuit for 1 − 2|0〉n〈0| when n =

7. When the controls are all in |0〉, the lower −Z0

changes the sign of state |0〉0; otherwise, it acts like
an identity. The form on the right, with addition
of X gates to the left and right of each control bit
transforms the controls to the standard case (action
when the control is |1〉), and Z0 into −Z0 in the lower
line (QBit-0), since XZX = −Z.

Recall that K = 1 − 2|+〉n〈+| and that an Hadamard rotates Z to X (HZH = X, and viceversa,
since H2 = 1) hence H|0〉 = |+〉. This implies that:

K = 1− 2|+〉n〈+| = H⊗n
(
1− 2|0〉n〈0|

)
H⊗n . (4.12)

So, it is enough the construct a circuit for 1− 2|0〉n〈0 — incidentally, this coincides with a circuit for
−V when a = 0 — see also Fig. 4.2 — which is as general a number as any other a if you do not
assume to know it — to construct K.

To construct 1−2|0〉n〈0| you would need the fully-controlled-Z0 gate shown in the middle-section of
the right part of Fig. (4.4). Now, fully-controlled gates are bad, because they are difficult to manufac-
ture in any hardware. What people know how to fabricate is, usually, single-Qbit gates, control-NOT
and doubly-controlled-NOT (Toffoli gates). With the use of Hadamards, you can therefore construct,
for instance, doubly-controlled-Z gates. So the idea now is how to manage, at the cost of adding extra
gates, the fully-controlled-Z.

Step 1) The first step is explained in Fig. 4.5: with the addition of a single ancillary Qbit (top line),
and paying 4 times more gates, we reduce ourselves to considering nearly half-controlled-gates. The
circuit equality in Fig. 4.5 can be checked on the computational basis. For that purpose, observe that
if any of the control Qbits on the left (QBits 1 to 6 in Fig. 4.5) is in state |0〉, then, on the right, either
the Z gate is transformed into an identity (for control-QBit 1 to 3) or the X gate is transformed into
an identity (for control-QBit 4 to 6). In both cases, the remaining gates, even if present, act twice,
hence they are equivalent to an identity, as you can easily verify. On the contray, if all the control

89

Grover searching with a quantum computer (Lecture Notes by G.E. Santoro)

QBits (1 to 6) are in state |1〉, then all the Z and X are present, but the presence of controls on
the ancilla (QBit-7) intertwined with X is such that the lower Z gate acts only once, as explained in
Fig. 4.6, hence reproducing the correct behaviour of the left circuit.

0

1

2

3

4

5

6

7

Z

=

Z Z

X X

Figure 4.5: A fully-controlled-Z is transformed, by addition
of a single ancillary Qbit (Qbit-7, top line), into a circuit with
4 times more gates but with (nearly) half control-Qbits. To
check the equality of the two circuits, it is enough to verify
it on the computational basis states. For this, observe that
if any of the control Qbits on the left (QBits 1 to 6) is in
state |0〉, then, on the right, either the Z gate is transformed
into an identity (for control-QBit 1 to 3) or the X gate is
transformed into an identity (for control-QBit 4 to 6). In both
cases, the remaining gates, even if present, act twice, hence
they are equivalent to an identity. If all the control QBits (1
to 6) are in state |1〉, then all the Z and X are present, but the
presence of controls on the ancilla (QBit-7) intertwined with
X is such that the lower Z gate acts only once, see Fig. 4.6,
reproducing the correct behaviour of the left circuit. The part
of the circuit highlighted by the dotted rectangle is further
analised in Fig. 4.7 below.

Z

X

Z

X

=

Z

Figure 4.6: A simple identity useful in the analysis of Fig. 4.5.
The two X gates on the top line always leave the initial compu-
tational state of the line unchanged. If the initial state of the top
line is |0〉, then the first control-Z does not act, while the second
acts (because of the X on its immediate left flipping the QBit to
|1〉). Viceversa, if the initial state of the top line is |1〉, then the
first control-Z acts, while the second doesn’t.

Step 2) Next, consider each of the nearly half-controlled Z or X gates present in Fig. 4.5, for instance
the half-controlled Z gates highlighted by the dashed rectangle. There are lines that do nothing, 5

and can be used as ancillary Qbits to set-up further transformations, as long as their computational
state is unchanged.

0

1

2

3

4

5

6

7

Z

=

Z

X

X

X

X

X

Z

X

X

X

X

X

Figure 4.7: A
partially-controlled
Z, with enough free
Qbit lines (playing
the role of ancillas)
can be transformed,
by adding extra
gates, into a circuit
which uses doubly-
controlled Z or X.
A similar trick can
be used for partially-
controlled X gates,
since X = HZH.

Figure 4.7 indeed shows that, with a sufficient number of “lines not involved in controls”, and with
a further increase in the number of gates, one can work with at-most doubly-controlled gates.
5The idea is to have enough of them (≥ m − 3, if m is the total number of the other lines) so as to set-up further
transformations, as explained in Fig. 4.7.

90

(Lecture Notes by G.E. Santoro) 4.3 Generalisation to the case of several solutions

Verifying the circuit identity shown in Fig. 4.7 is boring but straightforward. Indeed, observe that
if any of the control Qbits on the left is in state |0〉, then two of doubly-controlled gates involving
that Qbit are transformed into identities, while the remaining doubly-controlled gates appear squared,
hence produce an overall identity. 6 If, on the other hand, all the control QBits are in state |1〉, then
all the gates are present, and the circuit can be rewritten as shown in Fig. 4.8.

0

1

2

3

4

5

6

7

Z

X

X

X

X

X

Z

X

X

X

X

X

Figure 4.8: The circuit on the right
of Fig. 4.7 when all control-Qbits 1,
2, 3, 7 are in state |1〉, leaving all the
gates and remaining controls on the
free lines 4, 5, 6.

The crucial identity to be used is now shown in Fig. 4.9. By using this, you transform the circuit
in Fig. 4.8 into one that, by further using the identity in Fig. 4.6, is totally equivalent to the action
of a single Z gate on the lower line.

X

X

X

X

X

=

X

X

X

X

X

X

=

X

X

Figure 4.9: Two simple identities useful in the analysis of
Fig. 4.8. The top identity, used repeatedly twice, produces
the lower identity, which in the end simplifies the circuit in
Fig. 4.8 to something which, using the identity in Fig. 4.6
is totally equivalent to the action of a single Z gate on the
lower line.

Exercise 4.3. Verify the circuit identities shown in Figs. 4.4-4.9.

4.3. Generalisation to the case of several solutions

The algorithm generalises easily to the case where M > 1 solutions exist:

Golf-yard minimum: f(x) =

{
0 for x = a(1), · · · , a(M)

1 otherwise
, (4.13)

The idea is to substitute the role of |a〉n in the previous algorithm, with the symmetric combination
of the searched states:

|a〉n −→ |ψsym〉n =
1√
M

M∑
m=1

|a(m)〉n . (4.14)

6Observe that for the square of the Toffoli gate we have C2
21,0 = 1, and similarly for doubly-controlled Z gates.

91

Grover searching with a quantum computer (Lecture Notes by G.E. Santoro)

Exercise 4.4. Verify how M enters in the Grover algorithm. To do that, calculate the overlap
〈ψsym|+〉n, and the orthogonal combination |ψ⊥sym〉n. The outcome should be that the number of
iterations decreases as

√
M .

Unknown M . Notice that if the number of solutions M is unknown, the optimal number
of applications of the algorithm is not completely determined. For strategies to mitigate this
drawback, read Sec. 4.4 in Mermin’s book.

!

4.4. Connection to p-spin models and to QAOA

Consider a (classical) Ising model with Hamiltonian:

Ĥ(2)
z = −nJ(m̂2

z − 1) with m̂z =
1

n

n∑
j=1

σ̂zj .

The classical ground states, with energy zero, would be associated to two states, with all spins up
|↑ · · · ↑〉n = |0 · · · 0〉n, or down |↓ · · · ↓〉n = |1 · · · 1〉n. All other states, with intermediate magnetisation
−1 < mz < 1, have a positive energy, and are degenerate, up to the largest-energy states, with mz = 0

and energy E = nJ , which are massively degenerate:
(
n
n/2

)
. Upon expanding the square of the average

magnetisation m̂z, one would obtain:

Ĥ(2)
z = −2J

n

∑
j1<j2

σ̂zj1 σ̂
z
j2 + (n− 1)J ,

hence an all-to-all ferromagnetic interaction.

A generalisation of this model is a p-spin all-to-all Ising ferromagnet, with Hamiltonian:

Ĥ(p)
z = −nJ(m̂p

z − 1) .

Observe that, for odd p = 2k + 1, the classical ground state |↑ · · · ↑〉n = |0 · · · 0〉n would be non-
degenerate. 7

The Grover limit. Observe also that, in the limit p = 2k + 1 → ∞ — since |x|2k+1 → 0 for
|x| < 1 — all other states different from |h1 · · ·hn〉 end-up being degenerate, with energy E = nJ .
Hence, setting J = 1/n, we get precisely the Grover limit:

V = lim
k→∞

e−iπĤ
(2k+1)
z . (4.16)

i

An interesting branch of the story has to do with alternative techniques for constructing quantum
states by repeatedly applying unitaries to a simple initial state. One such technique is known as
Quantum Approximate Optimization Algorithm (QAOA) [21]. Its connection with Quantum Annealing
(QA), alias Adiabatic Quantum Computation (AQC), has been recently studied in our group at
7Interestingly, any arbitrary spin-configuration could be promoted to be the unique classical ground state of such a
model. It is enough to re-define the Hamiltonian, for any wanted target ground state |h1 · · ·hn〉 with hj = ±1, as
follows:

Ĥ
(p)
z = −nJ

((1

n

n∑
j=1

hj σ̂
z
j

)p
− 1

)
. (4.15)

92

(Lecture Notes by G.E. Santoro) 4.4 Connection to p-spin models and to QAOA

SISSA [22]. In these approaches, the kinetic energy term typically takes a much simpler form: a
simple transverse field term, acting independently on each Qbit. The unitary that one would apply is
therefore of the form:

e−iγĤx with Ĥx =

n∑
j=1

σ̂xj .

In QAOA one writes an Ansatz for the states, written iteratively as:

|ψm〉 = e−iγ
x
mĤxe−iγ

z
mĤz |ψm−1〉 with |ψ0〉 = |+〉n . (4.17)

The Ansatz |ψP(γ)〉, assuming we apply the algorithm from m = 1 to m = P, depends on 2P

parameters
γ = (γz1 , · · · , γzP, γx1 , · · · , γxP) ,

and reads, explicitly, as follows:

|ψP(γ)〉 = e−iγ
x
PĤxe−iγ

z
PĤz · · · e−iγ

x
2 Ĥxe−iγ

z
2 Ĥze−iγ

x
1 Ĥxe−iγ

z
1 Ĥz |+〉n . (4.18)

In principle, one should optimise the choice of the parameters, for instance by a classical minimisation
algorithm: the variational principle of Quantum Mechanics is the basic driving principle behind such
a choice.

Ref. [23] has studied the application of QAOA to the Grover problem. Apparently, taking γzp = π

and γxp = π/n gives the optimal QAOA Ansatz, and P, the number of iterations of the algorithm,
would scale in a near-optimal fashion, as P ∼ π

2
√

2

√
N . See also Ref. [24] for an application of QAOA

to the problem of a fully-connected p-spin Ising ferromagnet.

93

5. Quantum Fourier Transform

I present here the Quantum Fourier Transform algorithm introduced by P. Shor in 1994, see Ref. [9]
for a longer account. The presentation is largely based on the book by Mermin [1], with a few
applications, notably to the phase estimation protocol, Sec. 5.4, and to eigenvalue determination,
Sec. 5.5, for which I have consulted Ref. [2].

Let us recall the Discrete Fourier Transform (DFT), also known to you from tight-binding problems
with periodic boundary conditions in many condensed matter courses.

Discrete Fourier Transform. Given an array of N complex numbers uj , with j = 0 · · ·N − 1

— hence an element in CN — we define its DFT as the following array of CN :

ũk =
1√
N

N−1∑
j=0

e−2πikj/Nuj with k = 0 · · ·N − 1 . (5.1)

i

If N = NHilbert = 2n, as appropriate for the Hilbert space dimension for n Qbits, we will redefine
j → x = 0 · · · 2n − 1 so as to adhere to the standard state representation used so far whereby we
identify n-bits binary strings x = (xn−1, · · · , x0) ∈ {0, 1}n with their corresponding integer:

x←→ x =

n−1∑
j=0

xj2
j .

We will therefore rewrite the DFT and its inverse for N = 2n as:
ũk =

1√
2n

2n−1∑
x=0

e−2πikx/2nux with k = 0 · · · 2n − 1

ux =
1√
2n

2n−1∑
k=0

e2πikx/2n ũk with x = 0 · · · 2n − 1

. (5.2)

Fast Fourier Transform (FFT). In a simple minded approach, the DFT would seem to require
O(N2) = O(22n) operations. But a fantastic algorithm, the Fast Fourier Transform, was (re)-
discovered in 1965 by Cooley and Tukey. a FFT requires O(N logN) = O(n2n) operations, and
has been indicated as one of the Top 10 Algorithms of the 20th century by IEEE, with immensely
useful applications in many fields. To mention one, mp3 compression of music would not be
possible without FFT: recall that a standard audio-CD uses a digital sampling rate of 44 kHz,
and a 16-bit resolution. With a mere N = 216 = 65536 you would appreciate the enormous
difference between O(N2) and O(N logN). For a description of the crucial idea behind FFT, see
Numerical Recipes’ book.
aApparently, Gauss already used it in 1805 in some unpublished astronomical work. Danielson & Lanczos, in

1942, also introduced a form of FFT. And many others over the decades.

i

95

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Now we move to our usual QC setting in which we consider nQbits and the computation basis |x〉n =

|xn−1〉 · · · |x0〉. We will need some dummy-labelled computational basis states — in no way different
from the |x〉n — which we will denote by |k〉n = |kn−1〉 · · · |k0〉, where as usual k =

∑n−1
j=0 kj2

j ←→
k = (kn−1, · · · , k0) ∈ {0, 1}n.

Quantum Fourier Transform (QFT). We define the Quantum Fourier Transform as:

UQFT|k〉n =
1√
2n

2n−1∑
x=0

e2πikx/2n |x〉n , (5.3)

where, we stress, |k〉n = |kn−1〉 · · · |k0〉 represent standard computational basis states. We will
soon show that UQFT is a unitary operator in the n-Qbit Hilbert space. The great discovery by
P. Shor [9] is that one can execute it on a QC with O(n2) quantum gates.

i

Before entering into details, let us remark a very close connection with DFT. Suppose that you
consider a superposition state |ψũ〉:

|ψũ〉n =
2n−1∑
k=0

ũk|k〉n , (5.4)

and you apply UQFT to it. You get:

UQFT|ψũ〉n =

2n−1∑
k=0

ũkUQFT|k〉n

=

2n−1∑
k=0

ũk
1√
2n

2n−1∑
x=0

e2πikx/2n |x〉n =

2n−1∑
x=0

(
1√
2n

2n−1∑
k=0

ũke2πikx/2n
)
|x〉n

=

2n−1∑
x=0

ux|x〉n
def
= |ψu〉n (5.5)

where the coefficients are given by ux, the inverse-DFT of ũk.

Warning: The analogy with our physicists way of picturing the back-and-forth switch from “real”
to “momentum” space should not be pushed too far, as Mermin correctly warns its physicist reader.
As he puts it: “The number x is the integer represented by the state |x〉n; it is not the position
of anything. Changing x to x + 1 induces an arithmetically natural but physical quite unnatural
transformation on the computational basis-states [...]. a It bears no resemblance to anything that
could be associated with a spatial translation in the physical space of Qbits. Granted all that, still,
the analogy will prove useful in the following, as you will see.
aNotice that indeed |7〉5 = |00111〉 while |8〉5 = |01000〉, involving a quite non-local flips of “spins” in the

computational basis.

!

One of the goals of this chapter is to show that there is a Quantum Algorithm, due to Shor, for
executing UQFT on a QC with O(n2) quantum gates, compared to the O(n2n) operations of FFT.
Be aware, however, that executing efficiently UQFT on a QC does not mean that we can use a QC to
calculate the FFT ũk of a signal ux — or viceversa — in O(n2) operations! Recall that, as discussed
several times, a state |ψu〉 is an abstract object, a kind of “black box” form the practical viewpoint:
you are not allowed to learn all its coefficients ux. When you perform a measurement on it, QM,
with von Neumann, teaches us that you provoke a collapse of the state into one of its components
|x〉n, with a probability |ux|2. So, indeed you do not “learn” the inverse-DFT ux of the input state,

96

but rather a random single-component piece of it. So, QFT is not a replacement for FFT in practical
applications. But, there are cases in which a smart use of QFT within a QC framework might make
great use of superposition and interference, with an incredible speedup with respect to anything a
classical computer could do.

Relationship with Hadamards. I also want to remark the connection of QFT with the Hadamard
transformation. For n = 1 Qbit, the two coincide:

H|k〉 =
1√
2

(|0〉+ (−1)k|1〉) =
1√
2

1∑
x=0

eiπxk|x〉 . (5.6)

For n-Qbits, the two are very different. The n-Qbit Hadamard is a tensor product of uncorrelated
single-Qbit unitaries:

H⊗n|k〉n =
1√
2n

1∑
xn−1=0

· · ·
1∑

x0=0

eiπ
∑
j xjkj |xn−1〉 · · · |x0〉 =

1√
2n

2n−1∑
x=0

eiπx·k|x〉n

=
1√
2n

(
|0〉n−1 + eπikn−1 |1〉n−1

)
⊗ · · · ⊗

(
|0〉0 + eπik0 |1〉0

)
, (5.7)

where eiπ
∑
j xjkj = eiπx·k, the bitwise (mod 2) product of two integers we have encountered before in

the Bernstein-Vazirani problem. On the contrary, UQFT|k〉n is a more complex 1 superposition of the
various Qbits which, as we shall soon see, can be remarkably decomposed into 1- and 2-Qbit unitaries.

A closer look at the QFT state. Consider again our expression for the QFT state:

UQFT|k〉n =
1√
2n

2n−1∑
x=0

e2πikx/2n |x〉n =
1√
2n

2n−1∑
x=0

e2πikx/2n |xn−1〉 · · · |x0〉

=
1√
2n

1∑
xn−1=0

· · ·
1∑

x0=0

e2πik(x0/2
n+x1/2

n−1+···xn−1/2)|xn−1〉 · · · |x0〉

=
1√
2n

(1∑
xn−1=0

e2πikxn−1/2|xn−1〉
)
⊗ · · · ⊗

(1∑
x0=0

e2πikx0/2
n

|x0〉
)

=
1√
2n

(
|0〉n−1 + eπik|1〉n−1

)
⊗ · · · ⊗

(
|0〉0 + eπik/2

n−1

|1〉0
)

=
1√
2n

(
|0〉n−1 + eπik0 |1〉n−1

)
⊗ · · · ⊗

(
|0〉0 + eπi(kn−1+···+ 1

2n−2 k1+ 1

2n−1 k0)|1〉0
)
, (5.8)

where, in the last step, we used k = 2n−1kn−1 + · · ·+ 2k1 + k0 and dropped multiples of 2πi.

Faster oscillations and more-significant bits. The most significant bits in a binary bit
string are those to the left. Observe that here the most significant Qbit, the (n− 1)-th, oscillates
the most as k increases, changing sign for k odd/even, since it depends on the least significant bit
k0 of k. On the contrary, the least significant Qbit-0 has a phase that does only a “single turn”
of the complex unit circle as k grows from k = 0 towards 2n − 1.

i

1Technically, diagonal Qbit interactions, hence controlled-phase gates, are involved. In principle, these controlled-
phase gates could be realised without employing cNOTs, the basic entanglement creators, but this depends on the
hardware implementation.

97

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Interactions and entanglement. By looking at the form of the state in Eq. (5.8), you
might say that this is still a product state. a True, but this is so only when UQFT is applied to a
computational basis state |k〉n. More generally, the controlled-phase gates present in UQFT are due
to interactions between the qbits and do create entanglement when UQFT is applied on more general
product states, made of superpositions of computational states. Unlike the simple H⊗n|k〉n,
where the phase of each single jth Qbit is governed only by the value of the corresponding kj ,
here diagonal interactions bring in phase factors, in each Qbit, which depend on all the kj values,
in principle.
aI must thank Pietro Torta for raising this issue.

!

Exercise 5.1. Show that if Cθ
10 is a phase-controlled gate, then the state Cθ

10H1|x1〉 ⊗ |x0〉 is a
product state, while Cθ

10H1|x1〉 ⊗ |ψ0〉, with |ψ0〉 = z0|0〉+ z1|1〉, is entangled.

Fourier basis. You might regards the state

|ψ̃k〉n
def
= UQFT|k〉n =

1√
2n

2n−1∑
x=0

e2πikx/2n |x〉n (5.9)

as the Fourier basis state associated to “k”, as long as you refrain from thinking that the |k〉n on the
left-hand-site (LHS) are any different from dummy-labelled configurational states, conveniently
denoted with k. In some sense, still, k plays the role of “momentum” in the superposition on the
RHS, so that

|ψ̃k=0〉n = UQFT|0〉n =
1√
2n

2n−1∑
x=0

|x〉n ≡ H⊗n|0〉n

is indeed the “maximally delocalized” state in the computational basis. That Eq.(5.9) provides a
legitimate change of orthogonal basis follows from the fact, which we will show in several ways,
that UQFT is unitary.

i

Exercise 5.2. Verify that the Fourier-basis states in Eq. (5.9) form indeed an orthonormal basis set:

〈ψ̃k′ |ψ̃k〉n = δk′k (5.10)

From this, you would immediately conclude that UQFT is unitary. Why?
Hint: Use that:

1

2n

2n−1∑
x=0

e2πikx/2n = δk,0 .

5.1. The Quantum Fourier Transform circuit

Our goal will be to express UQFT in a way that is independent of the basis used, and expressed
in terms of the usual gates: in particular, as we shall see, Hadamard single-Qbits, and control-phase
two-Qbit gates.

To achieve that, it is useful to introduce the following unitary diagonal operator Z on the compu-
tation basis |x〉n:

Z|x〉n = e2πix/2n |x〉n , (5.11)

98

(Lecture Notes by G.E. Santoro) 5.1 The Quantum Fourier Transform circuit

which attaches to each state |x〉n the corresponding 2n-root of unity in complex plane e2πix/2n . The
matrix representation for Z on the computational basis is obviously diag(e2πix/2n). Z coincides, for
n = 1, with the Pauli-Z operator, hence the name. Clearly, for any integer k we can easily define Zk:

Zk|x〉n = e2πikx/2n |x〉n , (5.12)

with Z2n = Z0 = 1. 2 Now observe that:

ZkH⊗n|0〉n = Zk
1√
2n

2n−1∑
x=0

|x〉n =
1√
2n

2n−1∑
x=0

e2πikx/2n |x〉n
def
= UQFT|k〉n , (5.13)

which shows in one-shot that UQFT is unitary, since Z and H⊗n are so.

The goal is now to represent the k-dependent operator ZkH⊗n in terms of a circuit with k-
independent gates acting on the computational basis, in such a way that we can get an operator
identity. An important identity which we will use is the following.

The projector on state |1〉.
If (N1)j = 1

2 (1− Z)j is the projector on the state |1〉 of Qbit-j, then

(N1)j |xj〉 = xj |xj〉 with xj = 0, 1 =⇒ eiαxj |xj〉 = eiα(N1)j |xj〉 . (5.14)

i

Following Mermin, let us consider the n = 4-Qbit case, for clarity. Here |x〉4 = |x3〉|x2〉|x1〉|x0〉 and
x = 8x3 + 4x2 + 2x1 + x0, with xj = 0, 1. From the fact that Z|x〉4 = e2πix/24 |x〉4 we deduce that:

Z|x〉4 = e
πi
8

(
8(N1)3+4(N1)2+2(N1)1+(N1)0

)
|x〉4 , (5.15)

which can now be regarded as an operator identity for Z, since it holds for all computational basis
states |x〉4. Take now the usual binary expression for k = 8k3 + 4k2 + 2k1 + k0, and calculate:

Zk = e
πi
8

(
8k3+4k2+2k1+k0

)(
8(N1)3+4(N1)2+2(N1)1+(N1)0

)
. (5.16)

Since e2πip(N1)j = 1j for any integer p, it follows that all the terms appearing in the last expression
for Zk which happen to involve multiples of 2πi can be safely dropped. Keeping only the non-trivial
terms we get:

Zk = eπi
(
k0(N1)3+(k1+ 1

2k0)(N1)2+(k2+ 1
2k1+ 1

4k0)(N1)1+(k3+ 1
2k2+ 1

4k1+ 1
8k0)(N1)0

)
, (5.17)

where we highlighted in blue the terms with integer coefficients, which will soon play a particular role.

Next we need to consider ZkH⊗n|0〉n where n = 4 copies of H sit to the right of Zk. Notice that,
for a single Qbit

eπikN1H|0〉 = H|k〉 , (5.18)

an equality which is trivial for k = 0 and simple for k = 1. 3 This means that we can transfer the
coefficients k into the states to the right of H, while N1 disappears from the left of H. Consider now
the blue terms with integer coefficients in the last expression for Zk. When their action is considered,
using Eq. (5.18) for each Qbit, we get:

eπi
(
k0(N1)3+k1(N1)2+k2(N1)1+k3(N1)0

)
H3H2H1H0|0〉3|0〉2|0〉1|0〉0 =

= H3H2H1H0|k0〉3|k1〉2|k2〉1|k3〉0 , (5.19)
2Incidentally, one can also define Z−k = (Zk)∗ = (Zk)†, so that Z−kZk = 1 and, more generally, Zk1Zk2 = Zk1+k2 .
3Indeed:

eπiN1H|0〉 = eπiN1
1
√

2
(|0〉+ |1〉) =

1
√

2
(|0〉 − |1〉) = H|1〉 .

99

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

where we explicitly indicated the standard ordering of the computational basis — from right to left
upon increasing the Qbit-index — to remark that the way the various kj appear in the states is just
reversed: k0 goes into |·〉3, k1 into |·〉2, k2 into |·〉1, k3 into |·〉0. No mistery! The operators that enforce
this fact are indeed (N1)3 which multiplies k0, (N1)2 which multiplies k1, (N1)1 which multiplies k2,
etc. More generally, the integer coefficient terms will always have the structure kn−1−j(N1)j . If you
revisit Eq. (5.8) you will see the connection.

We are not done yet, as we still have to consider the terms with powers of 2 in the denominator.
Collecting the expressions we have so far we get:

ZkH⊗4|0〉4 = eπi
(

1
2k0(N1)2+(1

2k1+ 1
4k0)(N1)1+(1

2k2+ 1
4k1+ 1

8k0)(N1)0

)
H3H2H1H0|k0〉3|k1〉2|k2〉1|k3〉0 .

Now, the Hj′ commute with the (N1)j for j′ 6= j, hence we can move the various (N1)j so that they
appear immediately to the left of the corresponding Hj . Omitting the colours, we have:

UQFT|k〉4 = ZkH⊗4|0〉4
= H3eπi

1
2k0(N1)2H2eπi(

1
2k1+ 1

4k0)(N1)1H1eπi(
1
2k2+ 1

4k1+ 1
8k0)(N1)0H0|k0〉3|k1〉2|k2〉1|k3〉0 .(5.20)

Observe now that |k0〉3 is eigenstate of (N1)3 with eigenvalue k0 = 0, 1, and k0 appears in the
exponentials safely to the right of H3, which would ruin our trick. Hence, we can substitute k0 → (N1)3

anywhere in the exponentials:
eik0A|k0〉3 = ei(N1)3A|k0〉3 , (5.21)

where A is an arbitrary operator. The same trick applies to k1 → (N1)2, and k2 → (N1)1. As a result
of that, the explicit dependence on the kj in the exponentials is now transformed into a dependence
on the operators (N1)3−j . To simplify our writing, we define the following phase-control operators,
symmetric under exchange j ↔ j′:

Vjj′ = eπi(N1)j(N1)j′/2
|j−j′|

= Vj′j (5.22)

and finally rewrite Eq. (5.20) (adding unnecessary parentheses) as:

ZkH⊗4|0〉4 = UQFT|k〉4 = UQFT|k3〉3|k2〉2|k1〉1|k0〉0 =

= H3(V32H2)(V31V21H1)(V30V20V10H0)|k0〉3|k1〉2|k2〉1|k3〉0 .

The final touch is obtained by defining the bit-reversal operator P which performs the permutation
3210→ 0123:

P|k3〉3|k2〉2|k1〉1|k0〉0 = |k0〉3|k1〉2|k2〉1|k3〉0 , (5.23)

where P2 = 1. P is an obvious unitary (permutation-type) operator, which, when appearing to the
right of all the Hj and Vjj′ takes due care of the reverse ordering of the labels in the states. 4

Hence, finally, since the equality holds for any computational basis state |k〉, the states can be
omitted altogether, and we can write our circuit for the UQFT operator:

The QFT circuit. For the n = 4 case we arrived at:

UQFT = H3(V32H2)(V31V21H1)(V30V20V10H0) P . (5.24)

which generalised in a rather obvious way to larger n. Notice that the number of 1- and 2-Qbit
gates grows as n2.

i

4Mermin suggests that the permutation P can be constructed out of cNOT gates and one additional Qbit, initially in
the state |0〉. Try. The alternative would be to write P into a number of two-bit swap gates.

100

(Lecture Notes by G.E. Santoro) 5.1 The Quantum Fourier Transform circuit

Exercise 5.3. By using the fact that P†P = 1, and the definition of P as a permutation of qbits,
show that

U†QFT = H3(V†32H2)(V†31V
†
21H1)(V†30V

†
20V

†
10H0)P , (5.25)

i.e., the same form as UQFT with Vjj′ → V†jj′ = V∗jj′ , hence with opposite phases.

|k0〉0 |k3〉0

|k1〉1 |k2〉1

|k2〉2 |k1〉2

|k3〉3 |k0〉3

P

H Θ1 Θ2 Θ3

H Θ1 Θ2

H Θ1

H

Figure 5.1.: The circuit for UQFT. The site-indices of the H is deduced by the line on which they act, which
should be read by the state kets at the extreme left, which comply with one of the conventions on bit ordering,
to which we adhere, following Mermin: Qbit numbers increase from bottom (least significant bit) to top (most
significant bit).

Figure 5.1 shows the circuit corresponding to UQFT, where you should recall that circuits are left-
to-right, while operator action in our equations are right-to-left. Take a moment to trace back the
operators appearing in Eq.(5.24). You see the appearance of gates denoted by Θl, which require a
few extra remarks. Recall that a general control-unitary would read: 5

CU
jj′ = (N0)j(1)j′ + (N1)j(U)j′ (5.26)

For the present case, the relevant unitary is the phase gate

Rz(θl = π
2l

) =

(
1 0

0 eiθl

)
= eπi(N1)/2l def

= Θl with l = |j − j′| . (5.27)

Hence we can also write:

CΘl

jj′ = (N0)j(1)j′ + (N1)jeπi(N1)j′/2
l

= eπi(N1)j(N1)j′/2
l

= Vjj′ , (5.28)

where the last expression shows more clearly the symmetric nature of such control-U gate.

The version of the circuit shown in Fig. 5.2 follows from observing that the Vjj′ operators are
indeed symmetric under exchange of the control and target bit.

|k0〉0 |k3〉0

|k1〉1 |k2〉1

|k2〉2 |k1〉2

|k3〉3 |k0〉3

P

H

Θ1

Θ2

Θ3

H

Θ1

Θ2

H

Θ1 H

Figure 5.2.: The circuit for UQFT. This circuit follows from that in Fig. 5.1 upon observing that the control-
Θl=|j−j′| operators Vjj′ are symmetric under exchange of the control and target Qbits.

This last form, with controls following the H gates, is particularly useful. Indeed, suppose that
UQFT is the last stage of a QC, after which we are going to perform a measurement of all Qbits on
5Recall that N0 = 1

2
(1 + Z) and N1 = 1

2
(1− Z) are the projectors on the state |0〉 and |1〉, respectively.

101

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

|k0〉0 |k3〉0

|k1〉1 |k2〉1

|k2〉2 |k1〉2

|k3〉3 |k0〉3

P

|x0〉0

|x1〉1

|x2〉2

|x3〉3

H Mx0

Θx0
1

Θx0
2

Θx0
3

H Mx1

Θx1
1

Θx1
2

H Mx2

Θx2
1 H Mx3

Figure 5.3.: The circuit for UQFT, when measurements of the Qbits on the computational basis are performed
immediately after the action of Hj on Qbit-j. Notice that the gates denoted by Mxj are not standard unitary
gates: they denote measurements, collapsing the Qbit on state |xj〉j .

the computational basis. Then, since the control Qbits are never changed, we might perform the
measurement of Qbit-0 immediately after H0 on the lower-line of Fig. 5.2. This provokes a collapse of
Qbit-0 into the state |x0〉0 and brings, as a side benefit, that all the subsequent control-U that depend
on Qbit-0 transform into single-Qbit gates Ux0 , i.e., 1 if x0 = 0 and U if x0 = 1 [25]. 6 As you recall,
a general control-U — even for an innocent U = Θl — requires 2 cNOTs and single-Qbit rotations
to be implemented in the hardware, while a single-Qbit phase gate is much simpler to implement.
The same arguments holds for all other Qbits, if they are measured immediately after the action of
the corresponding Hj . The circuit that represents UQFT when these measurements are performed is
shown in Fig. 5.3.

A final, non-standard, but more symmetric form of the circuit for UQFT is shown in Fig. 5.4. Notice
how the Qbit lines are now not straight, and the crossing points between line j and j′ are occupied by
(symmetric) Vjj′ gates, whose effect, recall, depends only on l = |j − j′|. Notice also how this form
of the circuit adheres very closely to Eq (5.24), which we report here for convenience:

UQFT = H3(V32H2)(V31V21H1)(V30V20V10H0) P . (5.29)

|k0〉3

|k1〉2

|k2〉1

|k3〉0

Qbit-0

Qbit-1

Qbit-2

Qbit-3
V10 V21 V32

V20 V31

V30

H H H H

Figure 5.4.: An unconventional form of the circuit for UQFT based on Ref. [25][Fig. 1]. Notice how well it
adheres to Eq. (5.24), read from right-to-left.

5.2. Period-finding

Suppose you have an n-bit function f : {0, 1}n → {0, 1}m which is periodic in its n-bit integer
domain 7 x = 0 · · · 2n − 1. Let r be a period of f . So, if f(x̃) = f̃ , where x̃ ≥ 0 is the smallest integer

6Mermin [1][Sec. 3.9] calls this the “Griffiths-Niu trick”.
7This might seem a rather peculiar choice. But any bounded function in a bounded real domain can be always
appropriately rescaled to such a form: after all, we are simply stating that we use a finite precision, in terms of bits,
to represent numbers, as a digital computer does.

102

(Lecture Notes by G.E. Santoro) 5.2 Period-finding

such that the value f̃ is attained — smaller than the period, x̃ < r —, then:

f̃ = f(x̃) = f(x̃+ r) = f(x̃+ 2r) = · · · = f(x̃+ (P − 1)r) .

Here P is the smallest integer such that x̃+Pr > 2n, i.e., outside the domain. So P — which depends
on x̃ and hence on f̃ — is the number of “periods seen” inside the n-bit integer domain:

P =

⌊
2n

r

⌋
or P =

⌊
2n

r

⌋
+ 1 . (5.30)

We will later learn how to make sure that P is sufficiently large, by having a sufficiently “large domain”.
The goal of this section is to show how to use QFT to learn the value of the period r.

Suppose we have a unitary Uf to code f on a QC. 8 As usual, to guarantee that the transformation
is invertible (and unitary) we supplement the input |x〉n register with an ancillary output register |y〉m
and define:

Uf |x〉n ⊗ |y〉m = |x〉n ⊗ |y ⊕ f(x)〉m =⇒ Uf |x〉n ⊗ |0〉m = |x〉n ⊗ |f(x)〉m . (5.31)

We use the Hadamard-trick to calculate Uf on a uniform superposition of input states:

|Ψ〉n+m = Uf

(
H⊗n|0〉n

)
⊗ |0〉m =

1√
2n

2n−1∑
x=0

|x〉n ⊗ |f(x)〉m . (5.32)

Now, suppose you perform a projective measurement on the output m-Qbit register, obtaining a value
f̃ for the function (a random one, from the image points). The collapsed state will then read:

|Ψf̃ 〉n+m =
1√
P

P−1∑
p=0

|x̃+ pr〉n︸ ︷︷ ︸
|ψf̃ 〉n

⊗|f̃〉m = |ψf̃ 〉n ⊗ |f̃〉m . (5.33)

Do not measure too soon. There is no point in measuring now the input register, because we
would obtain, with equal probability 1/P one of the points x̃+pr — a random one —, from which
I would not be able to extract r. And, since no-cloning is possible, repeating the preparation of
|Ψ〉n+m would also not help: I would obtain a different value of f̃ . As usual.

!

So, let us keep the state intact, and apply an n-Qbit QFT to the input register state |ψf̃ 〉n (notice
that the state |Ψf̃ 〉n+m is a product, with |f̃〉m playing no role):

UQFT|ψf̃ 〉n =
1√
P

P−1∑
p=0

UQFT|x̃+ pr〉n =
1√
P

P−1∑
p=0

1√
2n

2n−1∑
k=0

e2πik(x̃+pr)/2n |k〉n

=

2n−1∑
k=0

e2πikx̃/2n
(

1√
2nP

P−1∑
p=0

e2πikpr/2n
)
|k〉n . (5.34)

The probability of measuring now, after QFT, one of the computational states |k〉n is totally indepen-
dent of the overall phase e2πikx̃/2n and given by:

P(k) =
1

2nP

∣∣∣∣ P−1∑
p=0

e2πikpr/2n
∣∣∣∣2 . (5.35)

You notice that when k ∼ 2n

r , or a multiple of it, the phases in the exponential conspire to give
constructive interference. Observe, however, that 2n

r is in general not an integer, unless we are so
lucky that r is a power of 2.
8For the application to RSA this would be a modular exponential subroutine, see Sec. 5.3.5.

103

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Figure 5.5.: (a) The function f(x) = 2x (mod 21) in the domain x = 0, · · · , 31. Notice the period r = 6.
(b) The probability P(k) in Eq. (5.36). Notice the six peaks at the grid-points ks. The peak at k0 = 0 and
k3 = 256 are sharp, Krönecker-like, because the corresponding δs = 0. The other peaks show a small width.

To help you visualise things, let us consider a specific example:

f : {0, 1}n → {0, 1}m with f(x) = 2x (mod 21) .

Since N = 21 < 25 = 32, we can take m = 5. As for the domain of x, let us take n = 9, hence
x = 0, · · · , 2n − 1 = 511. By experimenting a little, you discover that the only image points of f(x)

are f̃ = {1, 2, 4, 8, 16, 11}, obtained for x = 0, 1, 2, 3, 4, 5, and then f(x) repeats periodically with
a period r = 6, since 26 = 64 ≡ 1 (mod 21). We will discuss more about modular arithmetics in
Sec. 5.3.1. Figure 5.5(a) shows a plot of f(x) in a restricted domain x = 0, · · · , 31. You get f̃ = 2, for
instance, at the first point x̃ = 1. There are P = 86 points inside the full n = 9-bit domain, x̃ + pr,
with p = 0, · · · , P − 1, the last one being at x = 1 + 85 × 6 = 511. For f̃ = 2, hence P = 86, the
probability P(k) would be given by:

P(k) =
1

2nP

∣∣∣∣ P−1∑
p=0

e2πikpr/2n
∣∣∣∣2 =

1

512× 86

∣∣∣∣ 85∑
p=0

e2πikp6/512

∣∣∣∣2 . (5.36)

Figure 5.5(b) shows a plot of P(k). Notice the 6 sharp peaks.

As anticipated, 2n

r = 512
6 = 85 + 1

3 is not an integer. Consider therefore the integer k-grid defined
through the nearest integers

ks = nint

(
s

2n

r

)
= s

2n

r
+ δs with |δs| ≤

1

2
, (5.37)

where, to stay within the n-bit domain, we take s = 0, · · · , r − 1. In the previous example: the grid
points are ks=0,··· ,5 = {0, 85, 171, 256, 341, 427}, and δs=0,··· ,5 = {0,− 1

3 ,
1
3 , 0,−

1
3 ,

1
3}. Observe how the

grid points match very well with the peaks in Fig. 5.5(b).

Now that the intuition is guaranteed, let us return general. Evaluating P(k) at one of such r grid
points we find, through a simple geometric series:

P(ks) =
1

2nP

∣∣∣∣ P−1∑
p=0

e2πi(s+δsr/2
n)p

∣∣∣∣2 =
1

2nP

∣∣∣∣ P−1∑
p=0

e2πipθs

∣∣∣∣2 =
1

2nP

∣∣∣∣e2πiPθs − 1

e2πiθs − 1

∣∣∣∣2
=

1

2nP

sin2(πPθs)

sin2(πθs)
where θs = δs

r

2n
=⇒ |θs| ≤

r

2n+1
. (5.38)

Recall now that P is “within an integer interval” from 2n/r, see Eq. (5.30), hence:

2n

r
− 1

2
≤ P ≤ 2n

r
+

1

2
=⇒

∣∣∣∣Pr2n
− 1

∣∣∣∣ ≤ r

2n+1
. (5.39)

104

(Lecture Notes by G.E. Santoro) 5.2 Period-finding

Let us now assume, as in the example above, that the period r is sufficiently small with respect to
2n so that a large number P of periods occurs within the domain.

Assumptions on r and n. Take N < 2m = M and r < N , as will be appropriate when r is
the period of ax (modN).

1) A first possible choice is to take n such that 2n > N2. In this case:

2n > N2 =⇒ |δs|
2n
≤ 1

2n+1
≤ 1

2N2
, (5.40)

a condition which will later prove very useful. To further ensure that |θs| is sufficiently
small, so as to proceed with our numerical estimate of P(ks), we need that N is sufficiently
large, for instance 2N2 > 2n > N2. If this is the case:

2N2 > 2n > N2 =⇒ |θs| =
|δs|r
2n
≤ r

2N2
<
r

2n
<
N

2n
<

1√
2n

. (5.41)

2) Alternatively: take n ≥ 2m. Then, automatically, 2n > N2, hence Eq. (5.40) holds, and we
would have:

2n

r
≥ 22m

r
=
M2

r
> M =⇒ r

2n
<

1

M
=

1

2m
=⇒ |θs| ≤

1

2m+1
. (5.42)

i

With such assumptions — satisfied in the previous example — all θs are small, indeed very small,
in more relevant applications. It is then safe to approximate sin2(πθs) ≈ (πθs)

2 in the denominator
of Eq. (5.38) and to set P ≈ 2n/r and Pθs ≈ δs, obtaining:

P(ks) ≈
1

2nP

sin2(πPθs)

(πθs)2
≈ P

2n
sin2(πδs)

(πδs)2
≈ 1

r

sin2(πδs)

(πδs)2
≥ 1

r

4

π2
. (5.43)

The last inequality follows from π|δs| ≤ π
2 and the fact that | sinπδs| ≥ 2|δs|. Observe also that s = 0

is special, since ks=0 = 0, δs=0 = 0, and therefore P(0) = P
2n ≈

1
r . Check that these estimates apply

to the previous example.

How small is such a probability? The estimates and bounds we have just derived

P(0) ≈ 1

r
and P(ks > 0) ≥ 1

r

4

π2
, (5.44)

might not look good enough if r is a large number. But recall that any ks — and there are r such
grid value points — has a probability of being found in the measurement, and all but ks = 0 are
useful to infer the values of r, as we will soon discuss. For the time being, be reassured that the
probability that I find any of the ks > 0 in much more encouraging:

r−1∑
s=1

P(ks) ≥
r − 1

r

4

π2
≈ r − 1

r
0.4 . (5.45)

And, remember, this is only a lower bound, obtained by taking strictly the grid-points ks: values
of k very close to ks would also have a reasonable probability of being “observed”.

i

Suppose that the measurement has produced a value of k = ks:

ks = nint

(
s

2n

r

)
= s

2n

r
+ δs with |δs| ≤

1

2
.

105

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

If we get ks = 0, no information on r is available: bad luck, I have to start again. But if we get any
of the ks > 0 values, then we know that:

ks
2n

=
s

r
+
δs
2n

,

where the LHS is known, but the RHS (containing r) not. Recall however that, with the assumptions
on the number of bits used, see Eq. (5.40), we have:

|δs|
2n
≤ 1

2N2
=⇒

∣∣∣∣ ks2n
− s

r

∣∣∣∣ =
|δs|
2n
≤ 1

2N2
.

The question is if two inequivalent fractions s1/r1 and s2/r2, with r1 < r2 < N , could both be
compatible with the bounds we have derived. The answer is no, for a simple reason. Indeed:∣∣∣∣s1

r1
− s2

r2

∣∣∣∣ =
|s1r2 − s2r1|

r1r2
≥ 1

r1r2
≥ 1

N2
, (5.46)

unless s1r2 − s2r1 = 0, which means that the two fractions are really equivalent, up to common
factors. But since the “measured” ks, see Eq. (5.40), is such that∣∣∣∣ ks2n

− s

r

∣∣∣∣ ≤ 1

2N2
=⇒ s1

r1
can be inferred in an unambiguous way.

How? With a continued fraction expansion of ks2n , which will give s1
r1

reduced to lowest terms (no
common factors). An example will be worked out in Sec. 5.3.4. a

aIf you want to go more in depth, I suggest you to look at Appendix K of Mermin’s book.

Question: Can we extract s/r in an unambiguous way?

We are almost done. Nobody guarantees that the fraction s1
r1
, without common factors, which we

unambiguously extracted from the “measured” ks, provides the period r we are looking for, because r
might be a multiple of r1. But it is a simple matter to verify with a classical computer if r1 is indeed
a period, or which multiple of it we need to consider. So, the problem is essentially solved with a
little “detective work”, as Mermin puts it. A similar story applies when the measured k is close to a
grid-point ks, still within the same peak of P(k).

To whet your appetite. Periodic functions might not be as simple as the one considered in
the previous example. For instance, f(x) = 2x (modN) for N = 35 or N = 77 have a rather
wild-looking appearance, as you see from Fig. 5.6. With large numbers, and with appropriate
requirements on N being a product of two large primes p and q, finding the period r of a function
like f(x) = bx (modN) might be discouragingly difficult. But it is extremely relevant, because
if you could find that period r, then you would be able to find the prime factors of N , or, from
the practical point of view, break the RSA public-key cryptographic system. More about this in
Sec. 5.3.

i

The unimportance of small unitary phase-errors. Suppose I want to apply the QFT algorithm for
n = 1024 bit integers. I would in principle need to consider phase-gates, in the QFT circuit, with
l = |j − j′| as large as n, hence have a control of phase gates with angles θl = π/2l ∼ π/2n ≈ 10−308.
It is obvious that such precision is an issue: there is no hope of doing that in practice. More generally,

106

https://en.wikipedia.org/wiki/Continued_fraction

(Lecture Notes by G.E. Santoro) 5.2 Period-finding

Figure 5.6.: Left: The function f(x) = 2x (modN) for N = 5×7 = 35, where a period r = 12 is clear. Right:
Same for N = 7× 11 = 77 (observe how python loses precision for high x) where r = 30 emerges.

the experimentalist’s ability in controlling the angles θl must account for inevitable imprecision, to
some degree. This means that the phases that are encoded in the unitary QFT are affected by “unitary
errors”, due to imprecisions in the gate construction.

Do inevitable unitary errors in the construction of the gates spoil the period-finding algorithm
we have discussed?

Question:

The answer is no, and deserves a discussion. Indeed, the construction of a unitary such as UQFT

is akin to some analog quantum devices, with continuous variables that can suffer from errors. Nev-
ertheless, the quantum measurement is digital: when we measure, in the computational basis, we get
0s and 1s. This digital robustness of measurements saves the day, as we shall see. The probability of
getting some measured values of k suffers very little from even relatively large unitary errors.

To show this, let us assume that the QFT is affected by phase errors ϕ(k, x), as follows:

U
(ϕ)
QFT|x〉n =

1√
2n

2n−1∑
k=0

e2πikx/2neiϕ(k,x)|k〉n . (5.47)

We assume the errors to be uniformly bound, |ϕ(k, x)| < ε� 1, by some small quantity ε. By applying
such an imperfect QFT to the collapsed n-Qbit input register state, upon measuring f̃ , we would get,
see Eq. (5.34):

U
(ϕ)
QFT|ψf̃ 〉n =

2n−1∑
k=0

e2πikx̃/2n
(

1√
2nP

P−1∑
p=0

e2πikpr/2neiϕ(k,x̃+pr)

)
|k〉n . (5.48)

Notice that now x̃ enters in ϕ(k, x̃ + pr), and not simply as an overall phase factor. 9 Still, the
probability of measuring k afterwords is:

Pϕ(k) =
1

2nP

∣∣∣∣ P−1∑
p=0

e2πikpr/2neiϕ(k,x̃+pr)

∣∣∣∣2 ≈ 1

2nP

∣∣∣∣ P−1∑
p=0

e2πikpr/2n
(

1 + iϕ(k, x̃+ pr)
)∣∣∣∣2 ,

9Hence, the probability of measuring a value of k is in some sense “conditioned on f̃ ”: if we repeat the protocol, we
would get a different f̃ , and x̃. But, after a moment’s reflection, you realise that the same was true in the ideal case,
since also in that case the number of periods P seen would depend on f̃ .

107

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

where in the second expression we expanded the exponential, assuming |ϕ(k, x)| � 1. When calculated
on the usual grid of ks = s 2n

r + δs with s = 0 · · · r − 1, see Eq. (5.37), this would give:

Pϕ(ks) ≈ 1

2nP

∣∣∣∣ P−1∑
p=0

e2πiδspr/2
n

(1 + iϕs,p)

∣∣∣∣2

≈ P(ks) +
2

2nP
Im

[(P−1∑
p=0

e−2πiδspr/2
n

ϕs,p

)(P−1∑
p′=0

e2πiδsp
′r/2n

)]
, (5.49)

where ϕs,p = ϕ(ks, x̃+pr), and we have further expanded the squared modulus to linear order in ϕs,p.
Hence, we can estimate the difference in the probability of the outcome ks as:∣∣∣∣P(ks)− Pϕ(ks)

∣∣∣∣ ≈ 2

2nP

∣∣∣∣Im[(P−1∑
p=0

e−2πiδspr/2
n

ϕs,p

)(P−1∑
p′=0

e2πiδsp
′r/2n

)]∣∣∣∣
≤ 2

2nP

∣∣∣∣(P−1∑
p=0

e−2πiδspr/2
n

ϕs,p

)∣∣∣∣ ∣∣∣∣(P−1∑
p′=0

e2πiδsp
′r/2n

)∣∣∣∣
≤ 2

2n

(P−1∑
p=0

∣∣ϕs,p∣∣) ≤ 2

2n
Pε ≈ 2

r
ε , (5.50)

where we used P ≈ 2n/r. Recall now, see Eq. (5.45), that:

r−1∑
s=1

P(ks) ≥
r − 1

r

4

π2
≈ r − 1

r
0.4 . (5.51)

So, if we want a probability of any of such special values that is at worst, say, 1% from the expected
value ≈ 0.4, it is enough to require that ε is at most

εmax =
0.4

200
=

1

500
. (5.52)

This estimate is reassuring: we do not need a precision of 300 decimal digits in the way we construct
our phase-gates! Even more. Suppose that, for instance, we completely neglect to apply control-Θl

gates when l exceeds some value lmax. Suppose that Θl gates with l > lmax are neglected: since they
apply repeatedly, but at most n times, this might lead to a phase error as large as ϕ = nπ/2l. To be
safe, we would need to take:

lmax >
log(nπ/εmax)

log 2
≈ 21 for n = 1024 .

Info: As an extra bonus, with such truncated lmax, the number of gates in the QFT circuit would
scale O(n) rather than O(n)2.

i

5.3. Factoring and cryptography

Before we enter into the details of the public-key cryptographic system introduced by Rivest, Shamir
and Adlelman (RSA), we need a few number-theory preliminaries. Even before that, I suggest you to
watch the following Veritasium channel YouTube video, quite well made, and with good animations.
It is definitely worth the 20 minutes you invest.

108

https://it.wikipedia.org/wiki/RSA_(crittografia)
https://www.youtube.com/watch?v=-UrdExQW0cs

(Lecture Notes by G.E. Santoro) 5.3 Factoring and cryptography

5.3.1. Modular arithmetics: some tools.

In (modN) arithmetics integers differing by a multiple of N are identified, like in a clock, so that
we are left with a representation of each integer in the set {0, 1, · · · , N − 1}. We will denote by
a ≡ b (modN) whenever a = b + mN for some integer m. Addition (modN) is relatively simple.
Multiplication (modN) is more involved, and we concentrate on that.

Let us start defining an important subset of {0, 1, · · · , N − 1}:

GN = {∀n with 1 ≤ n < N such that gcd (N,n) = 1} .

In words, GN is the set of all positive integers n < N which are co-prime with N , i.e., they share no
common factors with N . As a simple example, for N = 15:

G15 = {1, 2, 4, 7, 8, 11, 13, 14} with |G15| = 8 ,

where |GN | will from now on denote the number of elements in GN . Incidentally, this number is the
so-called Euler’s totient function ϕ(N) = |GN |.

If a, b ∈ GN , then ab (modN) ∈ GN , since ab cannot have any common factors with N (a common
factor must divide either a or b, as you can immediately show). HenceGN is closed under multiplication
(modN). Next you can easily show that ab ≡ ac (modN) =⇒ b ≡ c (modN). So, multiplication by
a ∈ GN takes distinct members into distinct members. Hence all elements of the type ag with g ∈ GN
are distinct, and must represent a permutation of GN . Since 1 ∈ GN , an element d must exist such
that ad ≡ 1 (modN), which we also denote by d = a−1, the multiplicative inverse of a in GN . This
concludes the proof that GN is indeed a group under multiplication (modN).

The order of an element a. Take an element a ∈ GN and take successive powers: a2 (modN),
a3 (modN) · · · . These powers for a while are all different (recall the “distinct members” story)
until, at a certain stage, you must get back to 1 (because |GN | is finite), and the cycle would
start again. The smallest r such that

ar ≡ 1 mod N ,

is known as the order of a inGN . It is the number of elements of the cyclic subgroup {1, a, a2 · · · ar−1}
generated from repeated multiplications by a (modN). Lagrange theorem guarantees that the
number of elements in a subgroup must be a divisor of |G|. Hence in particular, the order r of
each element a must be a divisor of |GN |.

i

If you want to practice, try to calculate the order of all elements in G15. You should find:

a 1 2 4 7 8 11 13 14

r 1 4 2 4 4 2 4 2

and you notice that 2 and 4 are divisors of |G15| = 8.

Exercise 5.4. Take N = 21. Determine G21 and the order of every element a ∈ G21.

Prime numbers are special in this context, since Gp = {1, 2, 3, · · · p − 1} and |Gp| = p − 1: no
number less than p can share factors with a prime number p. Take now any a ∈ Gp and consider its
order r, i.e., the integer r such that ar ≡ 1 (mod p). Since r has to divide |Gp| = p − 1, then p − 1

is certainly a multiple of r, and therefore ap−1 ≡ 1 (mod p), a relation that is known as Fermat Little
Theorem.

109

https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Fermat little theorem. Take any a ∈ Z not divisible by p (including a /∈ Gp). Since you can
always find a representative a′ ≡ a (mod p) in Gp, you conclude that:

ap−1 ≡ 1 mod p ∀a 6= mp . (5.53)

Notice that a = mp, a multiple of p, can be identified with a ≡ 0 (mod p), and 0 does not belong
to Gp.

i

Next, take two distinct primes p and q. Consider any integer a which is not divisible by p and q, i.e.,
such that neither p nor q belong to the unique factorisation of a into primes. Certainly ak for any k
cannot be divisible by p, hence also aq−1 is not divisible by p. Therefore, by Fermat Little Theorem:(

aq−1
)p−1 ≡ 1 mod p ,

which you can interpret as telling us that a(p−1)(q−1) = 1 +m1p, for some integer m1. Symmetrically,
ap−1 is not divisible by q, and (

ap−1
)q−1 ≡ 1 mod q ,

can be interpreted as telling us that a(p−1)(q−1) = 1 +m2q, for some other integer m2. Since p and q
are two distinct primes, the last two equations, together, imply that

a(p−1)(q−1) = 1 +mpq ,

for some integer m. Hence we conclude that: 10

Euler theorem. Let p and q be two distinct primes, and take any a ∈ Z not divisible by p and
q. Then:

a(p−1)(q−1) ≡ 1 mod pq . (5.54)

Remarkably, |Gpq| = |Gp||Gq| = (p− 1)(q − 1): Euler’s totient function is multiplicative.

i

Take p = 7 and q = 11, so that pq = 77 and (p− 1)(q − 1) = 60. Then take a = 2. So, 260 − 1 (a
number of order 1018) must be divisible by 77. With smaller numbers: p = 5 and q = 7, hence
pq = 35 and (p − 1)(q − 1) = 24. Then 224 ≡ 1 (mod 35). Indeed 224 = 1 + 479349 × 35. Both
cases are behind the functions plotted in Fig. 5.6.

Example.

There is an interesting consequence of Euler’s theorem which is particularly useful in RSA, because
it allows to eliminate the restrictions on a. Take any integer s. Then as(p−1)(q−1) ≡ 1 (mod pq).
Multiply both terms by a and you arrive at:

10Here is an alternative proof of Euler’s theorem. Since a is not divisible by p or q, then a has no common factors
with pq, hence a ∈ Gpq . What is |Gpq |? One can show that the Euler totient function is multiplicative, hence
|Gpq | = |Gp||Gq | = (p − 1)(q − 1). For an elementary proof of this particular case (N = pq, the product of two
primes), you can argue as follows. There are pq − 1 integers < pq. Among them p − 1 multiples of q and other
distinct q − 1 multiples of p. Hence pq − 1 − (p − 1) − (q − 1) = (p − 1)(q − 1) are the integers less than pq which
have no common factors with p and q. Having established that |Gpq | = (p − 1)(q − 1), by Lagrange theorem the
order k of any a ∈ Gpq must be a divisor of (p − 1)(q − 1). Since ak ≡ 1 (mod pq), and as a consequence also
a(p−1)(q−1) ≡ 1 (mod pq).

110

(Lecture Notes by G.E. Santoro) 5.3 Factoring and cryptography

A crucial consequence of Euler’s theorem. Given two primes p and q, then for any a ∈ Z
and any integer s

a1+s(p−1)(q−1) ≡ a mod pq . (5.55)

i

Remarkably, the previous relationship holds even if a is divisible by p or q. 11 This is very important
in the RSA application, because a will be the integer-coded message, which you certainly do not write
by checking that it is co-prime with pq.

Now a few consequences on which RSA is based. Take an integer c with no common factors with
(p− 1)(q − 1), hence c ∈ G(p−1)(q−1). The multiplicative inverse of c is guaranteed to exist:

∃d ∈ G(p−1)(q−1) =⇒ cd ≡ 1 mod (p− 1)(q − 1) .

The mnemonic is that c will be used to code messages, while d is used to decode them. The last
equation implies that an integer s exists such that

cd = 1 + s(p− 1)(q − 1) .

Hence, as a consequence of Eq. (5.55), you deduce that for any a:

acd = a1+s(p−1)(q−1) ≡ a mod pq .

So, remarkably:

Inverse RSA relations. If d is the multiplicative inverse of c in G(p−1)(q−1), then, for any a:

If b ≡ ac mod pq =⇒ bd ≡ acd ≡ a mod pq . (5.56)

i

Details of how this is used for actual coding/encoding in RSA will be discussed in the next section.
A number N = pq which is the product of two distinct primes p and q is known as semi-prime. These
numbers are important in cryptography for a reason that we now explore.

5.3.2. RSA public-key cryptography

Bertuccio (B from now on) wants to receive messages from Agata (A in the following) in such a
way that nobody can read it. To do so, B picks two large primes p and q and calculates the very
large semi-prime N = pq. With p and q of the order of 250-decimals, N will be of order 500-decimals,
hence of order 500× log2(10) ∼ 1660 bits. Then B chooses a large “encoding” number c which has no
common factors with (p− 1)(q − 1), hence c ∈ G(p−1)(q−1). Then:

B makes N and c public. (5.57)

11Observe that Eq. (5.55) is trivially satisfied if a = mpq, with m an integer. Suppose now that a is divisible by just
one of the two primes, say q but not p. Then a = mq. By assumption a is not divisible by p, so that no power of a
is divisible by p. Therefore, Fermat little theorem tells us that(

as(q−1)
)p−1

= 1 + np for some integer n .

On multiplying both sides by a you deduce that a1+s(q−1)(p−1) = a+ anp = a+ (nm)pq, which amounts to saying
that a1+s(p−1)(q−1) ≡ a (mod pq).

111

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Choosing numbers without common factors. You might ask how B chooses c, making
sure that it has no factors in common with (p − 1)(q − 1). Superficially, this seems quite hard.
But is indeed quite simple for two reasons:

1. As a consequence of a beautiful result by Euler — Euler’s Basel problem —, see App. A.3,
the probability that two random numbers n and m have no common factors is:

Probgcd (n,m)=1 =
6

π2
≈ 0.6079 .

Hence, a random choice is quite likely to succeed.

2. You can always check that your choice was right, by checking that gcd (c, (p− 1)(q − 1)) = 1,
discarding c otherwise. Calculating the greatest-common-divisor of two numbers can be
done very efficiently with Euclid’s algorithm, which requires a number of operations of at
most 5 times the number of decimal digits of the smallest of the two numbers. See App. A.1
for details.

i

To encode a message for B, using the N and c that B made public, A does the following.

Coding part of RSA.

C1) The message is e.g. ASCII-translated into an integer with fewer than N digits. Longer
messages can be chopped into pieces, each with < N digits. For instance “Nel mezzo del
cammin di nostra vita” would translate into the following 92-digits-long number, that I show
here inserting spaces between each ASCII-character:

a = 78 101 108 32 109 101 122 122 111 32 100 101 108 32 99 97 109 109 105 110 32 100 105 32 110 111 115 116 114 97 32 118 105 116 97

C2) A calculates an integer b through a (modN)-exponential with the public c as exponent:

b ≡ ac (modN) =⇒ b = encoded message ,

and sends it to B on a public channel. This modular exponential with very large numbers
might seem a difficult task, but is indeed quite simple, as we will see in Sec. 5.3.5.

i

Now B receives the encoded message b. To decode it, this is what he does.

Decoding part of RSA.

D1) B knows d, the multiplicative inverse of c in G(p−1)(q−1), because he knows the separate
prime factors p and q of N = pq, hence also (p − 1)(q − 1). Finding d such that dc ≡
1 (mod (p−1)(q−1)), even with these large numbers, can be done quite efficiently using the
same Euclid’s algorithm he had used to check that gcd (c, (p− 1)(q − 1)) = 1. See App. A.2.

D2) With d in his hands, the so-called private key, B can exploit Eq. (5.56) and perform an
inverse (modN)-exponential:

bd ≡ a mod N =⇒ a = decoded message .

i

Nobody else would be able to perform such an inverse operation described in D2), without knowing
the separate factors p and q of N , which allow B to calculate its private key d. Unless you have an

112

(Lecture Notes by G.E. Santoro) 5.3 Factoring and cryptography

efficient period-finding machine, using which you can efficiently create a clone d′ of the private key d.
And this leads us to the last section of our story.

But, before ending this section, a small curiosity inspired by Chap. 7 of Simon Singh’s The Code
Book, which I strongly suggest you to read.

Authentication. B receives an email message. It is a love letter “from A”, or, more properly, from
“someone who pretends to be A”.

How can B be sure that the message really comes from A and not from an impostor? This is
the problem that has originated the need for certified email and digital signatures. In traditional
letters there is an ink signature, tragically missing in our emails.

Question: Who are you?

The solution to the problem comes from an idea of Diffie and Hellmann. A starts encrypting the
message with A’s private key dA:

b1 = adA mod NA .

As such, this is a very weak encryption: anybody can decrypt the message by using A’s public key
cA, performing bcA1 (modNA) = a. But A adds one further encryption step: b1 is further encrypted
with B’s public key c:

b = bc1 =
(
adA mod NA

)c
mod N .

When B receives the encrypted message b, he decrypts it with its private key d, obtaining

b1 = bd mod N = adA mod NA .

Knowing that the message is — officially — a “certified email from A”, B knows that it should be
further decrypted with A’s public key cA, obtaining finally a. If the message a is readable — it is a
love letter —, B is sure that it was encrypted with A’s private key. If it is meaningless garbage, it
was not written by A. Quite simple and effective. This comes almost for free in a system based on
a separation of public and private keys. Much more difficult is to do similar games with traditional
symmetric cyphers, where the sharing of an identical key is essential for decoding.

5.3.3. Breaking RSA through period-finding

Suppose I am not B, say I am Ernesto (E from now on) but I still want to decode the encoded
message b that A has sent to B on the public channel. Since E doesn’t know the private key d, he
does the following. E knows, as everybody, N = pq, but not the separate factors p and q. He takes
the encoded message b and finds its order r in GN , i.e., the smallest integer r such that:

br ≡ 1 mod N . (5.58)

This, as you see, requires finding the period r of the function f(x) = bx mod N . So, what?

113

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Period-finding as a decoding tool. Remarkably r coincides with the order of a in GN , i.e.,

br ≡ 1 mod N =⇒ ar ≡ 1 mod N (5.59)

In words: the encoded message b and the original message a have the same order r in GN . Why?
Because the subgroup generated by a contains ac = b, and therefore it contains the subgroup
generated by b as well. Viceversa, by the RSA-inverse relations, since bd ≡ a, the subgroup
generated by b contains a. Hence the two subgroups generated by a and b are identical, and they
share the same order r.

i

This finding is a crucial ingredient for E, who is willing to decode b: he has found the common
order r of b and a in GN . Now:

1) Recall that B had chosen c to have no factors in common with (p−1)(q−1) (unknown to anybody
but B).

2) Recall also that, by Lagrange theorem, r — the order of b and a in GN —, must be a divisor of
|GN | = (p− 1)(q − 1). Hence c can have no factors in common with r as well:

gcd (c, r) = 1 =⇒ ∃c′ ≡ c mod r and c′ ∈ Gr .

Consider now Gr. Recall that c is public, but r is E’s ingenious discovery, thanks to the period-
finding machine. What we just showed allows us to conclude that a representative c′ ≡ c (mod r)

must exist in Gr: E can find c′ because he knows r, and c is public.

3) In turn, c′ will have a multiplicative inverse d′ in Gr

cd′ ≡ c′d′ ≡ 1 mod r =⇒ cd′ = 1 +mr ,

and E can find d′ efficiently by working with the ingredients of Euclid’s algorithm applied to
gcd (c, r) = 1, see App. A.2.

E has a clone of the private key. d′ will be a E’s clone of B’s private key d. Indeed:

bd
′

mod N ≡ (ac)d
′
≡ acd

′
≡ a1+mr ≡ a(ar)m ≡ a mod N , (5.60)

where we used the fact that ar ≡ 1 (modN), and all the equivalences are (modN).

i

5.3.4. Period-finding and factoring

The great usefulness of period-finding — in turn a gift of QFT on a QC — goes beyond the
application to breaking RSA, which we have just described. We will see other applications later on.
But, staying close to the current RSA application, you could, with a little extra work, use it to factor
N . We will show this for the RSA-relevant case in which N is a composite semi-prime, made of two
prime factors: N = pq. Relevant details for this part of the story are given in Ref. [1][Sec. 3.10 &
App. M]. Here is the recipe.

1) N is given, but p and q are unknown. Take a, a random number co-prime with N , i.e., such
that gcd (a,N) = 1. The probability that a random a is co-prime with N is quite large — see
App. A.3 —, but the probability that a is a multiple of p or q is minuscule: and in case this
is not so, the same Euclid’s algorithm that you would use to check that gcd (a,N) = 1, would
immediately signal p or q as a common factor of a and N , and you would be done. So, let us
assume that a ∈ GN .

114

(Lecture Notes by G.E. Santoro) 5.3 Factoring and cryptography

2) Define now f(x) = ax (modN) and find — using the period-finding quantum subroutine — the
period r of f(x) (which is also the order of a in GN), as the smallest integer r for which:

ar ≡ 1 mod N .

3: Luck #1) The first piece of good luck occurs if r is even. If so,

ar − 1 ≡ 0 mod N =⇒ ar − 1 = (ar/2 − 1)(ar/2 + 1) = mN , (5.61)

for some integer m. Since ar/2 6≡ 1 (modN) — recall that r is the smallest integer such that
ar ≡ 1 (modN) — then certainly:

ar/2 − 1 6≡ 0 mod N =⇒ ar/2 − 1 is not a multiple of N . (5.62)

This in turn implies that p and q cannot both appear as factors of ar/2 − 1.

4: Luck #2) The second piece of good luck occurs if:

ar/2 + 1 6≡ 0 mod N =⇒ ar/2 + 1 is not a multiple of N . (5.63)

Then p and q do not both appear as factors of ar/2 + 1.

5) Eq. (5.61), however, tells us that (ar/2− 1)(ar/2 + 1) must be a multiple of N , hence contains both
p and q as factors — recall that N = pq — while neither of its two factors do contain both p
and q at the same time. This can only be realised if p, say, divides ar/2 − 1, while q divides
ar/2 + 1. Hence: p = gcd (ar/2 − 1, N)

q = gcd (ar/2 + 1, N)
. (5.64)

The likelihood of being lucky. Read Mermin’s [1][App. M] if you want to learn that
the probability that a random a ∈ GN has an order r which is even (luck #1), while still
ar/2 + 1 6≡ 0 (modN) (luck #2), is at least 1

2 : remarkably large!

i

A worked-out example: f(x) = 2x (mod 21). Let us return back to the example considered in
Sec. 5.2, which I briefly recap in the light of what we learned on modular arithmetics. Take N = 21,
and G21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}, with |G21| = 12. Take now a = 2, which is co-
prime with N = 21, gcd (a,N) = 1. You can verify directly that the order of a = 2 is r = 6, a
divisor of |G21| = 12: 26 ≡ 1 (mod 21). Consider now f(x) = 2x (mod 21). The image points f̃ are:
{1, 2, 4, 8, 16, 11}. Since N = 21 < 25 = 32 = M , it is enough to take m = 5 bits in the output
register. We can take n = 9 in the input register, since N2 = 441 < 2n = 512 < 2N2 = 882, which is
enough. As we said, upon measuring f̃ = 2 in the output register, the collapsed state would be:

|ψf̃=2〉9 =
1√
P

(P−1∑
p=0

|1 + 6p〉9
)

with P = 86 ,

i.e., P = 86 periods are seen, for f̃ = 2, in the domain we have chosen. 12

Observe the peaks in Fig. 5.5(b), close to the integer grid-points ks = {0, 85, 171, 256, 341, 427}.
Now suppose that, by measuring the input register you find the value k = 86, just above the second

12Higher values of f̃ , would show only P = 85 periods.

115

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

grid point k1 = 85, but still inside the second peak of P(k). Your “measurement” would give you
k
2n = 86

512 . To infer s
r , we write the continued fraction for 86

512 :

86

512
= 0 +

1

5 + 1
1+ 1

20+ 1
2

= [0; 5, 1, 20, 2] ,

where on the RHS you see a standard notation used for continued fractions:

[a0; a1, · · · ap] = a0 +
1

a1 + 1
···+ 1

ap

. (5.65)

The so-called q-convergents, with 0 ≤ q ≤ p, are fractions obtained by truncating the continued
original fraction: [a0; a1, · · · aq]. In the present case:

[0; 5] =
1

5
[0; 5, 1] =

1

6
[0; 5, 1, 20] =

21

125
.

Since s1
r1

has to have a denominator r1 < N = 21, we take 1
6 = s

r as our best approximation, which
directly gives r = 6, the period of f(x).

Now we see if we are lucky enough that we can determine the prime factors of N = 21. Observe
that the order r = 6 is an even number: the first piece of luck. Next ar/2 + 1 = 9 6≡ 0 (modN): the
second piece of luck. Indeed:

p = gcd (2r/2 − 1, 21) = 7 and q = gcd (2r/2 + 1, 21) = 3 ,

give us the two prime factors of N = 21.

Exercise 5.5. Consider the case in which the measurement gives k = 170, close to the third grid
point. By using python, or a continued fraction calculator, calculate the best rational approximation
s1
r1

to 170
512 with r1 < N = 21. What is the value of r1? What do you need to get the period r?

5.3.5. Implementing modular exponentials on a Quantum Computer

How difficult is to compute f(x) = bx (modN) with x an n-bit integer? You might be worried
that this is exceedingly complicated. Let us start thinking to a classical algorithm. The naive way
of calculating the function at a required value of x̃ < 2n − 1, would be to loop over x = 0, · · · , x̃
performing modular multiplications by b:

f(0) = 1→ f(1) = b→ f(2) ≡ b2 (modN)→ f(3) = b3 (modN) · · · .

Is there a way of calculating f(x̃) for a large value x̃ without having to calculate recursively, in
a loop over x, the (exponentially) many smaller values of x < x̃?

Question:

After thinking a while, it becomes clear that the basic building blocks from which I can reconstruct
any f(x) are the n powers-of-two values x = 2j with j = 0 · · ·n − 1. The basic reason is that
f(x + y) = f(x)f(y) and that any integer x can be written — recall the binary expansion — as
x =

∑n−1
j=0 xj2

j . Indeed:

bx+y mod N = bxby mod N =
(
bx mod N

)(
by mod N

)
mod N ,

116

https://en.wikipedia.org/wiki/Continued_fraction
https://www.alpertron.com.ar/CONTFRAC.HTM

(Lecture Notes by G.E. Santoro) 5.3 Factoring and cryptography

where the last step follows from the general property of multiplication modulo-N : if a and b are two
(possibly very large) integers, then

c = ab mod N = a′b′ mod N ,

where a′ and b′ are the representatives of a and b in GN . 13 Now, suppose I have calculated a table
of n numbers (all < N):

j → 0 1 2 3 · · · n− 1

tj → b b2 (modN) b2
2

(modN) b2
3

(modN) · · · b2
n−1

(modN)

which can be readily constructed by using a subroutine that performs the square of the input (modN):

t0 = b→ b2 (modN)︸ ︷︷ ︸
t1

→ (b2)2 (modN)︸ ︷︷ ︸
t2

→ (b4)2 (modN)︸ ︷︷ ︸
t3

· · · .

Next I consider any integer x, I write it in binary form, x =
∑n−1
j=0 xj2

j with xj = 0, 1, and I calculate:

f(x) ≡ bx ≡ b
∑n−1
j=0 xj2

j

(modN) ≡
n−1∏
j=0

[(
b2
j
)xj

(modN)
]

=

n−1∏
j=0

t
xj
j (modN) .

Classically, I would therefore create a look-up table (j, tj = f(2j)), which I can keep in the memory
of my computer, and the calculate f(x) as needed using this table.

Python exercise 5.1. Apply this method to implement a numerically stable way of calculating
2x (mod 77) and 3x (mod 77), improving the quality of Figs. 5.6.

x = 0, 1

|y〉m |ybxmod N〉mUyb mod N

Figure 5.7: The control-U gate that performs
multiplication y → yb (modN) on a m-Qbit reg-
ister.

|1〉m |bx〉m

...
...

...

· · ·

|x0〉 |x0〉

|x1〉 |x1〉

|xn−1〉 |xn−1〉

Uyb mod N Uyb2 mod N Uyb2n−1 mod N

Figure 5.8: Sketch of a
quantum circuit for mod-
ular exponentiation x →
bx (modN) of an n-Qbit
input register |x〉n, us-
ing the power-of-2 clas-
sical strategy. For the
many missing ingredients,
see Ref. [26].

On a Quantum Computer the philosophy is different. Qbits are precious and delicate, and you do
not store look-up tables: Qbits in a Quantum-Drive would modify their state in quite a short time,
due to decoherence and dissipation caused by inevitable interactions with the environment. Rather,
13Indeed, a = a′ +m1N and b = b′ +m2N , hence:

ab = (a′ +m1N)(b′ +m2N) = a′b′ + (m1b
′ +m2a

′ +m1m2N)N .

117

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

you implement the function on a Quantum Circuit, and you use the QFT period-finding procedure
to find the period. This comes with a “single” application of the unitary circuit. To design a circuit
to calculate f(x) you use an idea similar to the power-of-2 strategy described above, but now with
control-U gates doing the work. The details, however, are rather intricate — ancillary work Qbits,
used reversibly, and other routines for modular additions are needed — and pertain to quantum
software design: see Ref. [26]. Figures 5.7-5.8 show a sketch of the idea.

5.4. Phase estimation protocol

System

P
ha

se

|u〉m |u〉m

...
...

...

· · ·

|0〉0 H

|0〉1 H

|0〉n−1 H

U U2 U2n−1

|Ψ(φ)〉n =⇒ QFT

Figure 5.9: The
quantum circuit
behind the phase
estimation proto-
col. Although the
top lines act as
control-Qbits, the
final superposition
state |Ψ(φ)〉n, thanks
to the Hadamards,
knows about the
phase φ of U. Noth-
ing interesting occurs
in the lower registry,
where the eigenstate
|u〉m, supposedly
known, is unchanged.

Here is another interesting application of QFT. Suppose someone has a way of implementing an
unknown m-Qbit black-box unitary U, and also provides me one of its eigenstates |u〉m. The problem
is to devise a circuit to estimate the phase 2πφ, with φ ∈ [0, 1), of the eigenvalue of U associated to
|u〉m:

U|u〉m = e2πiφ|u〉m .

With n-bits integers, I can always write the phase φ as:

φ =
a

2n
+ δφ where |δφ| ≤

1

2n+1
and a =

n−1∑
j=0

aj2
j with aj = 0, 1 . (5.66)

By employing an idea reminiscent of that used in the modular-exponentials of Sec. 5.3.5, we now
consider U2j with j = 0, · · · , n− 1, which acts as:

U2j |u〉m = e2πi(φ2j)|u〉m .

I can in principle assume that this is “calculable” as a power of the black-box U which is provided.

Consider the single-Qbit T-gate, whose action on the state |1〉 is T|1〉 = ei
π
4 |1〉 (while T|0〉 = |0〉):

hence T4 = Z. So, here m = 1, U = T, and |u〉m = |1〉. In this case φ = 1
8 = 0.001, where the

last expression should be intended in binary notation, since φ = 1
23 . More details are given in

the Qiskit textbook.

Example. The T-gate.

118

https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html

(Lecture Notes by G.E. Santoro) 5.4 Phase estimation protocol

I set an n-Qbit register |x〉n which will eventually encode a state |Ψ(φ)〉n having φ in its belly. For
that purpose, I devise a control-U2j gate with the control-Qbit being the computational basis jth-Qbit
and the unitary U2j acting on the |u〉m “target” register:

cj−U2j |xj〉j ⊗ |u〉m = |xj〉j ⊗
(
e2πi(φ2j)xj |u〉m

)
=
(
e2πi(φ2j)xj |xj〉j

)
⊗ |u〉m .

Important: This gate does nothing if xj = 0, while it adds a phase e2πi(φ2j) to the state |u〉m if
xj = 1. As such, it is a legitimate phase-control gate, which does not change the computational
basis state |xj〉j , and with |u〉m as target. Nevertheless, the added phase can be seen as “borrowed”
by the computation state |xj〉j — recall that |u〉m is an eigenstate of U, and therefore it is not
“essentially changed” by this phase —, as highlighted by the second form in the last expression.
And this leads to profound consequences if I act on a superposition of computational states:

cj−U2j (Hj |0〉j)⊗ |u〉m =
1√
2

(
|0〉j + e2πi(φ2j)|1〉j

)
⊗ |u〉m . (5.67)

!

Now we are ready to proceed. We implement the quantum circuit shown in Fig. 5.9. Starting from
|0〉n, with the usual Hadamard-trick we arrive at the following final state of the n-Qbit register:

|Ψ(φ)〉n =
1√
2n

(
|0〉n−1 + e2πi(φ2n−1)|1〉n−1

)
⊗ · · · ⊗

(
|0〉1 + e2πiφ21

|1〉1
)
⊗
(
|0〉0 + e2πiφ|1〉0

)
=

1√
2n

1∑
xn−1=0

· · ·
1∑

x0=0

e2πiφ(xn−12n−1+···+x020)|xn−1〉n−1 ⊗ · · · ⊗ |x0〉0

=
1√
2n

2n−1∑
x=0

e2πiφx|x〉n . (5.68)

Observe how the control-gates did not create any entanglement between the |x〉n register and the
“target” |u〉m register, but did indeed create non-trivial controlled-phase interactions within the |x〉n
register, thanks to the Hadamard superposition.

As stressed in various occasions, nothing could be more pointless than performing a projective
measurement on the computational basis on |Φ(φ)〉n. But imagine feeding this state to an U−1

QFT

Quantum machine. You would then get:

U−1
QFT|Ψ(φ)〉n =

1√
2n

2n−1∑
x=0

e2πiφxU−1
QFT|x〉n =

1

2n

2n−1∑
x=0

2n−1∑
k=0

e2πiφxe−2πixk/2n |k〉n

=

2n−1∑
k=0

(
1

2n

2n−1∑
x=0

e2πiδφxe2πi(a−k)x/2n
)
|k〉n . (5.69)

where we used Eq. (5.66).

The probability of measuring, on the state U−1
QFT|Φ(φ)〉n, the computational state |k〉n can be now

easily extracted to be:

P(k) =

∣∣∣∣ 1

2n

2n−1∑
x=0

e2πiδφxe2πi(a−k)x/2n
∣∣∣∣2 . (5.70)

For δφ=0, i.e., if the n-bit representation of the phase φ is exact, then we would have a Krönecker-delta
appearing in P(k):

P(k)|δφ=0 =

∣∣∣∣ 1

2n

2n−1∑
x=0

e2πi(a−k)x/2n
∣∣∣∣2 = δa,k , (5.71)

119

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

i.e., the probability P(k) is perfectly peaked on the computation state representing the value a = 2nφ.

What about the more realistic case in which δφ 6= 0? Then the probability that I measure a k that
ends-up being the correct a is:

P(k = a) =

∣∣∣∣ 1

2n

2n−1∑
x=0

e2πiδφx

∣∣∣∣2 =

∣∣∣∣ 1

2n
sin (πδφ2n)

sin (πδφ)

∣∣∣∣2 . (5.72)

If this gives you a déjà vu sensation, you are totally right: it is precisely the same algebra behind the
period-finding strategy of Sec. 5.2. And indeed, since |δφ| ≤ 1

2n+1 , see Eq. (5.66), you can use the
same approximations used for the period-finding estimates, arriving at the same bound found there:
14

P(k = a) =

∣∣∣∣ 1

2n
sin (πδφ2n)

sin (πδφ)

∣∣∣∣2 ≈ sin2(π2nδφ)

(π2nδφ)2
≥ 4

π2
= 0.405 · · · (5.73)

So, you have a good probability of getting the n-bit integer a = nint(2nφ). And one can improve the
bound in the probability by adding extra bits. As shown by Cleve et al. [27][App.C], the best n-bit
approximation to φ is obtained with a probability Pε > 1−ε provided you use a slightly larger register
with n′ = n+

⌈
log2

(
1
2ε + 1

2

)⌉
Qbits.

Python exercise 5.2. Using Qiskit, apply the phase estimation protocol to determine the phase of
the T-gate.

5.5. Finding eigenstates and eigenvalues of an Hamiltonian

The crucial input in the phase-estimation protocol is our ability to “prepare” |u〉m, an eigenstate of
U, and our ability to “code” U on a QC with a number of elementary gates that scales polynomially
withm. Now I will show a beautiful illustration of a similar scheme for the determination of eigenstates

System

C
lo
ck

|ψ0〉m

...
...

...

· · ·

|0〉0 H

|0〉1 H

|0〉n−1 H

U∆T U2
∆T

U2n−1
∆T

=⇒ QFT

Figure 5.10: The
circuit to determine
the eigenvalues of
a physical Hamil-
tonian. U∆T

represents here the
evolution operator
for a time-step ∆T,
which we assume to
be able to represent
efficiently.

and eigenvalues of a physical Hamiltonian Ĥ.

To illustrate the ideas, I show how we could use a QC to solve the quantum problem for a single
particle in one-dimension [2]. This is more an excuse, with a familiar illustration, than a necessity:
finite-dimensional interacting spin local Hamiltonians would be an alternative, indeed even more
appropriate, example. We will comment later on the generality of the approach.

14If you plot f(x) = sin2 πx
(πx)2

versus x you realise that f(x) ≥ f(1
2

) = 4
π2 for |x| ≤ 1

2
. Identify then x = 2n|δφ|, and the

result follows.

120

(Lecture Notes by G.E. Santoro) 5.5 Finding eigenstates and eigenvalues of an Hamiltonian

Suppose we have a quantum particle in the region [−L,L], and we discretise this domain in N = 2m

grid points at a distance ∆X. To do that, I insist in using the variable x to be the usual m-bit integer,
x = 0, · · · , 2m − 1, and I use x as a label of the grid points:

Xx = −L+ x∆X with x = 0, · · · , 2m − 1 and ∆X =
2L

2m − 1
.

I hope you can tolerate this strange notation, whose only useful ingredient is that it preserves the
standard integer label x for the computation basis states |x〉m of an m-Qbit register.

The wave-function ψ(X) of the quantum particle is now represented as:

|ψ〉m =

2m−1∑
x=0

ψx|x〉m with ψx = ψ(Xx) .

A remarkable gift of a QC. Notice the remarkable fact that with an m-Qbit quantum register
I allow an exponentially large number of grid point in the interval [−L,L]. A similar gift will soon
occur for the time-evolution. Observe, however, that Mermin’s caveat, suggested when discussing
the QFT, applies: The “mathematically simple” operation x → x + 1 (here neighboring points
on the grid) translates into a physically quite complex (and non-local) operation on the Qbits
representing the state |x〉m. Hence, for instance, representing a discretised Laplacian on our QC
would be a non-trivial issue. More about this in the final comments.

i

Now we consider the time-evolution operator over a fixed time interval ∆T:

U∆T
= e−

i
~ Ĥ∆T , (5.74)

where Ĥ denotes the Hamiltonian acting on the 2m-dimensional Hilbert space of the problem. As
shown by Lloyd in a seminal paper on Science in 1996 [28], one can “simulate” U∆T

efficiently on a
QC for a large class of physically significant Hamiltonians. Lloyd’s idea is based on the application of
Suzuki-Trotter decompositions of Ĥ. More precisely, if

Ĥ =

L∑
`=1

Ĥ` with a k-local Ĥ` ,

where k-local means that it involves interaction of at most k-Qbits, then the standard Lie-Trotter
first-order decomposition

e−
i
~ Ĥt =

(
e−

i
~ Ĥ1

t
P · · · e− i

~ ĤL
t
P

)P

+O
(
t2

P

)
, (5.75)

can be used to argue that one can simulate e−
i
~ Ĥt, for a given t, with an accuracy ε using a number

of quantum gates which scales as ∼ PLN2
k , where Nk = 2k is the local Hilbert space dimension of the

k-interacting Qbits. 15

15Each quantum gate must be devised so that the experimental error less than ε/(PLN2
k), in order to produce an overall

error ε. The quadratic error in the first-order Lie-Trotter decomposition implies that the minimum number of steps
needed to propagate the system for a time t with an accuracy ε scales as Pmin ∼ t2/ε, but each individual unitary
term e−

i
~ Ĥ`t/P is be applied for a time t/P.

121

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Consider, to exemplify, a (possibly anisotropic and disordered) Heisenberg model on a hyper-cubic
lattice in d dimensions:

Ĥ =
∑
〈x,x′〉

∑
α=x,y,z

Jααx,x′ σ̂
α
x σ̂

α
x′ .

Then L = 3dNsites, and each link ` refers to a physical link 〈x,x′〉 on the lattice and a choice of
α = x, y, x in the two-site interaction term σ̂αx σ̂

α
x′ . The two-Qbit gate that you need to implement

must encode the 4× 4 unitary matrix exp (ibσ̂αx σ̂
α
x′) with an appropriate b.

Example. Heisenberg model on a cubic lattice.

Representing the Hamiltonian. For a particle in one-dimension, think of how you would
implement the potential energy and the real-space-discretised Laplacian operator (kinetic energy)
by using a Trotter decomposition of Ĥ. What type of quantum gates would you need to represent
U∆T

?

i

So, let us assume we have an efficient circuit for constructing U∆T acting on the m-Qbit state
(target) register where we want to encode the wave-function |ψ〉m. How would we prepare an initial
state? This is a difficult task, in general. But, for our purpose, it is perfectly legitimate to think that
you start from a state entirely localised at a single point on the grid, i.e., a single computational basis
state:

|ψ0〉m = |x(0)〉 .
This choice is good to search for eigenstates that have a non-zero projection on |ψ0〉m.

Let us now discuss time and the Schrödinger dynamics. I want to propagate the evolution up to a
final time Tfin and I set a grid of discrete times using n-bit integers t = 0, 1, · · · , 2n − 1. Notice that
t is here an integer label for the actual time, which is discretised as:

Tt = t∆T with t = 0, · · · , 2n − 1 and ∆T =
Tfin

2n − 1
.

For reasons that will be hopefully clear soon, I will promote the n-bit integer t into an n-Qbit register
with computational basis denoted by |t〉n: we might call it the “clock” register. The “t = 0” state would
be associated to the |0〉n = |0〉n−1 · · · |0〉0. We now set-up a series of control-U gates, as pictorially
denoted in Fig. 5.10. The first control-U acts with a control on the clock Qbit-0, and target on the
physical m-Qbit register:

c0−U∆T
|t0〉0 ⊗ |ψ0〉m = |t0〉0 ⊗

(
Ut0

∆T
|ψ0〉m

)
.

In words: it applies the evolution operator U∆T
if the clock state is |1〉0, while it is the identity if

the clock is in state |0〉0. It does not change the clock state (which acts as a control Qbit), but only
the (target) physical register. As such, it is a perfectly legitimate control-unitary. Notice that, unlike
the phase-estimation protocol, now this is not simply a phase that the target can “lend” to the other
register. Notice also the magic that occurs if I apply such a control-U to a superposition of clock
states, through the usual Hadamard trick:

(c0−U∆T
)H0|0〉0 ⊗ |ψ0〉m =

1√
2

(
|0〉0 ⊗ |ψ0〉m + |1〉0 ⊗U∆T

|ψ0〉m
)
. (5.76)

Entanglement between clock and physical registers has been generated. One more step, with the
control acting on clock state |t1〉1, with a unitary U2

∆T
will show the clear structure that emerges:

(c1−U2
∆T

) (c0−U∆T)H1H0|0〉1|0〉0 ⊗ |ψ0〉m =
1√
22

(
|0〉1|0〉0 ⊗ |ψ0〉m + |0〉1|1〉0 ⊗U∆T |ψ0〉m

+ |1〉1|0〉0 ⊗U2
∆T
|ψ0〉m + |1〉1|1〉0 ⊗U3

∆T
|ψ0〉m

)
.

122

(Lecture Notes by G.E. Santoro) 5.5 Finding eigenstates and eigenvalues of an Hamiltonian

The structure should be clear: each clock-state |t〉n is associated to a number of applications of U∆T

as appropriate for the “integer time” t associated to the binary string (tn−1, · · · , t0). The general
expression for the final state generated after all the control-gates have acted, after Hadamards on the
clock Qbits, as prescribed by Fig. 5.10, is therefore:

|Ψfin〉n+m =
1√
2n

2n−1∑
t=0

|t〉n ⊗
(
Ut

∆T
|ψ0〉m

)
. (5.77)

Notice the very complex entangled superposition of states at all times, with the clock register states
|t〉n selecting the appropriate “time-frame” for the system states. As usual, no point in measuring
now!

Before applying the usual QFT machine, let us pause for a second and rewrite the final state
by expanding the system states in terms of eigenfunctions of the Hamiltonian Ĥ, with Ĥ|φα〉m =

Eα|φα〉m. Without loss of generality will assume that all Eα ≥ 0. The initial state is expanded as:

|ψ0〉m =

2m−1∑
α=0

Cα|φα〉m ,

where Cα = 〈φα|ψ0〉m are overlap coefficients. Hence the action of the evolution operator is now
simple:

Ut
∆T
|ψ0〉m =

2m−1∑
α=0

Cαe−
i∆TEα

~ t|φα〉m .

Therefore, the final state can be written as:

|Ψfin〉n+m =
1√
2n

2n−1∑
t=0

2m−1∑
α=0

Cαe−
i∆TEα

~ t|t〉n ⊗ |φα〉m . (5.78)

Now we apply UQFT to the clock-registers to move to the “Fourier basis”, while doing nothing to the
physical state register. We get:

|Ψ̃fin〉n+m = UQFT ⊗ 1m|Ψfin〉n+m =
1√
2n

2n−1∑
t=0

2m−1∑
α=0

1√
2n

2n−1∑
f=0

Cαe−
i∆TEα

~ te2πift/2n |f〉n ⊗ |φα〉m

=

2n−1∑
f=0

2m−1∑
α=0

Cα

(
1

2n

2n−1∑
t=0

e−
i∆TEα

~ te2πift/2n
)
|f〉n ⊗ |φα〉m

=

2n−1∑
f=0

2m−1∑
α=0

CαAf,α|f〉n ⊗ |φα〉m . (5.79)

Here, I have first reshuffled the various sums and finally highlighted an important factor

Af,α =
1

2n

2n−1∑
t=0

e−
i∆TEα

~ te2πift/2n =
1

2n

2n−1∑
t=0

e2πi(f
2n−f̃α)t , (5.80)

multiplying the amplitude of each of the product states participating into the final entangled super-
position. This second expression for Af,α is written in terms of dimensionless frequencies

0 ≤ f̃α =
Eα∆T

2π~
≤ 1 , (5.81)

where the time-step ∆T is assumed to be sufficiently small, so that even the largest rescaled frequency
does not exceed 1. 16

16Observe that, most likely, the highest part of the spectrum is not nicely captured with a finite-dimensional truncation
of the Hilbert space. As usual, the low-energy part of the spectrum is safer.

123

Quantum Fourier Transform (Lecture Notes by G.E. Santoro)

Suppose we now perform, after QFT, a projective measurement on the clock state |f〉n. This
measurement is associated to a projector P̂f = |f〉n〈f | ⊗ 1m. The probability of measuring the value
f for the clock register is therefore:

P(f) = 〈Ψ̃fin|P̂f |Ψ̃fin〉 =

2m−1∑
α=0

|Cα|2|Af,α|2 =

2m−1∑
α=0

|Cα|2
∣∣∣∣ 1

2n

2n−1∑
t=0

e2πi(f
2n−f̃α)t

∣∣∣∣2 . (5.82)

The state of the system, upon measuring f , would collapse into:

|Ψ̃f 〉 =
1√
P(f)

|f〉n ⊗
(2m−1∑
α=0

CαAf,α|φα〉m
)
.

The square-modulus of Af,α in the expression for P(f) reveals the by-now familiar structure we
have observed in the phase-estimate protocol and in the period-finding problem, with a few extra
complications. By considering the usual nearest-integer trick of taking sα = nint(2nf̃α) we can write:

f̃α =
sα
2n

+ δα with 0 ≤ sα < 2n − 1 and |δα| ≤
1

2n+1
. (5.83)

Then:

Af,α =
1

2n

2n−1∑
t=0

e2πi f−sα2n te−2πiδαt (5.84)

Suppose that our rescaling induced by ∆T in Eq. (5.81) is such that f̃ᾱ has an exact n-bit binary
representation, hence δᾱ = 0, for a specific eigenvalue associated to ᾱ. Then the geometric sum in
Eq. (5.84) would precisely 17 give a Krönecker-delta, and you would find that:

Af,ᾱ = δf,sᾱ =⇒ P(f) = δf,sᾱ |Cα|2 +
∑
α6=ᾱ

|Cα|2|Af,α|2 .

Hence the value f = sᾱ is obtained with a relatively high probability, dominated by the overlap |Cᾱ|2.
Correspondingly, if f = sᾱ is measured by the clock register, and you neglect that possibility that such
an f -value was generated by a different α′ 6= ᾱ — notice that |Af=sᾱ,α′ |2 is very small, by destructive
interference, but not necessarily zero — then the state has collapsed into:

|Ψ̃f=sᾱ〉 = |sᾱ〉n ⊗ |φᾱ〉m .

This tells us that we have created a filter for the energy eigenstates.

17You are summing powers of all roots of unity. A simple geometric series calculation shows that for all integers a:

1

2n

2n−1∑
t=0

e2πi a
2n
t = δa,0 .

124

6. Quantum cryptography

Cryptography is an old and fascinating subject. 1 The public-key RSA cryptographic system
currently used was a great discovery, based on a smart use of number theory. But the security of
it relies on the believed classical intractability of integer factorisation, which you could break with
a Quantum Computer. Even without a QC, RSA relies on the fact that no superior mathematical
intelligence, within the enemy field, comes out with a very very smart classical algorithm, based on
a yet-to-discover theorem, which would allow integer factorisation with polynomial resources. “You
never know...”, remember?

We will see below that Quantum Mechanics provides an absolutely secure cryptography, allowing
the practical implementation of the most secure of all cryptographic systems: the Vernam cypher.

6.1. To be sure: the Vernam cypher

In 1919, Gilbert Vernam, an AT&T Bell Labs engineer, patented a cryptosystem, known as Vernam
cypher, an example of a one-time pad cypher based on the logic XOR. The essential aspects of this
cypher can be summarised as follows. Agata (A from now on) wants to send a secrete message to
Bertuccio (B from now on). To encode a message A does the following.

A: Coding.

C1) The plain-text message is e.g. ASCII-translated into a binary string of n bits. For instance
“Nel mezzo del cammin di nostra vita”, a 35 characters string, including spaces, with 8-bits
for each ASCII-character, would translate into the following n = 280 binary string:

a = 010011100110010101101100001000000110110101100101011110100111101001101111001000000110010001100101

011011000010000001100011011000010110110101101101011010010110111000100000011001000110100100100000

0110111001101111011100110111010001110010011000010010000001110110011010010111010001100001

C2) A takes a coding-key c = (cn−1, · · · , c0) as long as the message, n-bits, and calculates the
bitwise sum (mod 2), without carry-overs:

b ≡ a⊕ c = (an−1 ⊕ cn−1, · · · , a0 ⊕ c0) =⇒ b = encoded message

The result b is then sent to B on a public channel, which we assume to be perfect, without
errors.

i

1Read the beautiful book by Simon Singh, The Code book, to know more about this. Chapter 7 of this book tells
a very nice story: that of Pretty Good Privacy (PGP), a free software created by Phil Zimmermann, a computer
scientist, in 1991. PGP allows to quickly encrypt and digitally sign messages on a personal computer, using RSA
to encrypt a short key of a traditional symmetric cypher, used in turn to encrypt a much longer message. I suggest
you to read it. It explains very nicely the idea of “digital signature”. Phil Zimmermann was subject to a grand-jury
investigation in 1993: FBI was “unhappy” with PGP. The case against Zimmermann was dropped only in 1996.

125

https://en.wikipedia.org/wiki/Gilbert_Vernam
https://en.wikipedia.org/wiki/Gilbert_Vernam
https://en.wikipedia.org/wiki/One-time_pad

Quantum cryptography (Lecture Notes by G.E. Santoro)

B: Decoding.

D) B receives the encoded message b. To decode it, B needs to possess the same secret key c used
by A. In other words, the “decoding-key” for the inverse transformation is d = c. Indeed:

b⊕ c = (a⊕ c)⊕ c = a =⇒ a = decoded message

since cj ⊕ cj = 0 and ⊕ is associative.

i

Re-using keys leads to disaster. Indeed if two messages a(1) and a(2) are coded with the same key,
hence b(1) ≡ a(1) ⊕ c, and b(2) ≡ a(2) ⊕ c, then by bitwise summing the two encoded messages the key
disappears:

b(1) ⊕ b(2) = a(1) ⊕ a(1) ,

and it would be simple for a crypto-analyst to recover the two original messages.

The secret of a secret key. Crucial for perfect secrecy is that the key c chosen by A is random.
Claude Shannon published in 1949 a paper entitled Communication Theory of Secrecy Systems where
his studies on the Mathematical Theory of Communication are applied to what he called theoretical
secrecy. Here is a very brief summary of the main concepts of relevance to us.

First, let us explain the main terms of the problem. A message M is a sequence of letters from an
alphabet of symbols M, for instance English, including all the symbols you need, punctuation, space,
etc. Given a certain number of symbols |M|, and a maximum length LM of messages, you can in
principle form a huge number of messages, |M|LM , most of which meaningless. Some are meaningful,
however, and you want to encrypt them. The message M should be encrypted into a cryptogram E

by using a transformation T, also known as key, which is essentially a one-to-one function which you
can invert to obtain the message back from the cryptogram:

E = TM
decrypt
=⇒ M = T−1E .

The alphabet used in the cryptogram could be entirely different from M, and it could include M as a
subset. Perhaps the simplest transformation key is the so-called Caesar’s cipher, a simple substitution
cipher which works as follows. You take the message M = m1m2m3m4 · · · and you apply to each
letter a function f which “moves letters” by a fixed amount k, f(m) = m + k mod 26, with the 26
letters of the alphabet enumerated as 0, · · · , 25:

E = e1e2e3e4 · · · = f(m1)f(m2)f(m3)f(m4) · · ·

For instance:

M = avecaesarcastraparamus k=2
=⇒ cxgecguctecuvtcrctcowu

More generally, the function f is only required to be invertible, and could be any permutation of
the 26 letters. As you probably know, Caesar’s cipher, and its variants with permutations of letters,
are very easy to break because they do not change the relative frequency of letters appearing. But
smarter transformation keys have been invented, for instance the so-called Vigenère cipher, where
the substitution key ki changes with a given period d, so that ei = fi(mi) = mi + ki mod 26. For
instance, with d = 3:

M = avecaesarcastraparamus k=234
=⇒ cyiediudvedwvuerdvcpyu

The case in which ki is random and has no period leads to the Vernam cipher, as we shall later discuss.

126

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

(Lecture Notes by G.E. Santoro) 6.1 To be sure: the Vernam cypher

More generally, you could think of having a whole set of these transformation keys which you could
use to encrypt your messages. Needless to say, there is no restriction on the alphabet used in the
cryptograms, nor on the length of the cryptogram, which could differ from the length of the message:
the only important requirement is that any transformation T you apply, should be invertible.

More formally, see sketch in Fig. 6.1, suppose that there is a finite number of messages 2 {Mm,m =

Figure 6.1: The spaces of messages
and cryptograms in Shannon’s setting
of a perfect secrecy system. The blue
and dashed red arrows denote two
different cryptographic keys (one-to-
one transformations) from the space of
messages to that of cryptograms. Mes-
sages and cryptograms can use a dif-
ferent alphabet of symbols. Observe
that the second message from the top
is mapped into the same cryptogram
by the two different keys: we will see
that this is not good for a perfectly
secure system.

1, NM}, each with a certain a priori probability P(Mm). Let us agree to disregard all messages with
zero probability, so that P(Mm) > 0. The messages use letters from a given alphabet of symbols
M, for instance, English, or, after an ASCII-translation, binary: it doesn’t matter. Assume that the
possible cryptograms also form a finite space {Ee, e = 1, NE}, and use a possibly different alphabet of
symbols. The space of “cryptographic keys” {Kk, k = 1, NK} is such that each Kk is associated to a
function or transformation Tk, which maps one-to-one — for a unique decoding of a cryptogram —
a message Mm into a cryptogram Ee:

Ee = TkMm
decrypt
=⇒ Mm = T−1

k Ee .

We can associate a probability P(Kk) to the key Kk: the probability of using the transformation Tk.
Clearly, in order for the transformations to be one-to-one, one must have at least as many cryptograms
as messages: NE ≥ NM.

Define now the conditional probability P(Ee|Me) as the sum of all the key probabilities for the
transformations leading from message Mm to cryptogram Ee:

P(Ee|Mm) =
∑
k

PEe=TkMm(Kk) . (6.1)

Obviously, the probability of a certain cryptogram Ee from any message is:

P(Ee) =
∑
m

P(Ee|Mm) . (6.2)

Now Bayes’ theorem allows us to calculate the so-called a posteriori probability of message Mm given
that cryptogram Ee is intercepted (hence P(Ee) 6= 0):

P(Mm|Ee) =
P(Ee|Mm)P(Mm)

P(Ee)
∀ Mm provided P(Ee) 6= 0 . (6.3)

2This is a simplifying assumption, since arbitrarily long messages would be uncountably many and there are technical
difficulties in defining a probability for all subsets of an uncountable set. You need the theory of measure to do that.

127

Quantum cryptography (Lecture Notes by G.E. Santoro)

Shannon defines the perfect secrecy condition to be given by the fact that

P(Mm|Ee) = P(Mm) ∀ Mm,∀ Ee independently of the value of P(Mm) . (6.4)

In words, this tells us that the a posteriori probability that I would assign to the message Mm, given
that the cryptogram Ee was intercepted, does not differ at all from the a priori probability of Mm:
the information acquired by detecting Ee has not changed in anything the probability of the message
originating it. Very reasonable. Now use Bayes’ theorem, and arrive at:

Perfect secrecy condition.

Perfect secrecy ⇐⇒ P(Ee|Mm) = P(Ee) ∀ Mm, ∀ Ee with P(Ee) 6= 0 . (6.5)

This is Theorem 6 in Shannon’s paper. In words, the probability of every cryptogram used must
be totally independent of the original message.

i

Figure 6.2: A perfect system with
n = 4 messages. All key probabilities
are identical, as well as the probabili-
ties of the n cryptograms.

Notice that this leads to a constructive recipe for a perfect secrecy system. Indeed, observe that:

1) Eq. (6.2), where a sum over messages appears, combined with Eq. (6.5), dictates that there must
be only one message Mm leading to Ee, i.e., a uniquely defined key k̄(m, e) must exist such that:

P(Ee) = P(Ee|Mm) = PEe=Tk̄Mm(Kk̄) (6.6)

2) Consider now all the Ee which are reached by a transformation, hence have P(Ee) > 0: they must
be, in number, ≥ NM, for the transformations to be one-to-one. Each message Mm — imagine
fixing it — must lead to any of these different Ee with a unique and different key k̄. Hence the
number of keys must be greater than the number of messages, NK ≥ NM.

3) Now imagine fixing a Ee with P(Ee) > 0 and consider all different keys sending different messages
Mm to that particular Ee: all those keys must have the same probability, by Eq. (6.6).

4) Perfect systems in which n = NM = NK = NE are such that all keys have probability 1/n and,
likewise, all cryptograms have probability 1/n:

P(Ee) =
1

n
= P(Tk) .

The probabilities of the n different messages do not have to be equal, of course. 3

3Notice that there might be more keys than messages, hence correspondingly more cryptograms than messages. This
is possible, although unnecessary. What would you conclude about the probabilities of keys and cryptograms?

128

(Lecture Notes by G.E. Santoro) 6.1 To be sure: the Vernam cypher

Fig. 6.2 realises a perfect secrecy system with n = 4.

Let us verify that Vernam’s cipher is indeed a perfect secrecy system. There are different ways
to prove that. To be concrete, let the messages be written in ASCII-binary strings, as Dante’s “Nel
mezzo del cammin”. Dante’s string a is far from being a random string, of course. Incidentally,
even a Sunday crypto-analyst would recognise the 6 occurrences of 00100000 — the ASCII binary
for 32, the space — or the fact that most of the 8-long binary segments of the string start with 011,
consequence of the fact that most of the ASCII characters for ordinary text symbols are over 64. This
is however not important. The bitwise (mod 2) sum bj = aj ⊕ cj allows us to restrict our attention to
a single bit j. Define the marginal probability for bit bj as

P(bj) =
∑

all other bits 6=j

P(b) ,

and similarly for P(aj) and P(cj). Consider now P(bj). The XOR Vernam cypher implies that:

P(bj = 0) = P(aj = 0 ∧ cj = 0) + P(aj = 1 ∧ cj = 1)

= P(aj = 0)P(cj = 0) + P(aj = 1)P(cj = 1)

P(bj = 1) = P(aj = 0 ∧ cj = 1) + P(aj = 1 ∧ cj = 0)

= P(aj = 0)P(cj = 1) + P(aj = 1)P(cj = 0) ,

where we use that fact that the key and the message are uncorrelated, hence joint probabilities factorise.
You can rewrite these in matrix form, abbreviating p0 = P(cj = 0) and p1 = P(cj = 1), as follows:(

P(bj = 0)

P(bj = 1)

)
= T

(
P(aj = 0)

P(aj = 1)

)
with T =

(
p0 p1

p1 p0

)
. (6.7)

Notice that T is a stochastic matrix (SM). And you remember that a “fair coin flipping” SM is such
that the outcome probability is (1

2 ,
1
2)T independently of the “incoming probability” of the source. Such

a T — recall our classical version of the “beam splitter” in Eq. (1.12), Sec. 1.2.1 — is given by:

T =

(
1
2

1
2

1
2

1
2

)
,

and is associated to a random unbiased key, where cj is equally likely to be 0 or 1. The probability of
bit bj is, in such a case, guaranteed to be equally random and unbiased, independently of the original
message bit aj . For binary strings of length n the Shannon entropies of both the coding-keys c and
the cryptograms b are the maximum possible: n log 2.

An alternative equivalent formulation of the story invokes the concept of mutual information. The
mutual information of two (discrete) random variables X and Y is defined as:

I(X;Y) = I(Y ;X) =
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)

def
= DKL(PXY ||PX ⊗ PY) ≥ 0 , (6.8)

where the RHS defines the Kullback-Leibler divergence, and the non-negativity of I(X;Y) follows
from Jensen’s inequality. Very simple algebra shows that:

I(X;Y) = H(X)−H(X|Y) ,

where
H(X) = −

∑
x

P(x) log P(x) ,

is the Shannon entropy of the variable X, while H(X|Y) is the conditional entropy:

H(X|Y)
def
=
∑
y

P(y)H(X|Y = y) = −
∑
x,y

P(y) P(x|y) log P(x|y) = −
∑
x,y

P(x, y) log
P(x, y)

P(y)
,

where, recall, P(x|y) = P(x, y)/P(y). For the present application, the fact that H(E) = H(E|M),
hence I(E;M) = 0, guarantees perfect secrecy.

129

Quantum cryptography (Lecture Notes by G.E. Santoro)

Delicate points of Vernam’s cypher. Two delicate points of the scheme emerge immediately.

Random numbers?) Who will give us a perfect source of random numbers? This problem has
affected Monte Carlo computer simulations for decades, before people realised that the
(pseudo)-random number generators used were perhaps not good enough. For cryptographic
applications, the requirements on the quality of the (pseudo)-random number generators is
even more demanding.

Key distribution?) The second delicate point of this one-pad cypher is that B has to share the
secret key c that A used in encoding. Hence, the problem of exchanging secret messages has
been transformed into the problem of exchanging secret random keys, a kind of catch-22
dilemma.

!

Here again I cannot refrain from quoting a paragraph from Mermin’s book.

The problem of exchanging such random strings in a secure way might appear to be identical to
the original problem of exchanging meaningful messages in a secure way. But at this point quantum
mechanics come to the rescue and provides an entirely secure means for exchanging identical sequences
of random bits. Pause to savor this situation. Nobody has figured out how to exploit quantum me-
chanics to provide a secure means for directly exchanging meaningful messages. The secure exchange
is possible only because the bit sequences are random. On the face of it one would think nothing could
be more useless than such a transmission of noise. What is bizarre is that human ingenuity combined
with human perversity has succeeded in inventing a context in which the need to hide information from
a third party actually provides a purpose for such an otherwise useless exchange of random strings of
bits.

N. David Mermin, Quantum Computer Science, Chapter 6, p. 139

6.2. Implementing Qbits with photon polarisation

The practical implementations of random key distributions exploit Qbits based on photons, more
precisely on the two polarisation states of a photon. Let me remind you of this. A photon with
wave-vector k in the z direction, say, can have only transverse polarisation in the xy plane, depending
on the way the “electric field” oscillates. Classical intuition on electromagnetic waves is vital for
understanding things, although the photon is ultimately a quantum particle.

k

ẑ

x̂

|l〉

ŷ

|↔〉

|↙↗〉
π
4

Figure 6.3: An electromagnetic plane-wave travelling along z, with
an electric field E = Re ε ei(kz−ωt). Here ε = x̂ = | l〉, and
ε = ŷ = |↔〉 denote “vertical” and “horizontal” linear polarisations,
corresponding to the |±, z〉 spin eigenstates. ε = 1√

2
(x̂ + ŷ) = |↙↗〉

and (not shown) ε = 1√
2
(x̂ − ŷ) = |↘↖〉 denote diagonal linear po-

larisations at ±45◦, corresponding to |±,x〉 spin eigenstates. Cir-
cular polarisations ε± = 1√

2
(x̂ ± iŷ), denoted as ε+ = |	〉 and

ε− = |�〉, cannot be by represented real polarisation vectors in this
figure. They would correspond, in the spin language, to |±,y〉 spin
states.

A plane-wave electromagnetic field travelling along the ẑ direction would have an electric field given

130

https://en.wikipedia.org/wiki/Pseudorandom_number_generator

(Lecture Notes by G.E. Santoro) 6.2 Implementing Qbits with photon polarisation

by (taking a unit amplitude):

E = Re εα,δ ei(kz−ωt) = Re

εα,δ︷ ︸︸ ︷(
x̂ cosα+ ŷ eiδ sinα

)
ei(kz−ωt)

= x̂ cosα cos(kz − ωt) + ŷ sinα cos(kz − ωt+ δ) , (6.9)

where the polarisation εα,δ has to be transverse, ẑ · εα,δ = 0, so that ∇ · E = 0. Real polarisation
vectors εα,δ=0 correspond to electric fields that oscillate linearly, at an angle α with respect to the
x̂ axis in Fig. 6.3. α = 0 correspond to “vertical” polarisation, α = π

2 to “horizontal” polarisation,
α = ±π4 to “diagonal” polarisations at ±45◦ from the x̂-axis. Complex polarisation vectors with δ 6= 0

lead to electric fields that move forward by making a spiral in the xy plane. They can be easily
obtained by making the photon pass through a wave-plate made of a birefringent material like calcite
or quartz, see App. B. Particularly noteworthy is the case of a circularly polarised wave, for which

ε± = επ
4
,±π

2
=

1√
2

(x̂± iŷ) ,

obtained through a quarter-wave plate, see below.

There is a very direct correspondence between polarisation states of the “photon” — pictured, as
before, through the corresponding E-field — and spin-1/2 eigenstates. With our Qbit computational
states we would write:

Z− states:

 |0〉 = |↑〉 7→ |l〉

|1〉 = |↓〉 7→ |↔〉
X− states:

 H|0〉 = |+,x〉 7→ |↙↗〉

H|1〉 = |−,x〉 7→ |↘↖〉
. (6.10)

Circularly polarised photons would correspond to |±,y〉 spin eigenstates, but will not be directly
relevant for our discussion. The analogy is so complete that there are simple analogues of the Stern-
Gerlach filter, indeed very simple to install on an optical table: optical polarisers. They are, essentially,
polaroid lens: materials with an anisotropic chain-structure, so as to “absorb” photons whose polarisa-
tion corresponds to E oscillating along the chain direction, while a photon would not be absorbed if its
polarisation is orthogonal to the chain, the so-called transmission axis. If a photon of linear polarisa-
tion εα,0 = x̂ cosα+ ŷ sinα, which we now denote as |εα,0〉 = cosα|l〉+ sinα|↔〉, travelling along the
ẑ-axis, passes through a polariser with transmission axis along the x̂ direction, then it passes through,
unaffected, with probability Pα = cos2 α, and is absorbed with probability sin2 α. The polariser then
acts as a measuring device for linear polarisation, indeed a filtering measuring device. For instance,
by sending a |k = kẑ, l〉 photon into a polariser with transmission axis along εα,0 you would have a
filtering measurement, and subsequent collapse, which might be described as:

|k = kẑ, l〉 → Polariser transmission axis εα,0
cos2 α−→ |k = kẑ, εα,0〉 (6.11)

sin2 α−→ is absorbed.

This is useful to prepare photons with a prescribed linear polarisation εα,0, see sketch in Fig. 6.4, even
from an unpolarised source.

A second very useful piece of optical device is an optically anisotropic crystal like calcite or
quartz, showing uniaxial birefringence. A birefringent crystal, see App. B for more details, shows
a polarisation-dependent index of refraction. In a uniaxial birefringent crystal there is a particular
optic axis, call it ŷ, where the index of refraction is ne, while in the other two directions, x̂ and ẑ,
the index of refraction is no (the subscripts e/o stand for extra-ordinary/ordinary). 4 At optical

4For calcite, CaCO3, no = 1.658 while ne = 1.486. For quartz, SiO2, the difference is much smaller but in the opposite
direction: no = 1.544 while ne = 1.553.

131

Quantum cryptography (Lecture Notes by G.E. Santoro)

|k, l〉

ẑ

x̂

|l〉

ŷ

Polariser

x̂

α

Pα=cos2 α

|k, εα,0〉
Figure 6.4: Preparation of a
photon of given polarisation
|εα,0〉 using a polaroid filter with
transmission axis oriented along
εα,0 = (x̂ cosα+ ŷ sinα).

wavelengths you could take the dielectric function to be a constant, but anisotropic, matrix:

ε = ε0

 n2
o 0 0

0 n2
e 0

0 0 n2
o

 , (6.12)

where ε0 is the vacuum permittivity (I am using SI units). Depending on the relative orientation of
the beam axis and of its polarisation with respect to the optic axis of the crystal, several modes of
operations are possible.

One of the most interesting applications of uniaxial crystals is in a planar geometry where the wave
enters the crystal orthogonally to the surface, and the optic axis is along the surface. This means that
the wave suffers no refraction, and propagates along the ẑ axis. Fig. 6.5 illustrates the wave-plate
geometry, with L the thickness of the crystal along the propagation direction. Solving Maxwell’s

k

ẑ ≡ k̂

x̂

L
ŷ = optic axis

εα,0
α

Figure 6.5: An electromagnetic
plane-wave travelling along z,
with an incoming electric field
E = Re εα,0 ei(k0z−ωt) linearly po-
larised along εα,0 = x̂ cosα + ŷ sinα,
entering a uniaxial crystal of thick-
ness L orthogonally to the surface
where the optic axis lays. When
exiting the polarisation is generally
complex: εα,δ = x̂ cosα + ŷ eiδ sinα,
with δ = 2π(ne − no) Lλ0

.

equations for a plane-wave in such a geometry is very simple, see App. B. The final polarisation is
now generally complex

εα,δ = x̂ cosα+ ŷ eiδ sinα , (6.13)

through a phase-factor δ = 2π(ne−no) Lλ0
which depends on the difference between the two refractive

indices, and on the ratio between L, the thickness of the crystal, and λ0, the wave-length of the
radiation in vacuum. Two cases are particular noteworthy. The first is known as quarter-wave-plate.
In a quarter-wave-plate L is such that:

δ = 2π(ne − no)
L

λ0
= ±π

2
. (6.14)

132

(Lecture Notes by G.E. Santoro) 6.2 Implementing Qbits with photon polarisation

The x̂ and ŷ components of the field now advance out-of-phase by π
2 . In the particularly important

case in which the original polarisation was perfectly diagonal, α = π
4 , the exit polarisation is circular:

επ
4
,0 =

1√
2

(x̂ + ŷ) → επ
4
,±π

2
=

1√
2

(x̂± iŷ) . (6.15)

The second quite important case is that of a half-wave-plate. In a half-wave-plate L is twice as
much as in the corresponding quarter-wave-plate:

δ = 2π(ne − no)
L

λ0
= π . (6.16)

The ŷ component is precisely reversed, hence α → −α. In the particularly important case in which
the original polarisation was perfectly diagonal, α = π

4 , the exit polarisation is anti-diagonal:

επ
4
,0 =

1√
2

(x̂ + ŷ) → ε−π
4
,0 =

1√
2

(x̂− ŷ) . (6.17)

It turns out that an appropriately oriented half-wave-plate, with its axis oriented as x̂HWP =

x̂ cos π8 + ŷ sin π
8 , plays the role of a Hadamard gate, see App. B for details, because it “mirrors”

linear polarisations in the correct way.

The second important application of uniaxial birefringence is as an analogue of the Stern-Gerlach
measurement apparatus for photon linear polarisation. By making the beam impinge at an angle θi
with respect to the crystal surface normal, assuming the optic axis of the crystal to be parallel to
the surface and the crystal to be thick enough, a classical beam of linear polarisation εα,0 is seen to
be “split into two beams” of different polarisations x̂ and ŷ, due to the different Snell’s-law-induced
refraction. See Figure 6.6. A single photon clearly is not “split”, but quantum mechanically goes either
in the x̂-polarised beam, with probability cos2 α, or in the ŷ-polarised beam, with probability sin2 α.

n̂ = optic axis

ŷ
ẑCalcite crystal

θi

θo θe

|ki, εα,0〉

|ki, x̂〉

cos2 α

sin2 α

|ki, ŷ〉

x̂
Figure 6.6: Polarisation-dependent
refraction of a photon passing through
a calcite crystal. We are assuming that
the optic axis of the crystal is parallel
to the crystal surface, as you would
have for a wave-plate. The incoming
momentum ki is now tilted at an angle
θi with respect to the surface normal,
provoking refraction of the incoming
wave. Notice the orientation of the
axes: the optic axis is now denoted by
n̂. The convention is identical to that
of Ref. [29][Fig. 1.2].

So, summarising: we know how to prepare photon states in any of the states |l〉, |↔〉, |↙↗〉 and |↘↖〉,
and we even have Hadamard-H gates, made of appropriately oriented half-wave-plates, to transform
one polarisation into the other. This is enough to proceed in our discussion, with the extra remark that
the momentum of the photon is actually not crucial in the story. Indeed, you can send the photons
very far away, tens of kilometres (before they get absorbed), from the place were they were produced,
through optical wave-guides. Sometimes even using the optical fibers that have been installed for
commercial telecom applications. The polarisation of the photon is preserved inside the wave-guide,
while the momentum obviously follows the complex path of the wave-guide. The only thing that the
two experimentalists at far away stations have to agree is “what is the |l〉 direction” in their setup,
and which individual photon they are talking about, i.e., they have to agree on the arrival time of the
individual photons.

133

Quantum cryptography (Lecture Notes by G.E. Santoro)

6.3. Exploiting the special nature of Quantum Randomness

Quantum measurements are as random as Nature can provide, according to QM. Still, the results
depend on the basis that you use for measurements, an extra luxury which a classical random source
would not provide. Preliminarly to discussing quantum key distribution protocols, let us comment on
a few important points.

Suppose you want create a random string of bits, 0 and 1. How would you do that? There
are classical methods, based on the electric noise in electronic devices, to do that. 5 Let us see
how one would do that with the randomness intrinsic in QM. You prepare photons all polarised at
επ

4
,0 = 1√

2
(x̂+ŷ), for instance by making them pass through an appropriately oriented polariser. Then

you measure the linear polarisation with a calcite crystal with optic axis oriented along ŷ. Photons will
come out, randomly with probability 1

2 and 1
2 , in either one of the two beams, polarised as |l〉 = |0〉

or as |↔〉 = |1〉. This is your random string of bits: computational Qbits in the standard Z-basis.

It is not a good idea to send the Qbits so prepared to B along the optical fiber: any measurement
device of the Z-type would be able to measure these Qbits, without collapsing them, because they are
Z-eigenstates.

But suppose that, randomly, A applies a Hadamard transformation (H) to the Qbits so prepared,
transforming |l〉 H−→ |↙↗〉 and |↔〉 H−→ |↘↖〉, before sending them through the optical fiber. Then, an
intercepting device would not know if the Qbit is an eigenstate of Z or and eigenstate of X, because of
the possible H applied. Hence, the outcome of a measurement performed at the intercepting station
would still be “0” or “1”, but the interceptor would have no way of knowing if this was because of
a certain outcome, in case a matching measurement basis was used, or because of a random 1

2 −
1
2

outcome followed by a collapse, in case the wrong measurement basis was used.

Changing preparation basis hides the information. So, by playing with the flexibility of
applying unitaries and changing the preparation basis, A can effectively “hide” the information
on the random string of Qbits prepared.

i

Let us see more details of how you might do that, by reviewing the protocol invented by Bennett
& Brassard [30] in 1984. See also Ref. [3][Sec.12.6.3]. Security of the BB84 protocol is discussed in
Ref. [3][Sec.12.6.5].

Technical problems. I must warn you that the technicalities involved in practical Quantum Key
Distributions are many: from the photon sources – usually not single-photon sources, but rather
strongly attenuated laser pulses 6 —, to detection efficiency of standard silicon photo-detectors,
not to mention the necessity for polarisation compensation when transmitting photons via optical
fibers. Alternatively to the polarization coding, techniques based on phase coding, using Mach-
Zehnder interferometric techniques, see [2][Sec.10.4.3], are also used. All of these practicalities can
in principle threaten the theoretical security of the protocol, and they have been addressed in many
papers. I will skip these details, giving only the general idea of the protocol.

5See inset of Fig. 1.11, taken from Ref. [14].
6Single photon sources were invented by A. Aspect in 1985. They should be distinguished from strongly attenuated
photon sources. If a beam is strongly attenuated so that the average number of photons is very small, say 〈n〉 = 1

100
,

then 99% of the time there is no photon, in 1% of the cases there is one photon, but, with a Poisson’s distribution,
there could also be 2, 3, etc. photons, and the coincidence counts would reveal the subtle difference with a true
single-photon source. See A. Aspect’s public lecture upon receiving the N. Bohr Gold Medal 2013, available on
YouTube.

134

https://www.youtube.com/watch?v=wcHdLKlybPM

(Lecture Notes by G.E. Santoro) 6.3 Exploiting the special nature of Quantum Randomness

6.3.1. The BB84 protocol

The first thing that A and B should agree is their “measurement” directions. Next, they have to
set a common timing: photons have to be sent at rate such that B can distinguish them, and one has
to have a clear way of establishing “which photon is which”, by a commonly established clock. Notice
that some photons might be lost for different reasons (channel losses, interceptions), but if a clear
timing is set, B will always know that “photon 2 did not arrive, but here is photon 3”.

A sends to B photon states which are chosen from the 4 possible preparations: Z-states, |0〉 or |1〉,
or X-states, H|0〉 or H|1〉. Recall that one possibility is that A first prepares the random string by
measuring along Z photons with polarization |↙↗〉, and then randomly applies H to the Z-eigenstates
obtained by the measurement, transforming some of the photons back to |↙↗〉 or |↘↖〉. Upon receiving
a photon, B can choose to directly measure the polarisation in the Z-direction, or rather in the
X-direction. Here is a scheme of a possible sequence of photons prepared by A and sent to B.

Photon N.→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quantum Transmitter
A random bits: 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1

A P-basis: X Z X Z Z Z Z Z X X Z X X X Z
A P-state: |↙↗〉 |↔〉 |↘↖〉 |l〉 |↔〉 |↔〉 |l〉 |l〉 |↘↖〉 |↙↗〉 |↔〉 |↘↖〉 |↙↗〉 |↙↗〉 |↔〉

Quantum Receiver
B M-basis: Z X X Z Z X X Z X Z X X X X Z
B M-eigenvalue: 1 nr 1 nr 1 0 0 0 nr 1 1 1 nr 0 1

Classical (authenticated) communication
B reports basis: Z X Z X X Z Z X X X Z
A confirms basis: ok ok ok ok ok ok

Raw key: 1 1 0 1 0 1

B reveals bits: 1 0

A confirms bits: ok ok

Final key → Information reconciliation & privacy amplification
Secret bits: 1 0 1 1

A few comments and explanations about this table.

Q-T) The first 3 rows describe the state preparation in A’s lab. A random string of bits leads to
a precise set of photon states (P-state) sent along the line, depending on the preparation basis
(P-basis).

Q-R) The next 2 rows describe the reception of photons at B’s lab. At least with our current technol-
ogy, B cannot store the photons received. Hence, a measurement should be done immediately,
with a basis randomly decided by B, noting down measurement basis-type (M-basis) and eigen-
value result (M-eigenvalue). In the example, photons n. 2, 4, 9 and 13 where not received (nr)
by B.

CC-1) By using a normal authenticated (so that B knows that is communicating with A) classi-
cal communication (CC), B reveals to A the measurement basis (M-basis) of all the photons
received.

CC-2) A replies by stating which of the measurement-basis agree with the preparation-basis.

Raw key) At this point there is a substring of bits which “in principle” agree in the two labs, denoted
as “Raw key”.

CC-3) For different reasons, there might have been errors (or interceptions). To gauge the statistics

135

Quantum cryptography (Lecture Notes by G.E. Santoro)

of the possible errors, a fractions of B’s bits measurements (M-eigenvalue) is communicated to
A.

CC-4) A confirms (or not) that the measured eigenvalues indeed agree. This leads to the estimate of
an error rate r.

Final key) The remaining bits (those not revealed) are secretly shared between A and B, but might
contain some (estimated to be ∼ r) fraction of errors. After that, a phase known as information
reconciliation and privacy amplification — essentially, classical error correction protocols —
follows.

Randomness of preparation is crucial: if E knows that type-Z is always prepared, in its possible
variants 0 and 1, then E measures in the Z basis without disturbing (certain outcome) and sends to
B. This strategy is avoided if A can randomly change the preparation basis.

The best E can do is to measure, randomly, either type-Z or type-X. But this can be spotted by
taking a fraction of the supposedly matched measurements and exchanging info on the state as well.

6.3.2. Important details

As we already remarked, there is a wealth of important technical details that you should take
care of before the idea behind BB84 becomes a working piece of apparatus. This is the usual gap
between physical ideas and engineering implementations. These details, important as they are, are
not quantum. Some of them, listed below, pertain to the world of classical information theory, and
must be applied to the raw key given by the BB84 algorithm.

Information reconciliation is essentially a classical error-correcting protocol which eliminates all
the residual errors in the raw key, due to either experimental imperfections or to external attacks,
i.e., measurements performed by third parties during the quantum transmission phase. The more
the technology evolves, the more it is important to do this in a highly efficient manner. For our
purposes, it suffices here to say that parity checks are often used. Read Ref. [3][Sec.12.6.2] for a
general presentation, and Ref. [31] for a discussion of some technical points.

Privacy amplification wants to guarantee that the final key obtained — after correcting the errors
in the raw key — is indeed secure. The problem is that during the error correction phase, which
occurs on a public authenticad channel, information on the key — for instance, parity bits — might
be intercepted by third parties. The goal is to effectively generate a new shorter key, out of the
error-corrected one, for which third parties have effectively no information. This is done by apply-
ing algorithms known in mathematics and in computer science as universal hash functions. Again,
Ref. [3][Sec.12.6.2] is a good starting point for a general introduction.

6.4. Exploiting quantum correlations due to entanglement

There is a second protocol, introduced in 1991 by Arthur Ekert [32] and known as E91, for Quantum
Key Distribution. Unlike BB84, this protocol is more symmetric, and is based on entangled pairs of
photons being sent to A and B, with polarisation measurements performed at the two stations.

The source emits pairs of entangled particles, one going to station A, the other to station B. In
terms of spins, let us say that the particles are in a singlet state, and that:

|ψent〉 =
1√
2

(
|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B

)
=

1√
2

(
|+,n〉A ⊗ |−,n〉B − |−,n〉A ⊗ |+,n〉B

)
, (6.18)

136

https://en.wikipedia.org/wiki/Quantum_key_distribution#Information_reconciliation_and_privacy_amplification
https://en.wikipedia.org/wiki/Quantum_key_distribution#Information_reconciliation_and_privacy_amplification
https://en.wikipedia.org/wiki/Universal_hashing

(Lecture Notes by G.E. Santoro) 6.4 Exploiting quantum correlations due to entanglement

where the second expression follows from rotational invariance, and guarantees that we can consider
equally well spin states in any direction n, rather than those in the z-direction. More practically, in
a Quantum Optics lab, the source emits pairs of polarization-entangled photons, obtained by a non-
linear process known as spontaneous parametric down-conversion. In terms of photon polarization
states, you would write:

|ψent〉 =
1√
2

(
|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B

)
, (6.19)

with the usual identification of |0〉 = |l〉 = |V 〉 and |1〉 = |↔〉 = |H〉.

6.4.1. CHSH version of Bell’s inequalities

Suppose at stations A and B the “spin” (or polarization) is measured in directions a and b, respec-
tively, so that the relevant operator is (σ̂A ·a)⊗ (σ̂B ·b). It might be useful to refresh the calculations
in Sec. 1.4, although I will rederive what we need.

|k〉| − k〉

Source of entangled particles

Station A Station B

ẑ

x̂

a

ŷ

ẑ

x̂

b

ŷ

Figure 6.7.: Schematics of an EPR experiment. Two particles with opposite momenta and spin-entangled
(or polarization-entangled, for photons) are send to two far-away experimental stations A and B where their
spin (or polarization) is measured into two different directions a, at A, and b, at B. The combined operator
that is being measured is (σ̂A · a)⊗ (σ̂B · b).

As you recall, individual spin measurements in any directions will always give eigenvalues ±1, with
a collapse of the state on the corresponding eigenstates. Hence, both A and B will obtain eigenvalues
σa = ±1 and σb = ±1, collapsing the state |ψ〉 into |σa,a〉 ⊗ |σb,b〉, a product state which we will
denote, for shortness, as |σa;σb〉:

|ψ〉
measure σa,σb with Pσa,σb

−−−−−−−−−−−−−−−−−−−−→ |σa,a〉 ⊗ |σb,b〉 . (6.20)

According to the rules of QM, the probability of a joint measurement of (σa, σb) on the state |ψ〉 is
given by Pσa,σb = |〈σa;σb|ψ〉|2. The expectation value for the combined measurement of the spins in
the two directions on a state |ψ〉 is given (by the usual trick of inserting identites) by:

E(a,b) = 〈ψ|(σ̂A · a)⊗ (σ̂B · b)|ψ〉
=

∑
σa,σb

〈ψ|σa;σb〉〈σa;σb|(σ̂A · a)⊗ (σ̂B · b)|σa;σb〉〈σa;σb|ψ〉

=
∑
σa,σb

Pσa,σbσaσb = P+,+ + P−,− − P+,− − P−,+ . (6.21)

The last expression gives the experimental procedure to obtain the expectation value, by collecting
the statistics of (infinitely many, in principle) measurements. This is true for any state |ψ〉.

137

Quantum cryptography (Lecture Notes by G.E. Santoro)

On the other hand, by using for |ψ〉 the second expression for |ψent〉 in Eq. (6.18), with n = a, and
the fact that:

〈±,a|σ̂ · b|±,a〉 = ±a · b ,

it is very simple to show that for the entangled state:

E(a,b) = 〈ψent|(σ̂A · a)⊗ (σ̂B · b)|ψent〉 = −a · b . (6.22)

The classical perspective. From a classical viewpoint, the measurement of an operator A is not
deterministic simply because there might be hidden variables, collectively denoted by λ, which we do
not control, leading to the result A(λ). I invite you to carefully read the original paper, Ref. [33],
where the physics is carefully discussed. Here, I simplify a bit the derivation, following Refs. [2, 3]. If
P (λ) denotes the probability distribution of the hidden variables λ, then you would predict a classical
expectation value

E(A) =

∫
dλ P (λ)A(λ) .

Suppose now that the two operators measured at two different stations are spins along directions a
and b, as before, and denote their measurements as Aa(λ) and Bb(λ). Clearly, Aa(λ) = ±1 and
Bb(λ) = ±1. Then you would predict a classical expectation value:

E(a,b) = E(AaBb) =

∫
dλ P (λ)Aa(λ)Bb(λ) . (6.23)

Consider now (omitting the variable λ, for brevity) measurements in different direction, more precisely:

AaBb +Aa′Bb +Aa′Bb′ −AaBb′ =
(
Aa +Aa′

)︸ ︷︷ ︸
agree:±2 disagree:0

Bb +
(
Aa′ −Aa

)︸ ︷︷ ︸
agree:0 disagree:±2

Bb′

= ±2 , (6.24)

where we used the fact that either Aa = Aa′ (they agree), hence Aa′ −Aa = 0 and Aa′ +Aa = ±2, or,
viceversa, Aa = −Aa′ (they disagree), hence Aa′ −Aa = ±2 and Aa′ +Aa = 0. In all cases, the result
is by inspection equal to ±2. Hence we can write the following inequality (omit again indicating the
λ-dependence of the quantities inside the integral):∣∣∣E(AaBb +Aa′Bb +Aa′Bb′ −AaBb′)

∣∣∣ =
∣∣∣ ∫ dλ P (λ)

(
AaBb +Aa′Bb +Aa′Bb′ −AaBb′

)∣∣∣
≤

∫
dλ P (λ)

∣∣∣AaBb +Aa′Bb +Aa′Bb′ −AaBb′
∣∣∣

= 2

∫
dλ P (λ) = 2 , (6.25)

where we used the integral inequality |
∫

dλ f(λ)| ≤
∫

dλ |f(λ)|, together with the normalization of
P (λ).

The Clauser, Horne, Shimony and Holt (CHSH) inequality. We conclude that the
quantity:

C(a,b,a′,b′) = E(a,b) + E(a′,b) + E(a′,b′)− E(a,b′) , (6.26)

is such that it should obey, classically, the inequality:∣∣C(a,b,a′,b′)
∣∣ =

∣∣E(a,b) + E(a′,b) + E(a′,b′)− E(a,b′)
∣∣ ≤ 2 . (6.27)

i

The remarkable fact is that there are directions (a,b,a′,b′) that violate this inequality, when
expectation values are calculated quantum mechanically. For instance, take all vectors in the xy

138

(Lecture Notes by G.E. Santoro) 6.4 Exploiting quantum correlations due to entanglement

plane, as n = x̂ cosφ+ ŷ sinφ with: φa = 0, φb = π
4 , φa′ = π

2 and φb′ = 3π
4 . Then, you immediately

calculate:
Cquantum(a,b,a′,b′) = −a · (b− b′)− a′ · (b′ + b) = −2

√
2 , (6.28)

which violates the inequality. Figure 6.8 illustrates this choice.

Station A Station B

ŷ

x̂

a

a′ b + b′

b− b′

ŷ

x̂

b

b′

Figure 6.8: The choice of unit vec-
tors a, b, a′ and b′ which leads to
Cquantum(a,b,a′,b′) = −2

√
2, thus vi-

olating the CHSH inequality.

6.4.2. The E91 protocol

The source sends polarization-entangled pairs of photons to the two stations at A and B. At A,
polarization measurements are performed in one of the three directions a1, a2, and a3, with φa1 = 0,
φa3 = π

2 (as discussed before, for the CHSH inequality) and φa2 = π
4 . AtB, polarization measurements

are performed in one of the three directions b1, b2, and b3, with φb1
= π

4 , φb3
= 3π

4 (as discussed for
the CHSH inequality) and φb2

= π
2 . Notice that there are directions which are definitely different, but

Station A Station B

ŷ

x̂

a1

a3

a2

ŷ

x̂

b1

b3

b2

Figure 6.9: The choice of unit vectors
a1, a2, a3 and b1, b2, b3 randomly used
at the two stations as measuring direc-
tions. Notice that the blue vectors a1,a3

and b1,b3 are different, and coincide
with the directions used in the CHSH in-
equality. The two new directions (in red)
a2 and b2 introduce common measuring
directions, since a3 = b2 and a2 = b1:
measurement results obtained for those
choices are perfectly correlated, and used
as a secret shared raw key.

there are now also directions that match: indeed, a2 = b1 and b2 = a3. Hence, quantum mechanically,
we are guaranteed that

E(a2,b1) = E(a3,b2) = −1 , (6.29)

i.e., the measurement performed at the two stations would be perfectly correlated: if A measures +1,
then B measures −1 and viceversa. The protocol then proceeds as follows:

1) After measuring many times in one of the directions aj and bj , A and B communicate on a line
the directions they have used.

2) After that, they communicate also the results of the measurements when the two directions are
different. With these, they can both calculate and check that:

Cquantum(a1,b1,a3,b3) = −2
√

2 . (6.30)

3) The measurements along the same directions are not shared, but they are guaranteed to be perfectly
correlated: hence, this is a shared secret raw key.

139

Quantum cryptography (Lecture Notes by G.E. Santoro)

4) As for the BB84 protocol, this shared raw key is subject to the usual classical procedures of
information reconciliation (i.e., error correction) and privacy amplification.

The technology to perform this experiment is very close to that employed by A. Aspect et al., see
Ref. [4], to test the violation of the CHSH inequality, and the strange non-local nature of Quantum
Mechanics.

140

7. Hardware implementations of Quantum
Computers

Warning: This chapter is still in a very preliminary version.
!

Depending on the hardware on which we would base our Quantum Computer, the nature of the
“spin-1/2” Qbit changes. Correspondingly, the basic quantum gates that are easy to implement are
also modified. The proposals that are currently investigated 1 fall into three classes: 1) trapped
atoms or ions, 2) photons, and 3) solid state QBits.

1. Atoms or Ions) Quantum optics and the control of atom-photon interactions have advanced tremen-
dously since the middle 1980’s. The two levels which make the Qbit are simply two levels of
an atom or ion, the ground state and some excited state, which are selectively controlled and
manipulated with the use of coherent radiation. It is mandatory that atoms or ions are kept
fixed in space, by some form of trapping. Trapping atoms in optical lattices has created a suf-
ficiently scalable platform for the coherent manipulation of many atoms. Atoms that can stay
in long-lived highly excited Rydberg states are also natural candidates for two-level atoms.
This is also a very promising platform, especially for Quantum Simulators. Finally, ions, for in-
stance 40Ca+, which are then trapped with radio-frequency traps (Paul traps) and manipulated
with coherent radiation, are also currently used. Blatt’s group experimental expertise at U. of
Innsbruck has lead — through their spin-off Alpine Quantum Technology — to a commercial
general purpose Quantum Computer based on trapped ions.

2. Photons) An all-optical implementation of the Qbit exploits the two polarisation states of photons.
Beam-splitter, mirrors, polarisers, non-linear crystals generating entangled photons and all these
machinery allow a great flexibility, which enjoys also from the fact that photons suffer very little
from interactions with external agents that could lead to loss of coherence. See, for instance,
the Xanadu website. Boson sampling (Aaronson) should be also mentioned.

3. Solid state Qbits) This is the platform which has more overlap with traditional solid-state systems.
Nano-structures have been considered since the 1990’s, due to technological advances in material
fabrication. There is in principle an unlimited scalability, but the different QBits will never be
totally identical, unlike atoms/ions or photons. Strong local correlation make the spectrum
an-harmonic; maintaining coherence is a non-trivial achievement, due to the extensive wiring
that these platforms involve. Currently, the most promising example in this class is that of
superconducting Qbits.

In the following, we will concentrate on Superconducting QBits platforms. Particularly useful are
two review papers: Refs. [17, 34]. Technical aspects of quantum circuitry are discussed in Ref. [35].
But before diving into the details, let us review some general ideas.

1We do not discuss the early proposal of using the spin of molecules in an NMR setting, which is not scalable and
abandoned.

141

https://en.wikipedia.org/wiki/Quadrupole_ion_trap
https://www.aqt.eu/
https://www.xanadu.ai/

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

7.1. DiVincenzo criteria

In 2000, David DiVincenso formulated a few general criteria that a system should satisfy to qualify
as a sensible Quantum Computation platform. They are known as DiVincenzo criteria.

1) You need a scalable physical system of QBits, i.e., quantum two-level systems. 2

2) The initial state |Ψin〉 should be easy to prepare.

3) You need long relevant decoherence times, so that the time-evolution is, as much as possible,
unitary.

4) You need a “universal” set of quantum gates.

5) A QBit-specific measurement capability. One should be able to do measurements on the final
state |Ψfin〉 reached, in order to “read” the answer of the Quantum Computation.

7.2. A few tools: LC circuits, Josephson’s Junctions, SQUIDS

To understand the dynamics of a superconducting QBit, we need to start from the very basic
example of a linear LC resonator, made by a capacitor and an inductor in parallel. The energy
accumulated in the capacitor is periodically passed to the inductor, back and forth, without loss,
as we assume that the circuit has no resistance. Let V (t) be the voltage across the capacitor, of
capacitance C, and I(t) the current flowing in the circuit, and through the inductor of inductance L.
If Q(t) is the charge in one of the plates of the capacitor, you know that I = Q̇. If Φ(t) is the magnetic
flux inside the inductor, then Φ̇ = V , by Maxwell-Faraday’s law: the voltage across the inductor is
associated to the flux derivative. Moreover, the capacitance governs the relationship between Q and
V , and the inductance the relationship between I and Φ:

Q = V C and Φ = LI . (7.1)

We will now write everything in terms of the flux Φ, which we will regard as the basic “position
variable”. You know that the charging energy of the capacitor is

KC =
1

2C
Q2 =

1

2
CV 2 =

1

2
CΦ̇2 ,

which looks as a “kinetic energy” for a particle of mass C and velocity Φ̇. Similarly, the magnetic
energy of the inductor is

UL =
1

2
LI2 =

1

2L
Φ2 ,

showing a “spring constant” 1/L. To write the equations of motion, we start from the Lagrangian:

L(Φ, Φ̇) = KC − UL =
1

2
CΦ̇2 − 1

2L
Φ2 . (7.2)

The canonical momentum is calculated as

∂L

∂Φ̇
= CΦ̇ = CV = Q . (7.3)

2There are proposal based on three-level systems, or other choices, but we will be confined to two-level systems, the
QBits. Obviously, this does not mean that the spectrum of the local degree of freedom is strictly made by two levels
only: it is enough that two among the possible large number of levels are clearly identifiable (hence, you need an
anharmonic spectrum) and there are tools to address them specifically, so that the other levels can be approximately
ignored.

142

https://en.wikipedia.org/wiki/DiVincenzo%27s_criteria

(Lecture Notes by G.E. Santoro) 7.2 A few tools: LC circuits, Josephson’s Junctions, SQUIDS

Hence, we write the Hamiltonian as:

H(Φ, Q) = QΦ̇− L =
1

2C
Q2 +

1

2L
Φ2 . (7.4)

This is obviously an harmonic oscillator. If you regard Q as the canonical momentum with C acting
as a mass, and you write the potential energy as 1

2Cω
2
rΦ2, you immediately see that the resonance

frequency is:

ωr =
1√
LC

. (7.5)

To quantize it, you apply the standard procedure: regard the quantities as operators with Φ̂ and Q̂
obeying canonical commutation relations. It is convenient to rescale both Q̂ and Φ̂ to make them
dimensionless: if e is the electronic charge, and h Plank’s constant, the flux quantum is Φ0 = h/(2e),
and we set:

n̂ =
Q̂

2e
φ̂ = 2π

Φ̂

Φ0
with Φ0 =

h

2e
=⇒ [φ̂, n̂] = i . (7.6)

The Hamiltonian then reads:

Ĥ =
1

2C
Q̂2 +

1

2L
Φ̂2 = 4EC n̂

2 +
1

2
ELφ̂

2 , (7.7)

where the energy constants EC and EL are:

EC =
e2

2C
EL =

1

L

Φ2
0

(2π)2
. (7.8)

To express the Hamiltonian in terms of creation and destruction operators, it is useful to further
rescale φ̂ and n̂ in such a way that the two terms of the Hamiltonian have a common form. More
precisely, imagine rescaling:

φ̂ = φzpx̂ and n̂ =
1

φzp
p̂ ,

where [x̂, p̂] = i, and choose the dimensionless constant φzp in such a way that:

4EC
1

φ2
zp

=
1

2
ELφ

2
zp ≡

1

2
~ωr . (7.9)

This requires:

φ2
zp =

√
8EC
EL

=⇒ ~ωr =
√

8ELEC = ~
1√
LC

. (7.10)

With this choice, and the standard representation x̂ = 1√
2
(â + â†) and p̂ = 1√

2i
(â − â†) we have all

ingredients of our quantum harmonic oscillator.

A quantum LC circuit. The harmonic oscillator Hamiltonian corresponding to the quantiza-
tion of an LC circuit is given by:

Ĥ =
1

2C
Q̂2 +

1

2L
Φ̂2 = 4EC n̂

2 +
1

2
ELφ̂

2 =
1

2
~ωr(p̂2 + x̂2) = ~ωr(â†â+ 1

2) . (7.11)

i

The problem with the spectrum of an harmonic oscillator is that there is no way to selectively address
two states only, out of the infinite many. We will need some non-linearity, such that the gap between
the lowest two states is different from the gap with the higher states. In the next section we will see
that a Josephson junction provides precisely a controllable degree of non-linearity.

7.2.1. From BCS to the Josephson junction

In order to discuss the non-linearity induced by the Josephson effect, we need to discuss supercon-
ductivity first.

143

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

BCS superconductivity. Let me briefly recall the celebrated Bardeen-Cooper-Schrieffer solution of
the superconducting state. Given a (mean-field) Hamiltonian of the form:

ĤBCS =
∑
k,σ

ξk ĉ
†
kσ ĉkσ −

∑
k

(
∆k ĉ

†
k↑ĉ
†
−k↓ + ∆∗k ĉ−k↓ĉk↑

)
(7.12)

with ∆k = Θ(~ωD−ξk) eiϕ∆ and ∆ > 0, corresponding to an s-wave superconductor, its ground state
is given by the BCS state:

|ΨBCS(ϕ)〉 =
∏
k

(
uk + eiϕvkĉ

†
k↑ĉ
†
−k↓

)
|0〉 . (7.13)

Here uk and vk are real:
v2
k =

1

2

(
1− ξk

Ek

)
u2
k =

1

2

(
1 +

ξk
Ek

) , (7.14)

with u2
k + v2

k = 1, and Ek =
√
ξ2
k + |∆k|2 is the Bogoljubov quasi-particle energy. The phase ϕ plays

a relatively minor role if you deal with a single superconductor, but will play a very important role
in describing the Josephson tunnelling between two superconductors separated by a thin insulating
(oxide) layer.

Evidently |ΨBCS(ϕ)〉 describe a superposition of states with all possible (even) fermion number. To
simplify our writing, let us denote by b̂†k = ĉ†k↑ĉ

†
−k↓ the operator that creates a pair of fermions in the

Cooper-pair state (k ↑,−k ↓). By expanding the factor
∏

k
(
uk + eiϕvkb̂

†
k
)
you can write:

|ΨBCS(ϕ)〉 =
(∏

k

uk
)(
|0〉+ eiϕ

∑
k1

vk1

uk1

b̂†k1
|0〉+ e2iϕ

∑
(k1,k2)

vk1

uk1

vk2

uk2

b̂†k1
b̂†k2
|0〉+ · · ·

+e2niϕ
∑

(k1,··· ,kn)

vk1

uk1

· · · vkn
ukn

b̂†k1
· · · b̂†kn |0〉+ · · ·

)

=

∞∑
n=0

einφAn|Ψn〉 (7.15)

where the notation (k1, · · · ,kn) means that the n-uple of wave-vectors should be included only once,
and |Ψn〉 denotes a normalised state with exactly n Cooper pairs (hence N = 2n fermions), appearing
with (real) amplitude An but with an overall phase einφ. Normalisation of all states implies that the
coefficients A2

n can be thought as a probability distribution of the various n in the BCS state:

〈ΨBCS|ΨBCS〉 = 1 =⇒
∞∑
n=0

A2
n = 1 . (7.16)

At this stage, ϕ could be used as a technical tool to single-out the various fixed particle number
states. Indeed, by integrating of ϕ we get:

An|Ψn〉 =

∫ 2π

0

dϕ

2π
e−inϕ|ΨBCS(ϕ)〉 . (7.17)

The coefficients A2
n could also be explicitly calculated by an integral over ϕ, but this will not be

relevant to our discussion. 3 What is relevant, is that in a macroscopic superconductor, A2
n is peaked

3One can verify that:

A2
n =

∫ 2π

0

dϕ

2π
e−inϕ

∏
k

(
u2
k + eiϕv2

k
)
. (7.18)

This gives, correctly, A2
0 =

∏
k u

2
k, A

2
1 =

∑
k1

(∏
k 6=k1

u2
k
)
v2
k1

, etc.

144

(Lecture Notes by G.E. Santoro) 7.2 A few tools: LC circuits, Josephson’s Junctions, SQUIDS

at an n0 which is extensive. If N̂ =
∑

k,σ ĉ
†
kσ ĉkσ denotes the total number of fermions operator, with

average N0 = 〈ΨBCS|N̂ |ΨBCS〉, you can write:

n0 =
1

2
N0 =

1

2
〈ΨBCS|N̂ |ΨBCS〉 =

∑
k

v2
k = Vol

∫
dk

(2π)3
v2
k . (7.19)

Interestingly, the width of the distribution A2
n scales with

√
Vol, as you can show that:

(∆n)2 =
1

4
(∆N)2 =

1

4

(
〈ΨBCS|N̂2|ΨBCS〉 − 〈ΨBCS|N̂ |ΨBCS〉2

)
=

∑
k

u2
kv

2
k = Vol

∫
dk

(2π)3
u2
kv

2
k . (7.20)

Hence, for a macroscopic superconductor, it makes no difference if you calculate physical properties by
using |ΨBCS〉, a state that is simple to work with, or rather the much more complicated state with fixed
number of Cooper pairs |Ψn〉 with n ∼ n0. This is very similar to the grand-canonical description, as
opposed to a canonical one, which become equivalent in the thermodynamic limit.

A Josephson junction. Two superconductors (S) separated by a thin insulating (I) barrier, in the
SIS geometry sketched in Fig. 7.1, exhibit a remarkable phenomenon, discovered by Josephson in
1962 [36]. I will give here a phenomenological description. A more microscopic characterization is

Figure 7.1: Sketch of a Josephson junction, with
the two superconductors characterized by a phase
ϕ1,2, separated by a thin insulating layer. The
charges highlight that a small enough junction
should show Coulomb effects due to a finite ca-
pacitance.

given in App. C.2. Each superconductor is characterized by a macroscopic phase 4 — ϕ1 and ϕ2 for
the two superconductors —, and the phase difference

φ = ϕ1 − ϕ2 , (7.21)

is associated to a component of the tunnelling current going through the junction, indeed an equilibrium
current 5 which is present also in the absence of any voltage drop between the two superconductors,
and given by:

I = IJ sinφ . (7.22)

This is known as dc Josephson effect.

A second ingredient discovered by Josephson is that, in the presence of a voltage drop V between
the two superconductors, the phase difference φ will increase in time according to the relationship:

φ̇ =
2e

~
V , (7.23)

which leads to an oscillating Josephson current:

I(t) = IJ sin
(
φ0 +

2eV

~
t
)
. (7.24)

4Technically, there is a complex order parameter related the anomalous average of two fermionic fields

ψ(x) = 〈Ψ̂↓(x)Ψ̂↑(x)〉 = |ψ(x)|eiϕ(x) ,

where |ψ| is related to the superconducting gap, and ϕ the macroscopic phase.
5There is a piece of the equilibrium free-energy of the system which is −EJ cosφ, from which the dc-Josephson relations
follows.

145

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

This is known as ac Josephson effect. The average dissipated power is zero.

Summarising, the Josephson junction (JJ) is a non-linear element: this will be important, when
quantum effects are accounted for, in reducing its spectrum to a two-level system. Indeed, if the JJ
is small, quantum effects start to be important. Across the junction, there would be a surface charge
Q and small capacitance C, with an associated energy Q2/2C = CV 2/2. Due to the presence of a
voltage V = Q/C, using the Josephson relation φ̇ = (2e/~)V , you might anticipate a Lagrangian of
the form:

L =
1

2
C
(~φ̇

2e

)2

+ EJ cosφ , (7.25)

where the second piece is associated to the Josephson energy term −EJ cosφ. The canonical variable
is Φ = ~φ/(2e) and the associated canonical momentum would be

∂L

∂Φ̇
= C

~φ̇
2e

= CV = Q .

Equivalently, we might write a Hamiltonian

H =
Q2

2C
− EJ cosφ , (7.26)

which looks like the Hamiltonian of a physical pendulum if one interprets φ as the angular coordinate
and Q as the associated momentum.

The crucial step forward, for our purposes, is the suggestion that Q and ~φ/(2e) can be though as
canonically conjugate variables. Setting Q̂ = (2e) n̂, with n̂ the integer charge imbalance, we would
write [

φ̂, n̂
]

= i , (7.27)

and quantum effects might be important in the JJ Hamiltonian 6

Ĥ =
Q̂2

2C
− EJ cos φ̂ = 4EC n̂

2 − EJ cos φ̂ , (7.28)

where EC = e2/(2C) is the Coulomb charging energy parameter, related to the junction capacitance.
This suggestion was actively pursued in the 1980’s: people were looking for signatures of quantum
effects in an essentially macroscopic object, the JJ.

The JJ as a quantum pendulum. Summarising, the local degree of freedom of a JJ,
after disregarding many of the ingredients in the mesoscopic solid-state system that composes it,
can be regarded as a phase variable φ̂, and its canonically conjugate “momentum”, the integer
charge imbalance n̂, with [φ̂, n̂] = i~ and a quantum Hamiltonian which is essentially a quantum
pendulum:

ĤJJ = 4EC n̂
2 − EJ cos φ̂ , (7.29)

the (an-harmonic) spectrum of which depends on the ratio EJ/EC . The different regimes in
which JJ QBits have been considered in the various experiments depend, essentially, on the ratio
EJ/EC .

i

6The fact that there is a macroscopic phase φ is already a quantum phenomenon, clearly. But here we will be talking
of quantum effects governing the dynamics of this macroscopic phase, a secondary quantum effect.

146

(Lecture Notes by G.E. Santoro) 7.2 A few tools: LC circuits, Josephson’s Junctions, SQUIDS

The role of magnetic fields and gauge invariance. So far, we did not consider the effect of external
magnetic fields. This is best done through the Ginzburg-Landay theory [37, 38], which is briefly
summarised in App. C. Here we simply stress the fact that most of the physics is dictated by minimal
coupling and gauge invariance.

The microscopic form of the kinetic energy in presence of A is given by:

Ĥkin =
1

2m

∑
σ

∫
dx
((
− i~∇ +

e

c
A
)
Ψ̂σ(x)

)†
·
((
− i~∇ +

e

c
A
)
Ψ̂σ(x)

)
, (7.30)

where Ψ̂σ(x) is the field operator for the electrons. A gauge transformation A→ A + ∇Λ leaves the
kinetic energy invariant provided we also transform the field operator as

Ψ̂σ(x)→ Ψ̂σ(x) e−i
e
~cΛ(x) .

This implies that the local pair potential ∆(x), and therefore the local order parameter ψ(x), con-
taining two fermionic annihilation operators, should transform, after the gauge transformation, as:

ψ(x) = 〈Ψ̂↓(x)Ψ̂↑(x)〉 = |ψ(x)|eiϕ(x) −−−−−−−→
A→A+∇Λ

ψ(x) e−i
2e
~cΛ(x) = ψ(x) e−i

2π
Φ0

Λ(x) , (7.31)

where Φ0 = hc/(2e) is the flux quantum. Hence, by gauge invariance, if A → A + ∇Λ, then you
should change

ϕ(x)→ ϕ(x)− 2π

Φ0
Λ(x) . (7.32)

These considerations suggest that the phase difference appearing in the JJ energy and current should
be modified and made gauge invariant as follows:

φ = ϕ1 − ϕ2 +
2π

Φ0

∫
link 2→1

A · dl . (7.33)

These gauge invariance considerations have multifold consequences. One of these, is the flux quanti-
zation inside a superconducting ring, briefly explained in App. C. Another consequence is a relationship
between ϕ and A inside a bulk superconductor. Indeed, starting from the GL kinetic energy density,
you derive by the simple substitution ψ(x) = |ψ(x)|eiϕ(x):

1

2m∗

∣∣∣(− i~∇ +
2e

c
A
)
ψ
∣∣∣2 =

~2

2m∗
(∇|ψ|)2 +

1

2m∗
|ψ|2

(
~∇ϕ+

2e

c
A
)2

=
~2

2m∗
(∇|ψ|)2 +

1

2
nsm∗v2

s , (7.34)

where ns = |ψ|2 and m∗vs = ∇ϕ + 2e
c A are the superfluid density and velocity, respectively. The

first term is the kinetic cost for changing the modulus of the order parameter, while the second piece
is associated to the superfluid kinetic energy. This suggests that, inside a bulk superconductor, it is
energetically favourable to have vs ≡ 0, hence:

∇ϕ = −2e

~c
A = −Φ0

2π
A (vs ≡ 0) . (7.35)

The final consequence of gauge invariance I need to mention is a remarkable phase-interference
phenomenon, which leads to the physics of the dc-SQUID, an acronym for Superconducting QUantum
Interference Device, which we now briefly consider.

The dc-SQUID. Consider a ring geometry with two Josephson junctions, A and B as sketched
in Fig. 7.2, symmetrically placed and separating a first arm of the ring, with superconductor “1”, from
the second arm, with superconductor “2”. The two superconductors are connected to leads and a

147

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

Figure 7.2: This is Fig. 7-7 in de Gennes’
book [37]. In the text, we indicate φ1A as ϕ1A,
and so on.

current I is driven through the circuit. In the center of the ring, there is an external magnetic field
H, which can be changed. We want to show that the current flowing I(H) is periodically modulated
by the magnetic field H, in a way that closely resemble the interference effects in a double slit, or in
the two arms of a Mach-Zehnder interferometer.

The first thing to notice is that the superconducting current flowing through the two JJ in parallel
is simply the sum of the two currents along the branches:

I = IAJ sinφA + IBJ sinφB , (7.36)

where φA and φB are the gauge-invariant phase differences at the two junctions.

The second thing to notice is that the phase in the superconductors must be single-valued. Hence,
upon returning to the same point, the result must differ by a multiple of 2π. Therefore:

(ϕ1B − ϕ1A) + (ϕ2B − ϕ1B) + (ϕ2A − ϕ2B) + (ϕ1A − ϕ2A) = 2πn . (7.37)

Third: the magnetic flux Φ trapped inside the ring can be calculated by integrating the vector
potential along a close (anticlockwise) contour Γ made by the two pieces C1 and C2 inside the two
superconductors, plus the two small links across the junctions.∫

C1

A · dl +

∫
link B 1→2

A · dl +

∫
C2

A · dl +

∫
link A 2→1

A · dl = Φ . (7.38)

If you imagine that the superconductors are larger than the penetration length, taking C1 and C2 in
the bulk, the phase ϕ(x) along C1 and C2 is related to A:

∇ϕ = − 2π

Φ0
A .

Integrating along C1 and C2 we get:

ϕ1B − ϕ1A = − 2π

Φ0

∫
C1

A · dl and ϕ2A − ϕ2B = − 2π

Φ0

∫
C2

A · dl . (7.39)

Now, sum the two sides of Eq. (7.37) and Eq. (7.38) (multiplied by 2π/Φ0):

(ϕ2B − ϕ1B) +
2π

Φ0

∫
link B 1→2

A · dl + (ϕ1A − ϕ2A) +
2π

Φ0

∫
link A 2→1

A · dl = 2πn+ 2π
Φ

Φ0
,

where we made use of the cancellations provided by Eq. (7.39). The gauge invariant phase difference
at junction A is

φA = ϕ1A − ϕ2A +
2π

Φ0

∫
link A 2→1

A · dl .

148

(Lecture Notes by G.E. Santoro) 7.3 The superconding Qbits platforms

Similarly, the gauge invariant phase difference at junction B is

φB = ϕ1B − ϕ2B +
2π

Φ0

∫
link B 2→1

A · dl .

The relationship between the phases at the two junctions. Therefore, we conclude that:

φA − φB = 2πn+ 2π
Φ

Φ0
. (7.40)

i

Let us now parameterise φA and φB as follows:

φA = φ+ + π
(
n+

Φ

Φ0

)
and φA = φ+ −

(
n+

Φ

Φ0

)
, (7.41)

with φ+ = (φA + φB)/2 the average phase difference. The total current is therefore predicted to be:

I = IAJ sin
(
φ+ + π

(
n+

Φ

Φ0

))
+ IBJ sin

(
φ+ − π

(
n+

Φ

Φ0

))
. (7.42)

For two identical junctions, IAJ = IBJ = IJ , simple trigonometry allows us to conclude that:

I = 2IJ cos
(
π
(
n+

Φ

Φ0

))
sinφ+ . (7.43)

Hence, effectively, the two parallel junctions act as a single junction with average phase difference
φ+, and a critical current — hence Josephson energy constant — that can be tuned by the magnetic
flux Φ:

Ieff
J (Φ) = 2IJ

∣∣∣ cos
(
π

Φ

Φ0

)∣∣∣ =⇒ Eeff
J (Φ) =

~
2e
Ieff
J (Φ) = 2EJ

∣∣∣ cos
(
π

Φ

Φ0

)∣∣∣ . (7.44)

Notice the constructive interference for all fluxes that are multiples of Φ0, while the interference is
destructive for Φ = Φ0/2. The case of two asymmetric JJ is briefly mentioned in App. C.4.

7.3. The superconding Qbits platforms

7.3.1. Charge Qbits: The Cooper pair box

The setting of a Charge QBit — also known as Cooper pair box — is sketched in Fig. 7.3. Its
effective Hamiltonian can be written as:

ĤCPB = 4EC(n̂− ng)2 − EJ cos φ̂ , (7.45)

where ng = CgU/(2e) is the average charge, divided by 2e, that the gate at potential U induces in the
small superconducting island 7, and EC = e2/(Cj + Cg) is the charging energy associated to a total
capacitance C = Cj + Cg, where Cj is the JJ capacitance. In the charge QBits regime one assumes
that

kBT � EJ � EC .

Let us treat EJ as a small perturbation. The charged states |n〉 can be seen, in terms of φ, as the
7One should regard this parameter ng as a continuous variable, since typically one operates in a grand-canonical
ensemble where the number of charge carriers is not fixed, but rather the chemical potential is controlled. On the
contrary, the operator n̂ has an integer spectrum.

149

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

Figure 7.3: Sketch of a Cooper pair box. The
Josephson junction is formed by a thin insulating
layer between a bulk superconductor and a small
superconducting island, connected (an open cir-
cuit) via a capacitor Cg to a gate voltage U which
determines the average number ng = CgU/(2e) of
Cooper pairs in the island. Cj denotes the capac-
itance of the JJ, such that EC = e2/(2C), with
C = Cj +Cg the total capacitance. Figure taken
from Ref. [39].

plane-wave eigenstates

〈φ|n〉 =
1√
2π

einφ .

The unperturbed spectrum of 4EC(n̂ − ng)2, when plotted versus ng for different eigenvalues of n̂
forms a sequence of parabola centered at ng = 0,±1,±2, · · · . The commutation relation between φ̂
and n̂ implies that cosφ = (eiφ + e−iφ)/2 couples |n〉 to |n+ 1〉 and viceversa. Hence we can write:

ĤCPB = 4EC

+∞∑
n=−∞

(n− ng)2|n〉〈n| − EJ
2

+∞∑
n=−∞

(
|n+ 1〉〈n|+ |n〉〈n+ 1|

)
. (7.46)

Let us suppose that ng ∈ [0, 1]. By restricting the Hamiltonian to two lowest levels, corresponding to
n = 0 and n = 1, we are eventually lead to a two-level system

Ĥ = 4EC

(
n2
g|0〉〈0|+ (1− ng)2|1〉〈1|

)
− EJ

2

(
|0〉〈1|+ |1〉〈0|

)
= 2EC

(
n2
g + (1− ng)2

)
1 + 4EC

(
ng − 1

2

)
σ̂z − EJ

2
σ̂x , (7.47)

where the final form expresses the two-level system in terms of Pauli matrices. 8

Figure 7.4: (a) The spectrum of the Cooper pair
box lowest eigenvalues as a function of the gate-
voltage-induced ng, when EJ � EC so that the
Josephson term is a small perturbation of the
parabolic spectrum of (n̂ − ng)2. At ng = ±1/2

the parabola with n = 0 crosses that for n = ±1,
and degenerate first-order perturbation theory
can be used to estimate a gap opening linear in
EJ/EC . (b) The theory predicted average num-
ber of Cooper pairs in the island. Figure taken
from Ref. [39].

The voltage bias ng plays a crucial role: by controlling it, you can easily implement various single-
QBit unitaries. 9

8Use that |0〉〈0| = (1 + σ̂z)/2 and |1〉〈1| = (1− σ̂z)/2, together with: |0〉〈1|+ |1〉〈0| → σ̂x.
9By sweeping ng across the value n1 = 1/2, with a certain speed, you effective create a Landau-Zener dynamics in the
two lowest eigenvalues.

150

(Lecture Notes by G.E. Santoro) 7.3 The superconding Qbits platforms

To determine if a Cooper-pair box shows quantum effects or not, consider the average number of
Cooper pairs 〈n̂〉 as a function of ng. For a classical model, one would predict a staircase at integer
values of 〈n̂〉 = 0, 1, 2, · · · with a rounding due to thermal effects.

Quantum mechanically, even at T → 0, the ground state, for instance, for ng = 1
2 corresponds to a

spin problem with Ĥ = −EJ2 σ̂
x. Hence, the ground state is 1√

2
(|0〉+ |1〉, so that 〈n̂〉 = 1

2 .

More generally, one can show that at T → 0, the form of 〈n̂〉 is given in the Fig. 7.4(b), with a
characteristic slope of the curve at half-integer ng given by EC/EJ . This is indeed experimentally
shown in Ref. [39]. Signatures of quantum effects in a Cooper-pair box have been also revealed by
Nakamura, in Ref. [40].

The problem with the Cooper-pair box Qbit is the sensitivity to charge noise which induces fluctu-
ations in ng, leading to short coherence times for the Qbit. To remedy to this, one needs to increase
EJ/EC .

Figure 7.5.: The spectrum of JJ (the lowest 3 eigenvalues), as a function of the gate-voltage-induced ng, for
various regimes of EJ/EC . This is Fig. 2 of Ref. [41].

Increasing EJ/EC . Fig. 7.5 shows the spectrum of the JJ Hamiltonian — more precisely, the lowest
three eigenvalues, as a function of the gate-voltage-induced ng. One observes that the eigenvalus
rapidly become insensitive to the value of ng — indeed, exponentially so [41] — thus becoming
relatively insensitive to charge noise.

7.3.2. The transmon

Let us consider ĤJJ, neglecting any bias term ng:

ĤJJ = 4EC n̂
2 − EJ cos φ̂ , (7.48)

151

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

in a regime in which
EJ � EC � kBT ,

for instance, with EJ/EC ∼ 50. In this regime the resulting QBit — after a suitable two-level
system truncation — is usually called a transmon. Fig. 7.6 shows the spectrum of ĤJJ (on the right)

Figure 7.6.: (b) The spectrum of a quantum LC oscillator (a), compared to (d) the spectrum of a JJ (c) in
the regime EC � EJ . Figure taken from Ref. [17].

compared to the harmonic spectrum of a pure LC resonator (on the left). Notice how the cosφ potential
induces an anharmonicity in the spectrum, with the lowest spectral splitting ~ω01 = E1−E0 different
from the next splitting ~ω12 = E2 − E1. Figure 7.7 shows the same information as Fig. 7.6(d),

Figure 7.7: (a) The spectrum of a transmon
QBit, as in Fig. 7.6(d), showing the anharmonic-
ity EC . (b) A capacitively shunted transmon.
(c) A flux-tunable symmetric transmon. Figure
taken from Ref. [34].

highlighting two facts:

1) While the computational subspace splitting is

~ωq = ~ω01 =
√

8ECEJ − EC ,

the anharmonicity is controlled by EC :

α = ~ω12 − ~ω01 = −EC .

152

(Lecture Notes by G.E. Santoro) 7.3 The superconding Qbits platforms

2) Panels (b) and (c) of Fig. 7.7 highlight the fact that the transmon can be either made by a single
JJ (b) or rather by a symmetric or asymmetric SQUID (c) which has, therefore, a flux-tunable
EJ .

Mapping to a Duffing oscillator

In order to map the JJ Hamiltonian into a non-linear oscillator problem, we start from the standard
Taylor expansion of the cosφ, truncated to 4th order:

cosφ = 1− 1

2
φ2 +

1

4!
φ4 + · · · .

Let us now rewrite the conjugate variables [φ̂, n̂] = i in terms of oscillators in the standard way:

φ̂ = φzp
1√
2

(â+ â†) and n̂ =
1

φzp

1√
2i

(â− â†) ,

where [â, â†] = 1, and choose the dimensionless quantity φzp in such a way that:

4EC
1

φ2
zp

=
1

2
EJφ

2
zp ≡

1

2
~ω0 =⇒ φ2

zp =

√
8EC
EJ

and ~ω0 =
√

8EJEC . (7.49)

Neglecting constant terms, the Hamiltonian reduces, up to fourth order, to:

ĤJJ
4th-order−−−−−−−→ ~ω0â

†â− 1

24
EJ

1

4
φ4

zp(â+ â†)4

= ~ω0â
†â− 1

12
EC(â+ â†)4 . (7.50)

Next, we consider only excitation-conserving terms, i.e., the 6 terms in the expansion of (â + â†)4

which contain the same number of â and â†:

(â+ â†)4 exc-conserving−−−−−−−−−−→ â†â†ââ+ â†ââ†â+ ââ†â†â+ â†âââ† + ââ†ââ† + âââ†â†

= 3 + 12 â†â+ 6 â†â†ââ , (7.51)

where we made repeated use of the commutator, hence of ââ† = 1 + â†â, to bring the â† to the left of
the â (normal ordering). Neglecting constants we finally arrive at the so-called Duffing oscillator.

Duffing oscillator.

ĤJJ

4th-order−−−−−−−−−−→
exc-conserving

= ~ωqâ†â−
1

2
EC â

†â†ââ , (7.52)

where
~ωq = ~ω0 − EC =

√
8EJEC − EC . (7.53)

Using â|n〉 =
√
n|n − 1〉 and â†|n〉 =

√
n+ 1|n + 1〉 it is simple to show that â†â†ââ|n = 2〉 =

2|n = 2〉, hence the level splittings predicted are:

~ω01 = ~ωq =
√

8EJEC − EC and ~ω12 = ~ω01 − EC . (7.54)

i

Mapping and reduction to a two-level system

The reduction to a two-level system (QBit) is totally obvious:

ĤJJ

4th-order−−−−−−−−−−→
exc-conserving

~ωqâ†â−
1

2
EC â

†â†ââ
two-level system−−−−−−−−−−−−→ −1

2
~ωqσ̂z , (7.55)

153

Hardware implementations of Quantum Computers (Lecture Notes by G.E. Santoro)

with the usual mapping â†â = 1
2 (1−σ̂z), restricted to the ground state |0〉 = |↑〉 and to the first excited

state |1〉 = |↓〉, again, neglecting constants. This prescription allows mapping other off-diagonal terms
as well:

− i(â− â†) two-level system−−−−−−−−−−−−→ σ̂y and (â+ â†)
two-level system−−−−−−−−−−−−→ σ̂x . (7.56)

We will see that this turns out very useful when considering couplings introduced to manipulate each
single QBit, or when coupling between different QBits, for instance by an inductive or capacitive
coupling, see later on. The basic reason for this is that the original variables φ̂ and n̂ of each QBit
are directly expressed in terms of â and â†:

φ̂ =
φzp√

2
(â+ â†)

two-level system−−−−−−−−−−−−→ φzp√
2
σ̂x , (7.57)

and similarly:

n̂ =
1

φzp

√
2i

(â− â†) two-level system−−−−−−−−−−−−→ 1√
2φzp

σ̂y . (7.58)

7.4. Variants of JJ Qbits

We have already discussed that a QBit in the regime in which EJ/EC ∼ 50 — a transmon — can
be made flux-tunable by adopting a dc-SQUID geometry. Figure 7.8 shows on the left (a and b) the
geometric arrangement and spectrum of the two lowest spectral splitting for a symmetric transmon —
the two JJ are identical, EBJ = EAJ —, while the right part (c and d) show an asymmetric transmon
situation, with an asymmetry parameter γ = 2.5, i.e., EBJ = γEAJ , see App. C.4, and Eq. C.78, for more
details. Interestingly, many other geometric arrangements of many JJ have been explored, creating

Figure 7.8.: (a-b) A symmetric flux-tunable transmon (a), and the behaviour of the two lowest spectral
splittings ~ω01 and ~ω12 as a function of the magnetic flux Φ (b). (c-d) An asymmetric flux-tunable transmon,
with asymmetry parameter γ = 2.5. (e-f) The Flux Qbit and (g-h) the Fluxonium, obtained by arranging
more JJ of suitable parameters in a ring geometry. This is Fig. 2 of Ref. [17].

various sorts of QBits — Flux Qbit, Fluxonium, etc. —, depending on the JJ parameters, and leading
to peculiar features of the spectrum as a function of the external magnetic flux. Figure 7.8(e-f,g-h)
show two interesting cases which have been explored.

154

(Lecture Notes by G.E. Santoro) 7.5 Manipulating and coupling superconducting QBits

7.5. Manipulating and coupling superconducting QBits

A good source of material is Ref. [17], particularly Sec.II and IV. We want now to discuss how one
can in principle implement single-QBit and two-QBit gates with JJ Qbits. For detailed discussions of
convenient coupling schemes, see Refs. [42] and [43].

7.5.1. Manipulating single Qbits

Let us start discussing how you can manipulate the state of a single JJ transmon-like QBit. The
idea is to couple the QBit to a microwave drive line, as sketched in Fig. 7.9. The Hamiltonian is

Figure 7.9: This is Fig. 12 from Ref. [17].

approximately given by: 10

Ĥ(t) = ĤJJ +
Cd
Ctot

Vd(t)(2e) n̂ , (7.59)

where Ctot = Cd +C is the total capacitance. By truncating to the computational basis subspace, see
Eq. (7.58), we can therefore write:

Ĥ(t) = −~ωq
2
σ̂z + Ω eVd(t) σ̂

y , (7.60)

where the coupling constant Ω, see Eq. (7.49), is given by:

Ω =
Cd
Ctot

√
2
(EJ

8EC

)1/4

.

STILL UNDER CONSTRUCTION.

7.6. What can go wrong: the sources of dissipation and
decoherence

UNDER CONSTRUCTION. A good source is Ref. [17].

7.7. Circuit QED

UNDER CONSTRUCTION. See Ref. [34].
10The quantization of the circuit requires some non-trivial steps, starting from classical Kirchoff’s laws. It requires,

among other things, a weak coupling assumption, Cd � C, and neglecting the resistance Rw. Starting from an LC
circuit, one would write a total Lagrangian of the form:

L(Φ, Φ̇) =
1

2
CΦ̇2 −

1

2L
Φ2 +

1

2
Cd
(
Φ̇− Vd(t)

)2
.

155

8. Density matrices

As you probably recall, in the Stern-Gerlach experiment, a beam of silver atoms 1 passes through
an appropriately designed magnet where a magnetic field gradient is present. Due to the magnetic
field gradient, the center of mass of the atom is deflected, depending on the total spin of the atom,
and two spots are revealed on the screen where the atoms impinge. Notice that the axis of the SG
apparatus can be rotated, but the experimental outcome is that two spots with equal abundance, 50%
and 50%, are registered no matter how you rotate the axis.

Let us ask ourselves the following question: what is the spin state |ψspin〉 of the silver atoms coming
out of the oven before the Stern-Gerlach (SG) filter? Unfortunately, none of the spin states

|ψspin〉 = z+|+, z〉+ z−|−, z〉

describes the experiment. Indeed, due to normalisation |z+|2 + |z−|2 = 1 and with an appropriate
choice of the overall phase, we can always rewrite such state as a spin pointing into an appropriate
direction n = (sin θ cosφ, sin θ sinφ, cos θ):

|ψspin〉 ≡ |+,n〉 = cos θ2 |+, z〉+ eiφ sin θ
2 |−, z〉 .

This, in turn, would imply that by rotating the SG apparatus in the direction n I should be able to
measure 100% of atoms in one spot, which is, experimentally, not the case: no matter how the SG
apparatus is rotated, you always get 50% of atoms in each of the two spots.

How to describe such a spin state entering the SG filter?

Question:

8.1. The density matrix for a pure state

Let us briefly recall the von Neumann postulates for a projective measurement in Quantum Me-
chanics. Consider a system in a state |ψ〉. You prepare a large ensemble of such pure states |ψ〉, and
you measure the system observable A obtaining, according to von Neumann, one of the eigenvalues a
of the associated Hermitean operator Â:

Â |φA
a,q〉 = a|φA

a,q〉 . (8.1)

Here q = 1 · · · da denotes the extra quantum numbers which distinguish the various eigenstates |φAa,q〉
associated to the same da-degenerate eigenvalue a. Let us denote by Π̂A

a the projector on the subspace
of states with eigenvalue a:

Π̂A
a =

da∑
q=1

|φA
a,q〉〈φA

a,q| . (8.2)

1Silver has an electronic configuration [Kr] 4d105s1, hence effectively L = 0 and S = 1
2
due to the single unpaired

electron in the 5s orbital.

157

Density matrices (Lecture Notes by G.E. Santoro)

Figure 8.1.: Schematic representation of the Stern-Gerlach experiment. Two things are worth noticing: 1)
The apparatus can be transformed into a filter by drawing a hole in the screen at the place of, say, the |↑〉
spot; this guarantees that all atoms coming out from the hole are in the pure spin state |↑〉. 2) The axis of
the apparatus can be rotated to any direction n, hence you can filter, for instance, spin states |+,n〉, i.e.,
eigenstates of n · Ŝ with eigenvalue + 1

2
.

According to von Neumann, the probability Pa of measuring the eigenvalue a is:

Pa = ProbA(a|ψ) = 〈ψ|Π̂A
a |ψ〉 = 〈ψ|Π̂A

a Π̂A
a |ψ〉 = ||Π̂A

a |ψ〉||2

= Tr
(

Π̂aΠ̂ψ

)
(8.3)

where the second form follows by a simple reshuffling of the terms 2 and introduces the state projector
Π̂ψ = |ψ〉〈ψ|. According to the postulates, the pure state |ψ〉 collapses, after each measurement, to a
new pure state |ψa〉:

|ψ〉 a−→ |ψa〉 =
Π̂A
a |ψ〉

||Π̂A
a |ψ〉||

. (8.4)

The state is univocally assigned once we know the operator ρ̂ = Π̂ψ, because you can predict all prob-
abilities of all possible measurement outcomes for any observable Â. Since the spectral representation
of Â can be written as:

Â =
∑
a

da∑
q=1

a |φa,q〉〈φa,q| =
∑
a

a Π̂Â
a (8.5)

it immediately follows that the average of the measurements is given by:

〈Â〉 =
∑
a

aProbA(a|ψ) = 〈ψ|Â|ψ〉 = Tr
(
Â Π̂ψ

)
.

As an example, consider that you measure Â = Ŝz by sending a silver atom through the SG
apparatus with the SG axis aligned along z-direction. The possible outcomes are two, a = ± 1

2 , and
the associated projectors are:

Π̂± = |±, z〉〈±, z| = 1

2
(1± σ̂z) .

The probabilities associated to the two outcomes, hence the abundance of atoms in the two spots, if
the state entering the SG apparatus is |ψ〉, are

ProbSz (a = ± 1
2 |ψ) = Tr

(
Π̂±Π̂ψ

)
= |〈±, z|ψ〉|2 .

2Indeed:

Tr
(

Π̂aΠ̂ψ

)
=
∑
a′,q′
〈φa′,q′ |Π̂aΠ̂ψ |φa′,q′ 〉 =

da∑
q=1

〈φa,q|ψ〉〈ψ|φa,q〉 = 〈ψ|Π̂A
a |ψ〉 .

158

(Lecture Notes by G.E. Santoro) 8.2 The density matrix for a mixed state

Given an arbitrary basis |φα〉 = |α〉 of the Hilbert space, we can write the matrix elements of ρ̂ as:

〈α′|ρ̂|α〉 = 〈α′|ψ〉〈ψ|α〉 = ψα′ψ
∗
α .

In real space |α〉 = |x〉, and ρ(x′,x) = ψ(x′)ψ∗(x). For a spin-1/2 state |ψspin〉 = z+|+, z〉+ z−|−, z〉,
we have:

ρ̂ = |ψspin〉〈ψspin| = |z+|2|+, z〉〈+, z| + |z−|2|−, z〉〈−, z| + z+z
∗
−|+, z〉〈−, z| + z−z

∗
+|−, z〉〈+, z| ,

so that the matrix elements of ρ̂ are:

(ρ̂) =

(
|z+|2 z+z

∗
−

z−z
∗
+ |z−|2

)
=

(
cos2 θ

2 cos θ2 sin θ
2e
−iφ

cos θ2 sin θ
2e
iφ sin2 θ

2

)
=

1

2

(
1 + cos θ sin θ e−iφ

sin θ eiφ 1− cos θ

)
=

1

2
(1 + n · σ̂) (8.6)

where the last equality assumes that the spin is directed along n, parameterised by θ and φ. 3

Pure state density matrices. Notice the following properties of a pure state density matrix
ρ̂ = Π̂ψ:

(a) ρ̂ is Hermitean: ρ̂ = ρ̂†

(b) ρ̂ is non-negative: for any state φ we have that 〈φ|ρ̂|φ〉 = |〈φ|ψ〉|2 ≥ 0

(c) Tr(ρ̂) = 1

(d) ρ̂2 = Π̂2
ψ = Π̂ψ = ρ̂.

Property (c) is a consequence of the normalisation of ψ, while (d) follows from the properties of
projectors.

i

The time-dependence of the pure-state ρ̂ = Π̂ψ is inherited by the Schrödinger evolution of |ψ(t)〉:

ρ̂(t) = Π̂ψ(t) = |ψ(t)〉〈ψ(t)| = Û(t, 0)ρ̂(0)Û†(t, 0) . (8.7)

von Neumann’s equation. Equivalently, we can write this unitary evolution in the form a
von-Neumann’s equation:

i~
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)] . (8.8)

i

8.2. The density matrix for a mixed state

Suppose that the system we are describing can be found in a number of different pure states |ψj〉,
j = 1, · · · , NE , with a certain probability pj ≥ 0, with

∑
j pj = 1. (We assume the pure states are

normalized 〈ψj |ψj〉 = 1, but we do not assume orthogonality at this stage.) This evidently reduces
our knowledge/information of the state of the system, adding a further classical probabilistic aspect
to specification of the state.
3Observe that all the possible choices of phases for the spinor eigenstates of n · σ̂ lead to the very same expression for
the associated projector, since the overall phases cancel out.

159

Density matrices (Lecture Notes by G.E. Santoro)

What is the natural probabilistic way of calculating the probability of obtaining a upon measuring
Â, or the mean value of Â? The natural answer is to simply sum all quantum averages on pure states
with their classical probability weights pj , obtaining for instance:

NE∑
j=1

pj Prob(a|ψj) =

NE∑
j=1

pj Tr
(

Π̂aΠ̂ψj

)
= Tr

(
Π̂a

(NE∑
j=1

pjΠ̂ψj

))
.

It is therefore clear that the density matrix describing such a state, called mixed state, as opposed to
a pure state described by a single ψ, is:

ρ̂ =

NE∑
j=1

pj |ψj〉〈ψj | =
NE∑
j=1

pjΠ̂ψj . (8.9)

In terms of ρ̂, probabilities and averages are expressed as:

Prob(a|ρ̂) =

NE∑
j=1

pj〈ψj |Π̂a|ψj〉 = Tr
(

Π̂aρ̂
)

〈A〉 =

NE∑
j=1

pj Tr
(
Â Π̂ψj

)
= Tr

(
Â ρ̂
) . (8.10)

Warning: Observe that we have said nothing so far about the number of states NE nor about the
possible non-orthogonality of the different states |ψj〉 belonging to the ensemble E = {pj , |ψj〉}.
More about the ambiguity with which we can express density matrices in a short while.

!

Again, as for the pure-state case, the time-dependence of ρ̂ is inherited by the Schrödinger evolution
of the |ψj(t)〉

ρ̂(t) =
∑
j

pj |ψ(t)〉〈ψ(t)| = Û(t, 0)ρ̂(0)Û†(t, 0) , (8.11)

hence the von Neumann’s equation applies:

i~
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)] . (8.12)

Density matrices for mixed states. One can show that properties (a), (b), (c) given in the
previous section are still obeyed by a mixed-state ρ̂:

(a) ρ̂ is Hermitean: ρ̂ = ρ̂†

(b) ρ̂ is non-negative: for any state φ we have that 〈φ|ρ̂|φ〉 ≥ 0

(c) Tr(ρ̂) = 1.

Notice that, in general, ρ̂2 6= ρ̂. More about this in the next section.

i

8.3. Spectral properties of ρ̂ and ambiguity on the ensemble
originating ρ̂

So far we have not commented on the number NE and on the possible non-orthogonality of the
states |ψj〉 forming the ensemble E = {pj , |ψj〉} which generates ρ̂.

160

(Lecture Notes by G.E. Santoro) 8.3 Spectral properties of ρ̂ and ambiguity on the ensemble originating ρ̂

Given a ρ̂ satisfying the properties (a), (b), (c) listed above, can you reconstruct in a unique
way an ensemble E = {pj , |ψj〉}? The answer is, in general, no, and is also connected to a non-
orthogonality issue, which we will briefly illustrate at the end of this section. More comments in
Sec. 8.8 and Sec. 8.9.

Question:

To start with, suppose we are given a ρ̂ which is positive, Hermitean and with unit trace. Then we
can diagonalise it obtaining:

ρ̂ =

NS∑
k=1

λk|Λk〉〈Λk| (8.13)

where NS ≤ d (d being the dimension of the Hilbert space), λk ∈ [0, 1] are the eigenvalues 4 of ρ̂ —
assumed for instance to be ordered from the largest to the smallest, λ1 ≥ λ2 ≥ ... ≥ 0 — and |Λk〉 the
associated orthogonal eigenvectors. Since Tr(ρ̂) = 1, we have:

NS∑
k=1

λk = 1 . (8.14)

This spectral decomposition is unique if the eigenvalues are non-degenerate. In this special eigenvector
basis, it is immediate to deduce that:

ρ̂2 =

NS∑
k=1

λ2
k|Λk〉〈Λk| =⇒ Tr(ρ̂2) =

NS∑
k=1

λ2
k ≤ 1 . (8.15)

We clearly see that ρ̂2 6= ρ̂ unless λ2
k = λk. This, in turn, is possible — together with the requirement

of unit trace — only if NS = 1, i.e., a single eigenvalue λ1 = 1 is non-vanishing, or, in other words, ρ̂
is a pure state. Equivalently, we see that in general Tr(ρ̂2) ≤ 1, the equality being obtained only if ρ̂
is a pure state.

Interestingly, the unitary Schrödinger evolution is such that

ρ̂2(t) = Û(t, 0)ρ̂2(0)Û†(t, 0) =⇒ Tr(ρ̂2(t)) = Tr(ρ̂2(0)) . (8.16)

This shows that a pure-state remains pure through a Schrödinger evolution.

Let us now illustrate the non-orthogonality issue, which will be further developed in Sec. 8.8.
Suppose we have a spin-1/2 system whose mixed state is represented by

ρ̂ = p+|+, z〉〈+, z| + p−|−, z〉〈−, z| (8.17)

where |±, z〉 are the usual σ̂z eigenstates, and p+ + p− = 1. Consider now the two states: |a〉 =
√
p+|+, z〉+ eiφ√p−|−, z〉

|b〉 =
√
p+|+, z〉 − eiφ√p−|−, z〉

. (8.18)

The density matrix associated to the ensemble of equal-weight of |a〉〈a| and |b〉〈b| is:

ρ̂′ =
1

2
|a〉〈a|+ 1

2
|b〉〈b| .

4The eigenvalues λk are non-negative because of the positive nature of ρ̂, since λk = 〈Λk|ρ̂|Λk〉 ≥ 0.

161

Density matrices (Lecture Notes by G.E. Santoro)

A simple calculation shows that:

ρ̂′ =
1

2

(√
p+|+, z〉+ eiφ

√
p−|−, z〉

)(√
p+〈+, z|+ e−iφ

√
p−〈−, z|

)
+

1

2

(√
p+|+, z〉 − eiφ

√
p−|−, z〉

)(√
p+〈+, z| − e−iφ

√
p−〈−, z|

)
=

1

2
p+|+, z〉〈+, z| +

1

2
p−|−, z〉〈−, z|+

((((
((((

(((
((((

(((
((

1

2

√
p+p−

(
e−iφ|+, z〉〈−, z|+ eiφ|−, z〉〈+, z|

)
+

1

2
p+|+, z〉〈+, z| +

1

2
p−|−, z〉〈−, z| −

(((
((((

(((
((((

(((
(((

1

2

√
p+p−

(
e−iφ|+, z〉〈−, z|+ eiφ|−, z〉〈+, z|

)
= p+|+, z〉〈+, z| + p−|−, z〉〈−, z| ≡ ρ̂ . (8.19)

Evidently, the two different ensembles are associated to the same ρ̂.

What is the crucial point behind this calculation? Notice that while 〈a|a〉 = 1 and 〈b|b〉 = 1, we
have that:

〈a|b〉 = p+ − p− . (8.20)

Hence, the two states are non-orthogonal, unless p+ = p− = 1
2 , in which case the density matrix is

ρ̂ = 1
21. The latter case is particularly interesting. You immediately notice that you can represent

ρ̂ = 1
21 in infinitely many ways as an equal-weight superposition of orthogonal projectors |a〉〈a| and

|b〉〈b|. Even more, you can show that for any n:

ρ̂ =
1

2

(
|+, z〉〈+, z| + |−, z〉〈−, z|

)
=

1

2

(
|+,n〉〈+,n|+ |−,n〉〈−,n|

)
≡ 1

2
1 . (8.21)

The Stern-Gerlach state. This example shows the answer to the question we posed at the
beginning: how to describe the spin state of the Silver atoms entering the SG apparatus out of
the furnace. The answer is that the atoms are in the mixed state ρ̂ = 1

21. Indeed, you can readily
show that this guarantees a 50% abundance of atoms in each of the two spots, independently of
the orientation of the SG apparatus.

i

8.4. Density matrices after measurements

I will now exemplify an “ensemble preparation” through the outcomes of a measurement. Recall
that when you measure an observable A on a large ensembles of identical pure states |ψ〉 you obtain
one of the eigenvalues a of the associated Hermitean operator Â, with probability

Pa = ProbA(a|ψ) = 〈ψ|Π̂A
a |ψ〉 = 〈ψ|Π̂A

a Π̂A
a |ψ〉 = ||Π̂A

a |ψ〉||2 , (8.22)

and the pure state |ψ〉 collapses, after each measurement, to a new pure state |ψa〉:

|ψ〉 a−→ |ψa〉 =
Π̂A
a |ψ〉

||Π̂A
a |ψ〉||

. (8.23)

Collapse after measurement. Summarising, in terms of pure state projectors, we might write
the (collapsed) state after measuring the eigenvalue a as:

ρ̂in = |ψ〉〈ψ| a−→ ρ̂a = |ψa〉〈ψa| =
Π̂A
a |ψ〉〈ψ|Π̂A

a

Pa
, (8.24)

where
Pa = ||Π̂A

a |ψ〉||2 = Tr
(

Π̂A
a |ψ〉〈ψ|Π̂A

a

)
= Tr

(
Π̂A
a ρ̂inΠ̂A

a

)
. (8.25)

i

162

(Lecture Notes by G.E. Santoro) 8.4 Density matrices after measurements

Starting from a pure initial state |ψ〉, the ensemble of states obtained after the measurement —
assuming we do not make any filtering selection of the states according to the outcome of the mea-
surement, hence we disregard any information on the measured eigenvalue a — is given by a mixed
state with an ensemble preparation E = {Pa, |ψa〉}, and is represented by a post-measurement density
matrix

ρ̂p−m =
∑
a

Pa |ψa〉〈ψa| =
∑
a

��Pa
Π̂A
a ρ̂inΠ̂A

a

��Pa
=
∑
a

Π̂A
a ρ̂inΠ̂A

a . (8.26)

If you recall that we can decompose any state ψ as:

|ψ〉 =
∑
a

Π̂a|ψ〉 =
∑
a

ca|ψa〉 , (8.27)

where the amplitude coefficients ca = 〈ψa|ψ〉 are such that:

|ca|2 = |〈ψa|ψ〉|2 = ||Π̂A
a |ψ〉||2 = 〈ψ|Π̂A

a Π̂A
a |ψ〉 = 〈ψ|Π̂A

a |ψ〉
def
= Pa , (8.28)

you realise that the initial pure-state density matrix is given by:

ρ̂in = |ψ〉〈ψ| =
∑
a,a′

cac
∗
a′ |ψa〉〈ψa′ | =

∑
a

Pa|ψa〉〈ψa|+
∑
a6=a′

cac
∗
a′ |ψa〉〈ψa′ | . (8.29)

Hence, in the process of measurement, the initial state off-diagonal elements, the so-called coher-
ences, are killed, and only the diagonal elements Pa, the so-called populations, survive. Interference
effects associated to the precise phase relationship contained in the amplitudes ca are killed by the
measurement.

Polariser

x̂

ŷ

α

|k, εα〉

n̂ = optic axis

ŷ
ẑCalcite crystal

θi

θo θe

|k, εα〉

|k, x̂〉

cos2 α

sin2 α

|k, ŷ〉

x̂

Figure 8.2.: Preparation of photons of given linear polarisation |εα〉 by using a polaroid filter with transmis-
sion axis oriented along εα = (x̂ cosα+ ŷ sinα). Next, the ensemble of identically prepared linearly polarised
photons is sent into a calcite crystal to “measure” the polarisation along the two directions x̂ and ŷ, by ex-
ploiting the polarisation-dependent refraction of the photons. Notice the change of orientation of the axes
in the right part of the figure: the optic axis of the calcite is now denoted by n̂, and is assumed parallel to
the crystal surface. The incoming momentum k is tilted at an angle θi with respect to the surface normal,
provoking refraction of the incoming photons.

To illustrate this idea of “ensemble preparation by measurement”, consider the experiment illustrated
in Fig. 8.2. An ensemble of photons in a pure state of linear polarisation is prepared by a polaroid
filter. The photons are then shined into a sufficiently thick calcite crystal which, due to uniaxial

163

Density matrices (Lecture Notes by G.E. Santoro)

birefringence, separates the two polarisation components, along x̂ and ŷ, into two separate beams.
The probability that a photon ends in one of the two beams is precisely that predicted by the von
Neumann postulate. These are the two “collapsed pure states” obtained by the measurement. If
we keep the two beams “separate”, we have prepared two separate ensembles of pure states. If we
recombine, using appropriate wave-guides, the two beams into a single one, effectively ignoring the
outcome of the experiment, the resulting preparation is a “post-measurement” mixed state with a
cos2 α fraction of photons of polarisation x̂ and sin2 α of polarisation ŷ.

Warning: Notice that while the initial state is pure, the post-measurement state has

Tr(ρ̂p−m) =
∑
a

P 2
a ≤ 1 ,

hence it is in general a mixed state, unless only one eigenvalue a occours, with probability Pa = 1.
The process of measurement cannot therefore be represented by a unitary evolution operator,
which would preserve the purity of the state.

!

8.5. Density matrices in statistical mechanics

Probably the most known example of a mixed state is the Gibbs ensemble. Suppose you have a
quantum system which is enclosed into a thermostat which holds it at temperature T . This is the
so-called canonical ensemble in quantum statistical mechanics (no exchange of particles is possible,
but heat can flow in and out of the system to maintain the constant temperature). The quantum
system is not described by a pure state, but rather by a density matrix whose spectral representation
is

ρ̂Gibbs =
∑
n

pn|ψn〉〈ψn| . (8.30)

Here pn = e−βEn/Z, β = (kBT)−1, is the Boltzmann weight of each state, Z =
∑
n e
−βEn is the

partition function, and {|ψn〉} denote the energy eigenstates of the system Hamiltonian Ĥ (which
form a basis of the Hilbert space of the system). It is very simple to show that you can also rewrite:

ρ̂Gibbs =
1

Z
e−βĤ . (8.31)

As a simple application, consider a one-dimensional quantum oscillator of Hamiltonian

Ĥ =
~ω
2

(p̂2 + x̂2) = ~ω
(
â†â +

1

2

)
,

p̂ and x̂ being, as usual, dimensionless momentum and coordinate, and â and â† the standard harmonic
oscillator annihilation and creation operators. Assuming thermal equilibrium with a reservoir at
temperature T , one can easily calculate many averages, as you will learn by doing the following
exercise.

Exercise 8.1. Thermal averages for an harmonic oscillator.

(1) Calculate the thermal average 〈â†â 〉 = Tr(ρ̂Gibbsâ
†â).

(2) Calculate the average potential energy ~ωx̂2/2 and the average kinetic energy ~ωp̂2/2 and plot
these quantities as a function of kBT/(~ω).

(3) Calculate the specific heat CV = ∂E/∂T , E being the total internal energy, sum of kinetic and
potential energy, and plot it as a function of kBT/(~ω).

164

(Lecture Notes by G.E. Santoro) 8.6 Density matrices by tracing out an environment

(4) At what temperatures strong deviations from the expected classical result (state what it is that
you expect, classically) are seen, due to quantum effects?

As a second example, consider a spin-1/2 in a magnetic field along the z-direction. The Hamiltonian
is:

Ĥ = µBBσ̂
z =⇒ ρ̂Gibbs = p+|+, z〉〈+, z| + p−|−, z〉〈−, z| , (8.32)

where

p± =
e∓βµBB

Z
(8.33)

and Z = e−βµBB+e−βµBB = 2 cosh(βµBB). Notice that we have a pure state only for T = 0 (β =∞)
since p− = 1 and p+ = 0. For all other temperatures T the state is mixed. The limit of T → ∞
(β = 0) is represented by ρ̂ = 1

21.

8.6. Density matrices by tracing out an environment

Suppose that you have a system A, described by a Hilbert space HA with a basis set {|α〉A}, in
interaction with an environment B, described by a Hilbert space HB with basis set {|β〉B}. The total
wave-function |Ψ〉 of the combined system A+B will live in the tensor product space HA⊗HB, which
by definition has a (product) basis set {|α〉A ⊗ |β〉B}. The total wave-function, therefore, is generally
a combination of those basis states

|Ψ〉 =
∑
α,β

Ψα,β |α〉A ⊗ |β〉B , (8.34)

with appropriate coefficients Ψα,β . Notice that, in general, the state |Ψ〉 is not separable, i.e. it cannot
be written as a single product of a state of A times a state of B (as the basis states are):

|Ψ〉 6= |a〉A ⊗ |b〉B .

This occurs only for some special choices of the coefficients Ψα,β , take for 5 instance Ψα,β = aαbβ ,
with aα = 〈α|a〉 and bβ = 〈β|b〉. Whenever |Ψ〉 is not separable, one says that it is entangled. A
simple example of such a case is, for two spin-1/2 particles, a singlet state.

Suppose I want to calculate the expectation value of an operator Â which involves only system A.
Then the result is (simple proof, which uses orthogonality of |β〉B):

〈Ψ|Â|Ψ〉 =
∑
α,α′

∑
β

Ψ∗α′,βΨα,β

 〈α′|Â|α〉 , (8.35)

which you immediately recognise it can be expressed as:

〈Ψ|Â|Ψ〉 = Tr(Â|Ψ〉〈Ψ|) = TrA(Âρ̂A) ,

where
ρ̂A = TrB(|Ψ〉〈Ψ|) =⇒ 〈α|ρ̂A|α′〉 =

∑
β

Ψ∗α′,βΨα,β . (8.36)

We will now prove that ρ̂A is a (generally) mixed state for system A. To prove it, observe that it
is a manifestly Hermitian matrix. Moreover, its trace is 1:

TrA(ρ̂A) =
∑
αβ

Ψ∗α,βΨα,β =
∑
αβ

|Ψα,β |2 = 1 .

5A so-called rank-1 matrix.

165

Density matrices (Lecture Notes by G.E. Santoro)

It remains to show that ρ̂A is a positive operator. Let |Λk〉 be the orthonormal basis (in the space HA)
which diagonalises ρ̂A. Therefore, we can write its spectral decomposition as:

ρ̂A =

NS∑
k=1

λk|Λk〉〈Λk| ,

where the eigenvalues λk are real, and
∑
k λk = 1, since the trace has to be 1. We now show that the

eigenvalues are non-negative: λk ≥ 0. Indeed:

λk = TrA(|Λk〉〈Λk|ρ̂A) =
∑
α′,α

〈α′|Λk〉〈Λk|α〉〈α|ρ̂A|α′〉

=
∑
α′,α

〈α′|Λk〉〈Λk|α〉
∑
β

Ψ∗α′,βΨα,β

=
∑
β

(∑
α

〈Λk|α〉Ψα,β

)(∑
α′

〈Λk|α′〉∗Ψ∗α′,β
)

=
∑
β

∣∣∣∑
α

〈Λk|α〉Ψα,β

∣∣∣2 ≥ 0 . (8.37)

As a particularly interesting example, consider two spin-1/2 systems in the spin-singlet (rotationally
invariant) entangled state:

|Ψ〉 =
1√
2

(
|+, z〉A ⊗ |−, z〉B − |−, z〉A ⊗ |+, z〉B

)
. (8.38)

Then, by tracing over B you easily find that:

ρ̂A = TrB(|Ψ〉〈Ψ|) =
1

2

(
|+, z〉A〈+, z| + |−, z〉A〈−, z|

)
. (8.39)

Hence, the infinite temperature mixed state emerges from tracing over B the entangled singlet state
of a pair of spins.

Info: This is the simplest example of a process known as purification. You regard a mixed
state (in the last example, an infinite temperature state) as obtained from a pure state of a
system+environment by partial trace of an environment.

i

8.7. Schmidt decomposition

This section is slightly more advanced and can be skipped on a first reading. The material is based
on the lecture notes by Preskill.

Let us start again from a pure state of a composite system with Hilbert space HA ⊗HB. We call
dA = dim(HA) and dB = dim(HB) the dimensions of the two Hilbert spaces, which we assume to
be finite, although they can be possibly very large (and in general different). A pure state of the
composite system is written as:

|Ψ〉 =
∑
α,β

Ψα,β |α〉A ⊗ |β〉B , (8.40)

with appropriate coefficients Ψα,β , where {|α〉} and {|β〉} are arbitrary orthonormal bases for HA and
HB, respectively.

166

(Lecture Notes by G.E. Santoro) 8.7 Schmidt decomposition

Info: Notice that you can regard the coefficients Ψα,β specifying the pure state |Ψ〉 as a complex
matrix of dimension dA × dB.

i

Now we re-shuffle the expression for |Ψ〉 as follows:

|Ψ〉 =
∑
α,β

Ψα,β |α〉A ⊗ |β〉B =
∑
α

|α〉A ⊗
(∑

β

Ψα,β |β〉B
)

=
∑
α

|α〉A ⊗ |α̃〉B (8.41)

where
|α̃〉B =

∑
β

Ψα,β |β〉B . (8.42)

Warning: In general the different states |α̃〉B, one for each label α in the basis {|α〉A}, are
non-orthogonal.

!

Let us now take a partial trace over B, obtaining the (generally) mixed state ρ̂A:

ρ̂A = TrB(|Ψ〉〈Ψ|) =

NS∑
k=1

λk|Λk〉〈Λk| (8.43)

where we have written the spectral decomposition of ρ̂A, with NS ≤ dA the so-called Schmidt number.
The states |Λk〉 are by definition orthonormal and can be extended to an orthonormal basis for HA if
NS < dA.

Let us now switch to such a basis {|Λk〉A} for HA. We can rewrite the pure state |Ψ〉 as follows:

|Ψ〉 =
∑
k,β

Ck,β |Λk〉A ⊗ |β〉B =

NS∑
k=1

|Λk〉A ⊗ |Λ̃k〉B (8.44)

where, as before:
|Λ̃k〉B =

∑
β

Ck,β |β〉B . (8.45)

If we recalculate the partial trace over B we get:

ρ̂A = TrB(|Ψ〉〈Ψ|) =

NS∑
k=1

NS∑
k′=1

TrB(|Λk〉〈Λk′ | ⊗ |Λ̃k〉〈Λ̃k′ |) =

NS∑
k=1

NS∑
k′=1

〈Λ̃k′ |Λ̃k〉 |Λk〉〈Λk′ | (8.46)

where the last step follows from recognising a resolution of the identity in B:

TrB(|Λ̃k〉〈Λ̃k′ |) =
∑
β

〈β|Λ̃k〉〈Λ̃k′ |β〉 = 〈Λ̃k′ |
(∑

β

|β〉〈β|
)
|Λ̃k〉 = 〈Λ̃k′ |Λ̃k〉 . (8.47)

Now you compare Eq. (8.43) and (8.46) and conclude that

〈Λ̃k′ |Λ̃k〉 = λkδk′,k , (8.48)

i.e., the states {|Λ̃k〉} are mutually orthogonal but have a norm different from 1. We can easily make
then an orthonormal set by defining:

|Λ̂k〉B =
1√
λk
|Λ̃k〉B =

1√
λk

∑
β

Ck,β |β〉B . (8.49)

Once again, if necessary, they can be extended to a full orthonormal basis for HB.

167

Density matrices (Lecture Notes by G.E. Santoro)

Schmidt decomposition. This finally leads to the Schmidt decomposition:

|Ψ〉 =

NS∑
k=1

√
λk |Λk〉A ⊗ |Λ̂k〉B

ρ̂A = TrB(|Ψ〉〈Ψ|) =

NS∑
k=1

λk|Λk〉〈Λk|

ρ̂B = TrA(|Ψ〉〈Ψ|) =

NS∑
k=1

λk|Λ̂k〉〈Λ̂k|

. (8.50)

The expression for the state |Ψ〉 is particularly simple and symmetric in the appropriate bases
for the two Hilbert spaces. In particular, the last expression shows that ρ̂B, obtained by partial
trace over A, has precisely the same Schmidt number NS and therefore:

NS ≤ min(dA, dB) . (8.51)

i

Warning: Notice that the Schmidt decomposition, and the construction of the bases |Λk〉A and
|Λ̂k〉B depend on the chosen state |Ψ〉. If you change |Ψ〉, the bases will change. A word on the
notation is also useful. Technically, the states |Λ̂k〉B leave in a different Hilbert space than the
corresponding |Λk〉A, and they are made of different combination of basis states. Nevertheless, the
notation stresses the fact that they are related in a precise way, which is described by Eqs. (8.44),
(8.49).

!

Purification. If I know both ρ̂A = TrB(|Ψ〉〈Ψ|) and ρ̂B = TrA(|Ψ〉〈Ψ|), and their spectrum {λk}
(common to both) is non-degenerate for all the λk > 0, then there is a unique state |Ψ〉 which
provides a purification of the two density matrices. Indeed, let ρ̂A =

∑NS
k=1 λk|Λk〉〈Λk| be the spectral

decomposition of ρ̂A which uniquely (up to a phase) identifies an orthonormal basis {|Λk〉A} (because
the spectrum is non-degenerate). Similarly, you can write in a unique way a spectral decomposition
ρ̂B =

∑NS
k=1 λk|Λ̂k〉〈Λ̂k|, which identifies an orthonormal basis {|Λ̂k〉B}. Next you pair-up these basis

states and write:

|Ψ〉 =

NS∑
k=1

√
λk |Λk〉A ⊗ |Λ̂k〉B ,

as the unique (up to a phase) purification of both density matrices. If on the contrary, there are
spectral degeneracies, then in general the purification can be done in a large number of ways, but
the analysis is more complicated. The example of the infinite temperature spin-1/2 case given above
illustrates this fact.

Entanglement entropy. Starting from a pure state |Ψ〉 of the combined system, and calculating the
partial traces we obtain the two states ρ̂A = TrB(|Ψ〉〈Ψ|) and ρ̂B = TrA(|Ψ〉〈Ψ|). As said, although
these density matrices live in Hilbert spaces that might have a very different dimensionality, they have
the same spectrum of non-negative eigenvalues {λk}, which is known as entanglement spectrum. The
reason for this name is the following. You can calculate the entanglement entropy

SA

def
= −TrA(ρ̂A log ρ̂A) = −

NS∑
k=1

λk log λk , (8.52)

168

(Lecture Notes by G.E. Santoro) 8.7 Schmidt decomposition

which, incidentally, is such that SA = SB. Evidently SA = 0 if and only if ρ̂A is a pure state (NS = 1

and λ1 = 1), while SA > 0 if ρ̂A is a mixed state. The situation SA = 0 is realised when the initial
state |Ψ〉 is separable. Indeed, if |Ψ〉 = |a〉A ⊗ |b〉B then ρ̂A = |a〉〈a| is a pure state, and the same for
ρ̂B = |b〉〈b|.

8.7.1. The singular value decomposition (SVD)

An important application of the Schmidt decomposition is a crucial tool of linear algebra: the
Singular Value Decomposition (SVD) of a general dA × dB complex matrix Ψα,β .

Let us recall the two alternative expressions for the same state |Ψ〉 obtained in the two different
bases:

|Ψ〉 =
∑
α,β

Ψα,β |α〉A ⊗ |β〉B

|Ψ〉 =

NS∑
k=1

√
λk |Λk〉A ⊗ |Λ̂k〉B

. (8.53)

Now express the states |Λk〉A and |Λ̂k〉B in the (generic) original orthonormal bases |α〉A and |β〉B:
|Λk〉A =

∑
α

|α〉A〈α|Λk〉 =
∑
α

|α〉A(U)α,k

|Λ̂k〉B =
∑
β

|β〉B〈β|Λ̂k〉 =
∑
β

|β〉B(VT)k,β

, (8.54)

where we defined the two unitary matrices that describe the change between the two orthonormal
sets: (U)α,k = 〈α|Λk〉

(V)β,k = 〈β|Λ̂k〉 = (VT)k,β

. (8.55)

Recall that, technically speaking, U is a dA × dA matrix of which only the first NS columns with
k = 1 · · ·NS will be important. Similarly, VT should be intended as a dB × dB matrix of which only
the first NS rows will be important.

Now we substitute these expressions in the Schmidt decomposition for |Ψ〉:

|Ψ〉 =

NS∑
k=1

√
λk |Λk〉A ⊗ |Λ̂k〉B

=

NS∑
k=1

√
λk
∑
α,β

(U)α,k(VT)k,β |α〉A ⊗ |β〉B

=
∑
α,β

(NS∑
k=1

(U)α,k
√
λk (VT)k,β

)
︸ ︷︷ ︸

Ψα,β

|α〉A ⊗ |β〉B . (8.56)

Hence we conclude that:

Ψα,β =

NS∑
k=1

(U)α,k
√
λk (VT)k,β . (8.57)

Translated into a matrix factorization tool, the so-called SVD, if Ψ denotes the original dA × dB

complex matrix with elements [Ψ]α,β = Ψα,β , and Σ a dA×dB matrix which is mostly made of 0 with
the NS × NS diagonal block given by

√
λk, i.e., [Σ]k,k =

√
λk, the so-called matrix of the singular

values, then Eq. (8.57) implies that we can factorise the matrix Ψ as follows:

Ψ = UΣVT . (8.58)

169

Density matrices (Lecture Notes by G.E. Santoro)

Let us specialise this result to a general operator Â acting on the finite-dimensional Hilbert space
H.

SVD of an operator. Any linear operator Â, even if it is not diagonalisable, can be always
factorised as:

Â = Û D̂+V̂† , (8.59)

where Û and V̂ are unitary, while D̂+ is diagonal with real and positive entries, the singular
values.

i

8.8. Convex nature of density matrices

If ρ̂1 and ρ̂2 are two legitimate density matrices, then you can show that the convex linear combi-
nation

ρ̂(λ) = λρ̂1 + (1− λ)ρ̂2 ∀λ ∈ [0, 1] real (8.60)

is also a density matrix. Indeed the Hermitean nature is obvious since λ ∈ R. The fact that Tr(ρ̂(λ)) =

1 is clear, and the positivity

〈φ|ρ̂(λ)|φ〉 = λ〈φ|ρ̂1|φ〉+ (1− λ)〈φ|ρ̂2|φ〉 ≥ 0 ,

is also rather obvious.

The convex subset of density matrices. Hence, the set of the density matrices {ρ̂} is a
convex subset of the real vector space of the d × d Hermitean matrices with unit trace, whose
dimension (on R) is 2d(d−1)

2 + (d − 1) = d2 − 1. For d = 2, the dimension of such a space is
d2 − 1 = 3 and can be therefore parameterised by a real three-dimensional vector p in terms of
the three Pauli operators (which are traceless):

ρ̂ =
1

2
1 +

1

2
p · σ̂ .

We will return to a more detailed study of the d = 2 (spin-1/2) case in Sec. 8.9, where we will
also show that the convex set of spin-1/2 density matrices is given by the three-dimensional ball
|p| ≤ 1, the so-called Bloch sphere.

i

Operational significance. We have seen that the probability of outcome of the eigenvalue a
upon measuring an arbitrary observable Â on a state ρ̂ can be expressed as

Prob(a|ρ̂) = Tr(Π̂aρ̂) .

Suppose you have experimental methods to preparare two states ρ̂1 and ρ̂2 and perform measure-
ments on them. Suppose you decide to perform such measurements with probability λ on ρ̂1 and
probability (1−λ) on ρ̂2, obtaining a with probability λProb(a|ρ̂1)+(1−λ)Prob(a|ρ̂2). Evidently,
the experimental outcomes are totally indistinguishable from performing measurements on the
state ρ̂(λ) = λρ̂1 + (1− λ)ρ̂2, which would give Prob(a|ρ̂(λ)) = Tr(Π̂aρ̂(λ)). And this is true for
any outcome a of any physical observable Â.

i

We now explore a few general consequences of such a convex structure. The first consequence
is a generalisation of Eq. (8.60). If ρ̂1 · · · ρ̂N are density matrices, then the general convex linear

170

(Lecture Notes by G.E. Santoro) 8.8 Convex nature of density matrices

combination: 6

ρ̂ =

N∑
j=1

pj ρ̂j ∀pj ∈ [0, 1] real and such that
N∑
j=1

pj = 1 (8.61)

is also a density matrix.

We call extremal state a density matrix which cannot be represented as a convex linear combina-
tion.

Definition 1

One can show the following result:

Theorem 8.1. A state is extremal if and only if it is a pure state.

Proof. To prove that not pure =⇒ not extremal, simply recall that a mixed density matrix ρ̂ admits a
spectral decomposition of the form:

ρ̂ =
∑
k

λk|Λk〉〈Λk| ,

which is precisely a convex linear combination of pure states |Λk〉〈Λk|. To prove that pure =⇒ extremal,
take a pure state ρ̂ = |ψ〉〈ψ| and consider any vector |ψ⊥〉 which is orthogonal to |ψ〉, i.e., 〈ψ⊥|ψ〉 = 0. If
ρ̂ = λρ̂1 + (1− λ)ρ̂2 with λ 6= 0, 1 then you can write:

0 = 〈ψ⊥|ρ̂|ψ⊥〉 = λ〈ψ⊥|ρ̂1|ψ⊥〉+ (1− λ)〈ψ⊥|ρ̂1|ψ⊥〉 ,

which implies that
〈ψ⊥|ρ̂1|ψ⊥〉 = 〈ψ⊥|ρ̂2|ψ⊥〉 = 0 ∀ψ⊥ such that 〈ψ⊥|ψ〉 = 0 .

Hence you conclude that ρ̂1 = ρ̂2 = |ψ〉〈ψ| ≡ ρ̂. �

Why a pure state is called pure. The fact that pure states cannot be represented as
convex combinations of other states justifies, in view of the operational significance of the convex
combination, the term pure.

i

Finally, there is a result that generalises our discussion about the non-uniqueness of the ensemble
representation of mixed states:

Theorem 8.2. A general mixed state ρ̂ can be realised in an infinite number of ways as a convex
combination of (generally non-orthogonal) pure states.

Proof. Consider a general mixed state operationally realised by an ensemble E = {pj , |ψj〉}:

ρ̂ =

NE∑
j=1

pj |ψj〉〈ψj | =
∑
j

|ψ̃j〉〈ψ̃j | ,

6The generalization can be proven by induction, by writing:

ρ̂ = pN ρ̂N + (1− pN)

N−1∑
j=1

pj

1− pN
ρ̂j

and observing that the sum represents a convex combination of N − 1 terms.

171

Density matrices (Lecture Notes by G.E. Santoro)

where |ψ̃j〉 =
√
pj |ψj〉 are not-normalized (and possibly non-orthogonal). Now define the transformation

induced by a general NE ×NE unitary matrix:

|ψ̃j〉 =
∑
j′

Uj,j′ |φ̃j′〉 =⇒ |φ̃j〉 =
∑
j′

U†j,j′ |ψ̃j′〉 .

We easily get, using U†U = 1:

ρ̂ =
∑
j

|ψ̃j〉〈ψ̃j | =
∑
j

∑
j′,j′′

Uj,j′U∗j,j′′ |φ̃j′〉〈φ̃j′′ | =
∑
j′,j′′

(∑
j

U†j′′,jUj,j′

)
|φ̃j′〉〈φ̃j′′ | =

∑
j′

|φ̃j′〉〈φ̃j′ | .

In a similar way one can show that 〈φ̃j |φ̃j〉 = 〈ψ̃j |ψ̃j〉. Hence we can properly normalise the transformed
states as |φj〉 = 1√

pj
|φ̃j〉, obtaining:

ρ̂ =

NE∑
j=1

pj |ψj〉〈ψj | ≡
NE∑
j=1

pj |φj〉〈φj | .

�

Ambiguity of preparation. The fact that different ensemble preparations give rise to the same
density matrix is peculiar of quantum states, and is in sharp contrast with classical probability
theory. Classically, if there are d possible outcomes of an experiment, and (say, for d = 3) event
1 has probability 0.3, event 2 probability 0.6 and event 3 probability 0.1, then you can express
the outcome of such an experiment in a unique way as a convex superpositions of the extremal
distributions Pk−ext in which event k is certain and the other events have 0 probability (the
analogues of pure states), i.e. Pk−ext

j = δj,k. In the example above:

Pj = 0.3 P1−ext
j + 0.6 P2−ext

j + 0.1 P3−ext
j .

i

We will illustrate this highly ambiguous nature of mixed states with spin-1/2 examples in Sec. 8.9.

8.9. The spin-1/2 case and the Bloch sphere

We have already mentioned that for the spin-1/2 case (d = 2) the convex set of density matrices
can be conveniently parameterised by by a real three-dimensional vector p in terms of the three Pauli
operators:

ρ̂p =
1

2
1 +

1

2
p · σ̂ . (8.62)

Exercise 8.2. After showing that
(p · σ̂)2 = |p|21 ,

calculate ρ̂2 and verify that

ρ̂2
p =

1 + |p|2

4
1 +

1

2
p · σ̂ .

Deduce that Tr(ρ̂2
p) ≤ 1 if and only if |p| ≤ 1, and that ρ̂2

p = ρ̂p when |p| = 1.

Hence the three-dimensional convex set of d = 2 density matrices can be visualised as a three-
dimensional sphere 7 |p| ≤ 1, with pure states staying at the boundary |p| = 1. This sphere is known
as Bloch sphere, and the vector p is known as Bloch vector.

7Strictly speaking a ball, whose boundary is the sphere |p| = 1.

172

(Lecture Notes by G.E. Santoro) 8.9 The spin-1/2 case and the Bloch sphere

If p = n, where n is a unit vector, then we recognise that ρ̂n is the projector on the spin state
|+,n〉

ρ̂n =
1

2
1 +

1

2
n · σ̂ ≡ Π̂|+,n〉 . (8.63)

By varying n on the unit sphere we realise all possible pure states.

States at the boundary of the convex set. The fact that all states at the boundary of
the convex set of density matrices are pure is very special of the d = 2 case. For higher d, pure
states will always be at the boundary, but there are in general states at the boundary that are
also mixed. Indeed, the boundary is realised by density matrices which have an eigenvalue zero
(if you move to negative eigenvalue you would go out of the set), but having an eigenvalue zero
is not enough to guarantee that the state is pure when d > 2. For d = 2, on the contrary, you are
sure that λ1 = 1 when λ2 = 0.

i

Any mixed state has |p| < 1, hence is strictly inside the Bloch sphere. Geometrically, it is quite
intuitive that we can represent it in many (indeed, infinitely many) ways as convex combination of
pure states, i.e. points on the boundary of the sphere. For instance, consider the infinite-temperature
mixed state ρ̂ = 1

21, which is associated to the origin p = 0. Evidently, you can represent it as:

1

2
1 =

1

2
ρ̂n +

1

2
ρ̂−n ∀n . (8.64)

Notice that since 〈−,n|+,n〉 = 0 we have realised ρ̂ as an equal probability admixture of two orthogonal
pure states.

A simple example of state tomography. To measure the Bloch vector p (also known as
polarization) that a certain given density matrix ρ̂p has, imagine performing repeated measure-
ments of the spin in direction n, and calculate the average 〈n · σ̂〉 = Tr(n · σ̂ ρ̂p). You easily
calculate that

Tr(n · σ̂ ρ̂p) = n · p . (8.65)

Hence, by repeated measurements of the average spin in 3 orthogonal directions, for instance
x, y, z, you fully determine the vector p, completely determining the state ρ̂p. This procedure is
called state tomography.

i

Exercise 8.3. Show that
1

2
Tr(σ̂ασ̂β) = δα,β . (8.66)

Using that, verify Eq. (8.65).

When 0 < |p| < 1, there are still infinitely many convex combinations, but most of them in terms
of non-orthogonal pure states. For instance (and really without loss of generality), take p = (0, 0, pz)

with 0 < pz < 1:

ρ̂p =
1

2
1 +

pz
2
σ̂z . (8.67)

The two eigenvalues are λ1 = (1 +pz)/2 and λ2 = (1−pz)/2 and there is no spectral degeneracy. The
spectral decomposition in terms of orthogonal states reads (as you can easily convince yourself):

ρ̂p = λ1ρ̂z + λ2ρ̂−z .

But there are infinitely many convex decompositions in terms of pairs of non-orthogonal pure states.
For instance, consider the circle obtained by intersection of the Bloch sphere with the plane at z = pz,
which can be parameterised by an angle φ as

n = (
√

1− p2
z cosφ,

√
1− p2

z sinφ, pz) .

173

Density matrices (Lecture Notes by G.E. Santoro)

Figure 8.3.: The Bloch sphere. The same mixed density matrix (here with pz = 1
2
) is represented in terms

of two orthogonal pure states (along z), or two non-orthogonal pure states.

Take two arbitrary opposite points on that circle (associated to φ1 and φ2 = φ1 + π), call the n1 and
n2, and observe that:

ρ̂ = λ1ρ̂z + λ2ρ̂−z =
1

2
ρ̂n1 +

1

2
ρ̂n2 . (8.68)

Fig. 8.3 illustrates the simple geometry behind such a construction. Obviously, the non-orthogonality
of the two states involved follows from the fact that, in general, 〈+,n1|+,n2〉 > 0.

Exercise 8.4. Calculate 〈+,n1|+,n2〉 for two arbitrary spin (pure) states on the Bloch sphere.

In full generality, if p is inside the unit ball, then you can take any point n1 on the sphere, define
the chord from n1 that contains p and ends at a second point n2 on the sphere, and express p as a
convex combination of n1 and n2:

p = λn1 + (1− λ)n2 .

As you see, there is two-parameter family of chords of this type. For all these choices, as you readily
verify

ρ̂p = λρ̂n1
+ (1− λ)ρ̂n2

,

realises the promised convex combination of (non-orthogonal) pure states.

174

9. Open Quantum Systems and Quantum
Maps

We recall that a density matrix is a positive Hermitian operator — which we denote by ρ̂ ≥ 0 —
with a unit trace: Tr ρ̂ = 1. Recall also that one of the ways in which density matrices emerge is by
“tracing out an environment”. In this respect, the role of the system-environment interaction, which
we have so far not discussed, is crucial. Indeed, if the total Hamiltonian is split as

Ĥtot(t) = ĤS(t) + ĤB + gĤSB , (9.1)

where ĤS(t) is the system Hamiltonian, ĤB is the bath (or environment) 1 Hamiltonian and ĤSB

describes the interaction between the two, with an overall coupling constant g, then starting from a
pure separable state

|ΨSB(0)〉 = |ψS(0)〉 ⊗ |φB(0)〉 (9.2)

the evolution leads to a state
|ΨSB(t)〉 = Ûtot(t)|ΨSB(0)〉 (9.3)

which is generally not separable, except for the trivial case g = 0. 2

9.1. Kraus representation of the dynamics

In general, for g > 0, by tracing out the environment using an arbitrary orthonormal basis {|φB

k〉},
we get a density matrix for the system:

ρ̂S(t) = TrB |ΨSB(t)〉〈ΨSB(t)|

= TrB

(
Ûtot(t)|ψS(0)〉〈ψS(0)| ⊗ |φB(0)〉〈φB(0)|Û†tot(t)

)
=

∑
k

〈φB

k |Ûtot(t)|φB(0)〉 |ψS(0)〉〈ψS(0)| 〈φB(0)|Û†tot(t)|φB

k〉

=
∑
k

K̂k(t) |ψS(0)〉〈ψS(0)| K̂†k(t)

=
∑
k

K̂k(t) ρ̂S(0) K̂†k(t) (9.4)

where we have defined the Kraus operators acting on the system Hilbert space HS but labelled by the
quantum number k of the environment state |φB

k〉

K̂k(t)
def
= 〈φB

k |Ûtot(t)|φB(0)〉 =⇒ K̂†k(t) = 〈φB(0)|Û†tot(t)|φB

k〉 . (9.5)
1A bath (or reservoir) is an environment with very many (in principle, infinite) degrees of freedom. We assume in
our derivations that the number of degrees of freedom is finite, but otherwise unspecified: nothing forbids us from
applying our derivations to “bath” which are made by a single spin-1/2, in which case a possible alternative name is
ancilla.

2Clearly, for g = 0 we have:
|ΨSB(t)〉 =

(
ÛS (t)|ψS(0)〉

)
⊗
(
ÛB(t)|φB(0)〉

)
,

hence the state remains separable.

175

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Observe that the same algebra holds for a more general separable state in which the initial system
state ρ̂S(0) is mixed. For a finite-dimensional bath system, there are in principle DK ≤ dB = dim(HB)

Kraus operators. Notice that in general the Kraus operators are neither unitary nor Hermitian (hence
they are not projector operators).

A simple to prove 3 but important property of Kraus operators is that:

Completeness. ∑
k

K̂†k K̂k = 1S . (9.7)

Such a property is instrumental in showing that indeed density matrices evolve into density
matrices by application of the Kraus operators.

i

The conservation of the unit trace is trivial:

TrS ρ̂S(t) =
∑
k

TrS

(
K̂k(t) ρ̂S(0) K̂†k(t)

)
=
∑
k

TrS

(
K̂†k(t)K̂k(t) ρ̂S(0)

)
= TrS ρ̂S(0) . (9.8)

The conservation of the Hermitian nature is equally trivial. To prove positivity, we have to show that
∀|χS〉 we have 〈χS|ρ̂S(t)|χS〉 ≥ 0. Let us carry out the proof for the case in which ρ̂S(0) = |ψS(0)〉〈ψS(0)|,
the general result following by linearity. We have:

〈χS|ρ̂S(t)|χS〉 =
∑
k

〈χS|K̂k(t)|ψS(0)〉〈ψS(0)|K̂†k(t)|χS〉 =
∑
k

∣∣∣〈χS|K̂k(t)|ψS(0)〉
∣∣∣2 ≥ 0 . (9.9)

We said that in general the Kraus operators are not unitary. But there is a trivial case in which
indeed unitarity is obtained. This is the case g = 0, in which case:

ρ̂S(t) = ÛS (t)ρ̂S(0)Û†S (t) , (9.10)

and, as we already know, purity is preserved.

Let us now show that purity is not preserved by the general Kraus representation, hence there is no
single effective ÛS (t) which can represent the evolution in a unitary fashion. To show this, we calculate
TrS ρ̂

2
S(t), which is an indicator of purity, in the sense that a mixed state is signalled by TrS ρ̂

2
S(t) < 1.

Again, we assume that the initial state is pure, ρ̂S(0) = |ψS(0)〉〈ψS(0)|. We have:

TrS ρ̂
2
S(t) =

∑
k,k′

TrS

(
K̂k(t) ρ̂S(0) K̂†k(t)K̂k′(t) ρ̂S(0) K̂†k′(t)

)
=

∑
k,k′

∣∣∣〈ψS(0)|K̂†k′(t)K̂k(t)|ψS(0)〉
∣∣∣2 . (9.11)

Let us now consider each term appearing in the sum. To shorten our notation, we define |vk〉 =

K̂k|ψS(0)〉, omitting also the time label in the Kraus operator. Then we have, by the Cauchy-Schwartz
inequality: ∣∣∣〈ψS(0)|K̂†k′K̂k|ψS(0)〉

∣∣∣2 = |〈vk′ |vk〉|2

≤ 〈vk′ |vk′〉〈vk|vk〉
≤ 〈ψS(0)|K̂†k′K̂k′ |ψS(0)〉〈ψS(0)|K̂†kK̂k|ψS(0)〉 (9.12)

3Simply observe that:∑
k

K̂†k K̂k =
∑
k

〈φB(0)|Û†tot(t)|φ
B
k 〉〈φ

B
k |Ûtot(t)|φ

B(0)〉

= 〈φB(0)|Û†tot(t)Ûtot(t)|φ
B(0)〉 = 〈φB(0)|1tot|φB(0)〉 = 1S (9.6)

176

(Lecture Notes by G.E. Santoro) 9.1 Kraus representation of the dynamics

where the equality is realized only if |vk〉 and |vk′〉 are parallel. You realise immediately that for a
generic |ψS(0)〉S this is impossible, unless there is a single Kraus operator, in which case |vk〉 ≡ |vk′〉.
Hence we conclude that:

TrS ρ̂
2
S(t) =

∑
k,k′

∣∣∣〈ψS(0)|K̂†k′K̂k|ψS(0)〉
∣∣∣2

≤
(∑

k

〈ψS(0)|K̂†kK̂k|ψS(0)〉
)2

= 1 , (9.13)

where the equality — hence purity preservation — is realized only if there is a single Kraus operator,
i.e.,

ρ̂S(t) = K̂(t) ρ̂S(0) K̂†(t) , (9.14)

in which case we must have
K̂† K̂ = 1S , (9.15)

hence K̂ is unitary, at least for a finite-dimensional HS.

The Kraus map. Summarising, any unitary dynamics in a suitably larger Hilbert space
induces, when regarded within the system Hilbert space, a linear transformation between density
matrices of the form:

ρ̂S(0) −→ ρ̂S(t) =
∑
k

K̂k(t) ρ̂S(0) K̂†k(t) with
∑
k

K̂†k K̂k = 1S . (9.16)

This is known as a Kraus quantum map. We will discuss more about this in Sec. 9.4. Recalling
that this comes from choosing an arbitrary basis in the “bath” Hilbert space, you might suspect
that there is a large arbitrariness involved in the process, as we will discuss in Secs. 9.3 and 9.2.3.

i

Example: the cNOT gate. Consider a case in which system and environment are both a single Qbit.
We denote the corresponding Hilbert spaces by indicating the computational basis {|0〉, |1〉}, and a
general state as |ψ〉 = z0|0〉 + z1|1〉. The cNOT (or control-NOT) — the control being the system
Qbit —, is defined by the following unitary:

ÛcNOT|0S〉 ⊗ |φB〉 = |0S〉 ⊗ |φB〉

ÛcNOT|1S〉 ⊗ |φB〉 = |1S〉 ⊗
(
σ̂x|φB〉

) (9.17)

By linearity, this fully defines ÛcNOT in the product Hilbert space of the two Qbits. In the standard
computational basis of the tensor product:

{|0S〉 ⊗ |0B〉 = |00〉, |0S〉 ⊗ |1B〉 = |01〉, |1S〉 ⊗ |0B〉 = |10〉, |1S〉 ⊗ |1B〉 = |11〉} ,

the 4× 4 matrix representing the cNOT is:

ÛcNOT →

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (9.18)

Consider now ÛcNOT applied to a separable state made of a general linear combination of the system
Qbit times the |0〉B state:

|Ψ(t = τ)〉 = ÛcNOT(z0|0S〉+ z1|1S〉)⊗ |0B〉 = z0|00〉+ z1|11〉 , (9.19)

177

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

where τ is, supposedly, the time over which the gate has acted. Notice how the interaction has
created an entangled state starting from a product state. As a consequence, the system density matrix
obtained by partial trace is:

ρ̂S(τ) = TrB |Ψ(τ)〉〈Ψ(τ)| = |z0|2|0S〉〈0S|+ |z1|2|1S〉〈1S| . (9.20)

Hence, the populations are preserved, but coherence is lost: the final state of the system Qbit is mixed.
Incidentally, this is the same density matrix you would obtain as a “post-measurement” ensemble upon
measuring the system Qbit in the computational basis, i.e., along σ̂z.

Recalling that the cNOT gate can be written as

ÛcNOT =
1

2
(1 + σ̂z1) +

1

2
(1− σ̂z1) σ̂x2 , (9.21)

with the NOT gate σ̂x on the second Qbit acting only when the first Qbit (the control Qbit) is
|↓〉 = |1〉, the two Kraus operators associated to the standard computational basis are in this case
projectors:

K̂0 = 〈0B|ÛcNOT|0
B〉 =

1

2
(1 + σ̂z1) = Π̂S

0

and
K̂1 = 〈1B|ÛcNOT|0

B〉 =
1

2
(1− σ̂z1) = Π̂S

1 .

The two Kraus operators lead to the two collapsed states:

|ψS

0〉 =
K̂0|ψS〉
||K̂0|ψS〉||

= |0S〉 and |ψS

1〉 =
K̂1|ψS〉
||K̂1|ψS〉||

= |1S〉 .

As mentioned, the system density matrix in Eq. (9.20) coincides with the post-measurement density
matrix you would have written down by doing a von Neumann measurement of the system Qbit in
the computational basis. Indeed, the probability of measuring 0 and 1 are:

P0 = 〈ψS|Π̂S

0|ψS〉 = |z0|2 and P1 = 〈ψS|Π̂S

1|ψS〉 = |z1|2 ,

and the post-measurement mixed state is:

ρ̂S

p−m = |z0|2|0S〉〈0S|+ |z1|2|1S〉〈1S| . (9.22)

9.2. Quantum measurements and POVM

Quantum measurements provide clear illustrations for Kraus maps, adding considerable physical
understanding of the subject. We will start from the standard von Neumann paradigm of projective
measurement, which generalises the previous CNOT example. We then move to a more general setting,
that of generalised mesurements, which provides an even more illuminating discussion about Kraus
maps.

9.2.1. von Neumann projective measurements

Recall that in a von Neumann projective measurement, you consider a state |ψS〉, with the associated
initial pure-state density matrix ρ̂S

in = |ψS〉〈ψS|. You assume to have a large ensemble of identical
pure states |ψS〉, over which you measure a system observable A, obtaining the eigenvalues a of the
associated Hermitian operator Â with probability

Pa = Prob(a|ψS) = 〈ψS|Π̂a|ψS〉 = ||Π̂a|ψS〉||2 .

178

(Lecture Notes by G.E. Santoro) 9.2 Quantum measurements and POVM

After measuring the eigenvalue a, the state collapses to

|ψS〉 measure a−−−−−−→ |ψS

a〉 =
Π̂a|ψS〉
||Π̂a|ψS〉||

.

The ensemble of states after the measurement — assuming we do not make any filtering selection
of the states according to the outcome of the measurement — is given by E = {Pa, |ψS

a〉}, and is
represented by post-measurement density matrix

ρ̂S

p−m =
∑
a

Pa|ψS

a〉〈ψS

a| =
∑
a

��Pa
Π̂a|ψS〉〈ψS|Π̂a

��
���||Π̂a|ψS〉||2

=
∑
a

Π̂a|ψS〉〈ψS| Π̂a =
∑
a

Π̂a ρ̂
S

in Π̂a . (9.23)

What happens if the initial state is not pure, but an ensemble preparation E = {pk, |ψS

k〉. It turns
out that the answer for the post-measurement state is still correct:

ρ̂S

p−m =
∑
a

Π̂a ρ̂
S

in Π̂a , (9.24)

but the various collapsed states are now no longer pure states, as you will learn by doing the
following exercise.

Question: What if the initial state is mixed?

Exercise 9.1. Take an initial mixed state

ρ̂S

in =

NE∑
k=1

pk|ψS

k〉〈ψS

k| .

Call Pa|k the probability of measuring the eigenvalue a on the state |ψS

k〉, and |ψS

a|k〉 the collapsed
pure state after measuring a.

1) Show that the measurement of a is associated to a collapsed mixed state

ρ̂S

a =

NE∑
k=1

pk|ψS

a|k〉〈ψ
S

a|k|

2) The probability of measuring a over the whole ensemble is

Pa =

NE∑
k=1

Pa|k pk .

Express Pa in terms of ρ̂S
a and of the projector Π̂a.

3) Show that the post-measurement density matrix can be written as:

ρ̂S

p−m =
∑
a

Paρ̂
S

a =
∑
a

Π̂a ρ̂
S

in Π̂a .

The projective measurement as a Kraus quantum map. The process of a projective von
Neumann measurement contained in Eq. (9.24) can therefore be regarded as a Kraus quantum
map where the Kraus operators are simply the (Hermitian) projectors Π̂a = Π̂†a associated to the
eigenvalues of the operator we are measuring. The Kraus completeness in Eq. (9.7) follows from
the completeness property of projectors associated to Hermitian operators.

i

179

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

9.2.2. Generalised quantum measurements

System

Environment

Pointer

Coupling

Measurement

Figure 9.1: Illustration of a quantum mea-
surement: a pointer (measurement appa-
ratus, possibly microscopic) interacts with
the system, while many other degrees
of freedom (the environmental bath) are
present. The measurement consists of a
projective von Neumann measurement of
some pointer operator B̂.

Let us now imagine that the bath includes a measurement pointer, see Fig. 9.1, with Hilbert space
HP plus possibly a large environment HE:

HB = HP ⊗HE (9.25)

Assume that the system+bath state is initially the usual product state |ψS〉 ⊗ |φB〉, with |φB〉 ∈ HB.

Info: So far, we chose an arbitrary basis of HB to do our algebra. Now we think differently, and
we imagine measuring some Hermitian operator B̂ for the pointer (not the system). The operator
B̂ has eigenvalues b and an associated orthonormal basis {|φB

b,q〉}, where q denotes the possible
degeneracy of the eigenvalue b. a To have a concrete example in mind, you could think that
the “pointer” is a single spin, and B̂ is a spin operator along a certain direction n. As a second
example, you could think of the “pointer” as the electromagnetic field, with its photon modes.
More about this in later discussions.
aEspecially in the presence of a large bath, the fact that an eigenvalue of the pointer operator B̂ is degenerate is

almost unavoidable.

i

Let us now return to a general setting of arbitrary system and pointer/environment. Let the
entangling interaction Ûtot act on the state, leading to 4

|ΨSB〉 = Ûtot

(
|ψS〉 ⊗ |φB〉

)
=
∑
b,q

(
K̂b,q|ψS〉

)
⊗ |φB

b,q〉 , (9.26)

where — recall the original derivation of the Kraus operators in Eqs. (9.4,9.5) — we have that:

K̂b,q = 〈φB

b,q|Ûtot|φB〉 , (9.27)

which are in general not Hermitian, but, in order to preserve the norm, see Eq. (9.7), do satisfy:∑
b,q

K̂†b,q K̂b,q = 1S . (9.28)

Pre-measurement. This part of the process in which the interaction, through a non-separable
Ûtot creates entanglement between the system and the pointer+environment is often called the
pre-measurement. Notice that, in general, the pre-measurement changes both the state of the
system as well as that of the environment.

i

4Simply use the total identity to write:

|ΨSB〉 =
∑
b,q

(
|φB
b,q〉〈φ

B
b,q|
)
Ûtot

(
|ψS〉 ⊗ |φB〉

)
=
∑
b,q

(
K̂b,q|ψS〉

)
⊗ |φB

b,q〉 .

180

(Lecture Notes by G.E. Santoro) 9.2 Quantum measurements and POVM

Suppose that the pointer interacts in some way with a further apparatus — collectively included in
the large bath — that performs a projective von Neumann measurement of the pointer operator B̂,
reading the eigenvalue b of such observable, and collapsing the environment/pointer state on the cor-
responding eigenvector basis |φB

b,q〉 of B̂, with associated orthogonal projectors Π̂B

b =
∑

q |φB

b,q〉〈φB

b,q|,
hence 1S ⊗ Π̂B

b for the combined system.

The pointer read-out (measurement). The probability of obtaining the outcome “b” in an
ensemble of measurements of this type is evidently: a

Pb = Prob(b|ΨSB) = 〈ΨSB|1S ⊗ Π̂B

b |ΨSB〉 = 〈ψS|
∑
q

K̂†b,qK̂b,q|ψS〉 , (9.29)

which is correctly normalised:∑
b

Prob(b|ΨSB) = 〈ψS|
∑
b,q

K̂†b,qK̂b,q|ψS〉 = 1 . (9.30)

aIndeed:

Pb = 〈ΨSB|1S ⊗ Π̂B
b |Ψ

SB〉 = 〈ψS| ⊗ 〈φB|Û†tot

(
1S ⊗ Π̂B

b

)
Ûtot|φ

B〉 ⊗ |ψS〉

=
∑
q

〈ψS| ⊗ 〈φB|Û†tot

(
1S ⊗ |φB

b,q〉〈φ
B
b,q|
)
Ûtot|φ

B〉 ⊗ |ψS〉 = 〈ψS|
∑
q

K̂†b,qK̂b,q|ψS〉 .

i

As you see, the probability of measuring the eigenvalue b involves an operator

Êb =
∑
q

K̂†b,qK̂b,q . (9.31)

Such an operator is Hermitian and positive, as we will later show explicitly. Moreover, completeness
implies that: ∑

b

Êb =
∑
b,q

K̂†b,qK̂b,q = 1S . (9.32)

The probability can be expressed in terms of Êb as

Pb = Prob(b|ρ̂S

in) = TrS(Êbρ̂
S

in) , (9.33)

which, by linearity, holds also for an initial mixed state ρ̂S

in.

We now want to discuss how the state collapses after measuring b. Here, the result is slightly
surprising.

The collapse of a pure state does not lead to a pure state. In the standard von Neumann
framework, a pure state |ψS〉 would collapse into a pure state. This would suggest here that the
collapse of |ψS〉, upon measuring b for the pointer leads to a pure state

|ψS〉 measure b−−−−−−→ |ψS

b〉 =

∑
q K̂b,q|ψS〉

||
∑

q K̂b,q|ψS〉||
. (9.34)

This is however incorrect, in the presence of a degeneracy of the eigenvalue b.

!

Indeed, the probability I would calculate from the square modulus of the projection amplitude of such
a hypothetical pure state gives:

||
∑
q

K̂b,q|ψS〉||2 =
∑
q,q′

〈ψS|K̂†b,q′K̂b,q|ψS〉 6= Pb = 〈ψS|
∑
q

K̂†b,qK̂b,q|ψS〉 .

181

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

The reason for such a fact should be traced in the entangled nature of the state in Eq. (9.26), which,
in the presence of degeneracy, does not lead to a well-defined collapsed pure state for the system.

The correct expression for the collapsed state is obtained in terms of density matrices as follows:

|ψS〉〈ψS| measure b−−−−−−→ ρ̂S

b ≡
1

Pb

∑
q

K̂b,q|ψS〉〈ψS|K̂†b,q , (9.35)

where you observe that the right-hand side is not a pure state, in general.

The correct density matrix after the collapse. By linearity, the previous expression
generalises to a mixed initial state. Upon measuring the eigenvalue b of the pointer the state of
the system collapses to:

ρ̂S

in
measure b−−−−−−→ ρ̂S

b ≡
1

Pb

∑
q

K̂b,qρ̂
S

inK̂†b,q . (9.36)

i

At this point, it is crucial to decide if you keep track of the outcome “b” of the measurement, or if
you completely disregard it. If you keep track of the outcome, you are doing some sort of filtering of
states, and you have to deal with ρ̂S

b. If you disregard b, you essentially combine the various ρ̂S

b, with
their probability Pb, into a post-measurement ensemble, leading to a final density matrix ρ̂S

p−m.

The post-measurement state. The post-measurement density matrix obtained by disregard-
ing the outcome b of the measurement is given by a Kraus quantum map:

ρ̂S

in
disregard outcome−−−−−−−−−−−→ ρ̂S

p−m =
∑
b

Pbρ̂
S

b =
∑
b,q

K̂b,q ρ̂
S

in K̂†b,q . (9.37)

Observe that the post-measurement state differs from the initial state because of the “pre-
measurement” entangling interaction.

i

9.2.3. Ambiguity in the preparation of a post-measurement state

A projective measurement on the pointer leads to a Kraus map with Kraus operators that are
generally different from system projectors. Before we adventure into the general discussion of how
different measurements on the pointer — hence different preparation procedures — lead to the same
post-measurement density matrix for the system, it is useful to revisit the cNOT gate example, by
doing the following:

Exercise 9.2 (The cNOT gate revisited). Consider a Qbit (the system) interacting with a pointer
(=environment) made of a single Qbit. The entangling interaction is the cNOT gate we have seen
before, with the “control” bit being the system. If the system initial state is |ψS〉 = z0|0〉S + z1|1〉S,
and the initial state of the pointer is |φB〉 = |0〉B, then the entangled state after the cNOT is:

|ΨSB〉 = ÛcNOT|ψ
S〉 ⊗ |φB〉 = ÛcNOT

(
z0|0〉S + z1|1〉S

)
⊗ |0〉B = z0|0〉S ⊗ |0〉B + z1|1〉S ⊗ |1〉B .

Imagine measuring the pointer spin σ̂z.

1) Calculate the probabilities P0 and P1 of obtaining |0〉B and |1〉B.

2) Write the resulting collapsed system states in terms of a set of Kraus operators.

3) Express the final (i.e., after measurement) system density matrix ρ̂S
p−m.

182

(Lecture Notes by G.E. Santoro) 9.2 Quantum measurements and POVM

Think now of measuring the pointer spin σ̂x.

4) Calculate the probabilities Q+ and Q− of obtaining |+,x〉B and |−,x〉B.

5) Write the resulting collapsed system states in terms of a set of Kraus operators. Are the two states
orthogonal? If not, when they would be orthogonal?

6) Express the final (i.e., after measurement) system density matrix ρ̂S
p−m. Is it different from that

obtained at point 3) above?

We now discuss this fact in a more general setting. For simplicity, we consider the non-degenerate
case, in which the extra quantum number q is not present. Then the collapse of a pure state |ψS〉,
upon measuring a pointer operator B̂ with outcome one of its eigenvalues b, prepares a pure state:

|ψS〉 measure b−−−−−−→ |ψS

b〉 =
K̂b|ψS〉
||K̂b|ψS〉||

where K̂b = 〈φB

b |Ûtot|φB〉 . (9.38)

Upon repeating the measurements, we have prepared an “ensemble” :{
Pb, |ψS

b〉
}

with |ψS

b〉 =
K̂b|ψS〉
||K̂b|ψS〉||

and Pb = 〈ψS|K̂†bK̂b|ψS〉 (9.39)

representing the system post-measurement density matrix:

ρ̂S,B
p−m =

∑
b

Pb|ψS

b〉〈ψS

b | =
∑
b

K̂b|ψS〉〈ψS|K̂†b . (9.40)

Interestingly, system states associated to different eigenvalues b and b′ are non orthogonal, i.e.,

〈ψS

b′ |ψS

b〉 6= δb,b′ .

One can show that the conditional probability of measuring “b′” immediately after having measured b
is now:

Prob(b′|b ∧ΨSB) =
||K̂b′K̂b|ψ〉S||2

||K̂b|ψ〉S||2
, (9.41)

hence the two measurements agree, ending with Prob(b′|b ∧ ΨSB) = δb′,b, only if K̂b′K̂b = δb′,bK̂b,
which means that the Kraus operators are orthogonal projectors.

Imagine that we decide to measure a different observable Ĉ, associated to a different orthonormal
basis {|φB

c 〉} of the bath Hilbert space HB. In the concrete example of the pointer/environment being
a single spin, the operator Ĉ might be the spin of the pointer in a different direction n′. The collapse
of a pure state |ψS〉, upon measuring c, prepares a pure state:

|ψS〉 measure c−−−−−−→ |χS

c〉 =
M̂c|ψS〉
||M̂c|ψS〉||

where M̂c = 〈φB

c |Ûtot|φB〉 , (9.42)

with a probability

Qc = Prob(c|ΨSB) = 〈ΨSB|1S ⊗ Π̂B

c |ΨSB〉 = 〈ψS|M̂†cM̂c|ψS〉 . (9.43)

Such a measurement produces a different preparation ensemble{
Qc, |χS

c〉
}

with |χS

c〉 =
M̂c|ψS〉
||M̂c|ψS〉||

, (9.44)

for the system post-measurement state,

ρ̂S,C
p−m =

∑
c

Qc|χS

c〉〈χS

c| = M̂c|ψS〉〈ψS|M̂†c . (9.45)

183

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Different preparations, same state. The remarkable fact is that the two post-measurement
states are indeed identical:

ρ̂S,B
p−m = ρ̂S,C

p−m = ρ̂S

p−m . (9.46)

i

To convince yourself that this is indeed the case, 5 consider that the two different orthonormal basis
sets {|φB

b 〉} and {|φB
c 〉} for B̂ and Ĉ, respectively, must be related by a unitary transformation ÛB:

|φB

c 〉 =
∑
b

(ÛB)cb|φB

b 〉 . (9.47)

Then, you conclude that:

M̂c = 〈φB

c |Ûtot|φB〉 =
∑
b

(ÛB)∗cb 〈φB

b |Ûtot|φB〉 =
∑
b

(ÛB)∗cb K̂b ,

and, as a consequence: 6

ρ̂S,C
p−m =

∑
c

∑
b,b′

(ÛB)∗cb (ÛB)cb′ K̂b|ψS〉〈ψS| K̂†b′ =
∑
b

K̂b|ψS〉〈ψS| K̂†b ≡ ρ̂
S,B
p−m . (9.48)

9.2.4. The von Neumann protocol

The von Neumann postulate — concerning projective measurements — should not be confused
with the von Neumann protocol, which is an interesting example of a generalised measurement, which
partially clarifies the mechanism behind the collapse of the state. The protocol is best illustrated with
the example of a Stern-Gerlach apparatus “measuring” the electronic spin of atoms, like Ag in the
original experiment, passing through the apparatus. 7 See Fig. 8.1.

An interesting aspect of the story is that the natural role of a pointer variable is here played by
the center-of-mass wave-function of the very same atom whose spin we are trying to measure: the
center-of-mass of the atom is indeed subject to a different force due to the magnetic field gradient,
depending on the spin state of the atom. With a slightly simplified notation, let me denote by ψ(x) the
orbital part of the atomic wave-function, x being the center-of-mass coordinate, and by |ψS〉 the spin
state of the atoms, which we assume to be S = 1/2. Let the initial state entering the SG apparatus be
|Ψin〉 = ψ0(x)⊗ |ψS〉. 8 The atom then passes through the two specially designed magnets, where a
magnetic field gradient — assumed along the axis of the apparatus, which we denote by z — provokes
a force along the z-direction on the center-of-mass:

Fz(x) = −µB
∂Bz
∂z

(x)⊗ σ̂z , (9.49)

formally derived from a Zeemann Hamiltonian term µBBz(x)⊗ σ̂z, where µB = e~/2mc is the Bohr
magneton.

5You should observe the complete similarity of this discussion with that given a while ago when discussing the ambiguity
of the Kraus map and of the purification of a state.

6Use that: ∑
c

(ÛB)∗cb (ÛB)cb′ =
∑
c

(Û†B)bc (ÛB)cb′ = (Û†BÛB)b,b′ = δb,b′ .

7A similar illustration would be given by a beam of linearly polarised photons passing through a thick calcite crystal.
8Assume that the spin and the orbital part of the electronic wave-function are not entangled: essentially, neglect any
spin-orbit effects. We further assume that the spin-state has been prepared to be a pure state |ψS〉.

184

(Lecture Notes by G.E. Santoro) 9.2 Quantum measurements and POVM

The force operator. Notice that, strictly speaking, this is a force operator, acting on the
combined system — center-of-mass (in principle the gradient of the field depends on its position
x) and spin — and entangling these two parts of the state. Nevertheless, thinking classically —
the atom is, after all, quite heavy and classical mechanics applies as a good approximation — we
can go on describing the “dynamics of the center-of-mass” in a classical framework.

i

The complicated quantum dynamics of the center-of-mass – with a time-dependent interaction,
because the system feels the effect of the magnetic field gradient only when inside the poles of the
magnet, while essentially free motion follows outside the magnet — boils down to a unitary pre-
measurement operator of the form:

Ûtot = exp
(
− i

~
aP̂z ⊗ σ̂z

)
(9.50)

where a is the deflection along the z-direction of the center of mass, clearly dependent on the total
“pre-measurement” time t, and P̂z the z-component of the center-of-mass momentum operator. Notice
that a unitary operator of this type implies that the initial state is transformed as:

|Ψin〉 = ψ0(x)⊗
(
z+|↑〉+ z−|↓〉

) Ûtot−−−→ |Ψf〉 = z+ψ+(x)⊗ |↑〉+ z−ψ−(x)⊗ |↓〉 (9.51)

where ψ±(x) = ψ0(x − d ∓ aẑ), and d denotes the position of the detector where the atom would
have ended in the absence of the magnet. Also observe that, by doing so, I have hidden a piece of
“free-evolution-operator”, which I have not included in Ûtot, and neglected, as well, any spreading of
the wave-function ψ0.

Technically, such pre-measurement evolution has led to a pure state |Ψf〉 which shows, however,
entanglement between the spin, which I was willing to measure, and the “position of the atom center-
of-mass”. I have deliberately neglected any possible source of decoherence that might have occurred
while the atom goes through the magnet and arrives at the detector. But now, some form of further
interaction with the detector must occur, so that I can “read out” the result of the measurement: is
the atom deviated upwards, or downwards?

In absence of such a “read-out” interaction, I might still dream of “joining together” the two
entangled-superposed components of the total state |Ψf〉 without observing the system — remem-
ber, no form of which-way detection must occur — and getting again a final un-entangled pure state:
a kind of “undoing” of the pre-measurement unitary evolution, which is, in principle at least, invertible.

But, if a form of “which-way detection” occurs 9 the phase coherence of the two pieces of the state
|Ψf〉 is irremediably lost. Incidentally, this is a “macroscopic measurement” — a long magnet which
can provide enough deflection to the atoms that I can unambiguously say if the atom has deviated
upwards or downwards: The atom is revealed in either one of the two paths, never in a superposition.
10 The amount of information lost in the state can be gauged by ignoring the center-of-mass degree
of freedom and calculating the partial-trace of the pre-measured state:

ρ̂S = Trorb(|Ψf〉〈Ψf |) =

(
|z+|2 〈ψ−|ψ+〉z+z

∗
−

〈ψ+|ψ−〉z∗+z− |z−|2

)
. (9.52)

9I need not necessarily “demolish” the state by having the atoms hitting a detector screen: the detection might involve
some more clever apparatus which can perform a “which-way” detection.

10This is at variance with having a microscopic pointer, like a single spin-1/2, where you could think of measuring the
pointer spin also along some other direction, for instance, x̂.

185

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

The role of the overlap. Quite interestingly, the more the measurement is “macroscopic”
and the two components are spatially separated, the smaller the overlap 〈ψ−|ψ+〉, implying, in
essence, a mixed final state where the coherence is nearly lost when the overlap is exponentially
small.

i

9.2.5. POVM and summary of quantum measurement

Given the Kraus operators K̂k, we can form positive Hermitian operators Êk = K̂†kK̂k which have
the properties:

Hermiticity) Êk = K̂†kK̂k are Hermitian.

Positivity) Êk = K̂†kK̂k are positive (really, non-negative), since ∀ |ψ〉:

〈ψ|Êk|ψ〉 = ||K̂k|ψ〉||2 ≥ 0 . (9.53)

Completeness) They realise a resolution of the identity:∑
k

Êk =
∑
k

K̂†k K̂k = 1S . (9.54)

A system of operators with these properties is known as positive operator-values measure, or POVM.

Warning: In general, the probability of measurements are given in terms of the {Êk}, while the
“state after the measurement” is known only if the {K̂k} are given. If I give you a set of Kraus
operators {K̂k}, you can easily construct a POVM set {Êk}. The opposite process involves in
general a polar decomposition. If you write K̂k = Ûk(Êk)

1
2 , where Ûk is an arbitrary unitary, you

have Êk = K̂†kK̂k. See Preskill’s lecture notes 3.1.2. If you are not interested in the “state after
the measurement” (for instance, because the measurement involves demolition of the system, like
when you do a photon detection), then the POVM set {Êk} is enough.

!

In the pointer measurement framework discussed previously, we would write, given the set of Kraus
operators K̂b,q:

Êb =
∑
q

K̂†b,qK̂b,q , (9.55)

which is a positive Hermitian, and satisfies the completeness relation:∑
b

Êb =
∑
b,q

K̂†b,q K̂b,q = 1S . (9.56)

The probability of measuring b is given by

Pb = Prob(b|ρ̂S

in) = TrS(Êbρ̂
S

in) . (9.57)

The collapsed state is given by:

ρ̂S

in
measure b−−−−−−→ ρ̂S

b ≡
1

Pb

∑
q

K̂b,qρ̂
S

inK̂†b,q . (9.58)

The post-measurement density matrix is:

ρ̂S

p−m = E(ρ̂S

in) =
∑
b

Pbρ̂
S

b =
∑
b,q

K̂b,q ρ̂
S

in K̂†b,q . (9.59)

186

http://theory.caltech.edu/~preskill/ph229/

(Lecture Notes by G.E. Santoro) 9.3 Inverting Kraus: how to “invent” unitaries

The projective measurement case. The von Neumann case is obtained when K̂b,q → Π̂b, so
that Êb = Π̂b as well.

i

9.3. Inverting Kraus: how to “invent” unitaries

So far, we have shown that

ρ̂S(t) = TrB

(
Ûtot(t)|ψS(0)〉〈ψS(0)| ⊗ |φB(0)〉〈φB(0)|Û†tot(t)

)
=

∑
k

K̂k(t) ρ̂S(0) K̂†k(t) . (9.60)

The first representation of the dynamics is the standard unitary representation: it is constructed out
of |ψS(0)〉, |φB(0)〉 and an explicit unitary evolution operator Ûtot(t). Out of that, by choosing a basis
for the bath we can always deduce, in principle, the corresponding Kraus representation, given in the
second line, as we have already shown. Now we consider the reverse problem:

If you are given a Kraus map representation for the system density matrix dynamics:

ρ̂S(t) =

DK∑
k

K̂k(t) ρ̂S(0) K̂†k(t) (9.61)

with the Kraus operators satisfying the completeness in Eq. (9.7), can you reconstruct back a
unitary representation of some sort?

Question:

It is perhaps not surprising that the answer is yes. Indeed, a moment of reflection will convince you
that upon having the system density matrix you have lost an immense amount of information on the
environment, hence reconstructing back a unitary representation involves a very large arbitrariness.
So, the proper answer is: yes and in an infinite number of ways!

To show this, we consider as usual the case of ρ̂S(0) = |ψS〉〈ψS|: by linearity, you can extend it to
an arbitrary mixed state for ρ̂S(0). The first observation is that the operators K̂k (we omit the fixed
time t from now on) know nothing about the environment or bath. We can invent an arbitrary HB

with a basis {|φB

k〉} — with the proviso that dim(HB) ≥ DK, where DK is the number of terms of the
Kraus representation —, and define an isometry V̂ : HS → HS ⊗HB — by definition, a linear map
that conserves the scalar product — in the following way:

V̂ |ψS〉 def
=
∑
k

(
K̂k|ψS〉

)
⊗ |φB

k〉 . (9.62)

The first thing that we need to check is that V̂ is indeed an isometry. We take two input states |ψS
1〉

and |ψS
2〉, and calculate:

〈ψS

2|V̂ †V̂ |ψS

1〉 =
∑
k′,k

〈φB

k′ | ⊗ 〈ψS

2|K̂
†
k′K̂k|ψS

1〉 ⊗ |φB

k〉

=
∑
k

〈ψS

2|K̂
†
kK̂k|ψS

1〉 = 〈ψS

2|ψS

1〉 , (9.63)

187

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

where we used 〈φB

k′ |φB

k〉 = δk′,k. So, V̂ is an isometry. The second thing to check is that tracing over
HB we get the correct density matrix:

TrB

(
V̂ |ψS〉〈ψS|V̂ †

)
=
∑
k

K̂k |ψS〉〈ψS| K̂†k = ρ̂S . (9.64)

This follows easily from the construction of V̂ .

The final step is that an isometry can be extended into a unitary Ûtot over the product space
HS ⊗HB. And indeed this can be done in an infinite number of ways!

Unitary extension of isometries. Let V̂ : W → H be an isometry defined on an m-
dimensional subspace W ⊂ H of an n-dimensional Hilbert space H. Then you can extend it in
many ways as a unitary Û : H → H such that Û ψ = V̂ ψ if ψ ∈ W. Here is the (simple) idea of
the proof. Let {w1, · · ·wm} be an orthonormal basis of W. You can extend it in infinitely many
ways to a full orthonormal basis for H: {w1, · · ·wm, wm+1 · · ·wn}. Since V̂ is an isometry, the m
vectors ψj = V̂ wj for j = 1 · · ·m are orthonormal in the image subspace Range(V̂) ⊂ H. Extend
such a basis (in an arbitrary way) to an orthonormal basis of H: {ψ1, · · ·ψm, ψm+1, · · ·ψn}. Now
define Û as follows:

Û wj = ψj for j = 1 · · ·n . (9.65)

Clearly Û is unitary because it maps an orthonormal basis of H into an orthonormal basis of H.
For j = 1 · · ·m we have Û wj = ψj = V̂ wj , hence Û coincides with V̂ on W.

i

Stinespring dilation. The process we have just outlined is related to what is known as
Stinespring dilation. Incidentally, we might have defined the Stinespring isometry as V̂ : HS ⊗
HB → HS ⊗HB with:

V̂ |ψS〉 ⊗ |φB

1 〉
def
=
∑
k

(
K̂k|ψS〉

)
⊗ |φB

k〉 , (9.66)

where |φB
1 〉 is an arbitrary element of the basis of HS. As you notice, V̂ is still defined on a

subspace W ⊂ HS ⊗HB, and hence can/need to be extended in many ways to a full unitary on
HS ⊗HB.

i

Warning: The large arbitrariness implied by the previous construction implies in turn that most
of the constructed unitary representations have no physical meaning! We will see this fact later
on when discussing some useful quantum maps on a single Qbit.

!

9.4. Quantum maps

We have seen that the evolution operator for density matrices can be written as:

E(t,0)(ρ̂S(0)) = ρ̂S(t) =

DK∑
k

K̂k(t) ρ̂S(0) K̂†k(t) with
DK∑
k

K̂†k K̂k = 1S . (9.67)

This is called Kraus quantum map, or quantum channel. It is a particular super-operator, in the sense
that maps an operator on the Hilbert space of the system into another operator.

188

https://en.wikipedia.org/wiki/Stinespring_dilation_theorem

(Lecture Notes by G.E. Santoro) 9.4 Quantum maps

Quantum map. In principle, we can define a quantum map in a more general setting, as
any super-operator acting on system operators Ô, i.e., Ô → E(Ô) which verifies the following
conditions:

1: Linear) E(Ô1 + Ô2) = E(Ô1) + E(Ô2).

2: Trace Preserving) TrS(E(Ô)) = TrS(Ô).

3: Positive) If Ô ≥ 0, then E(Ô) ≥ 0.

3∗: C-Positive) If an arbitrary ancillary systems HA is interacting with the system HS and we
consider a positive operator ÔAS ≥ 0 acting onHA⊗HS, then the trivially extended quantum
map 1A ⊗ E is still positive:

ÔAS ≥ 0 =⇒
(

1A ⊗ E
)

(ÔAS) ≥ 0 . (9.68)

i

Complete positivity. Property 3∗) is known as complete positivity or CP for short. It obviously
implies the positivity in 3) — simply apply it to any factorised positive operator ÔA ⊗ ÔS, and
you deduce 3) from 3∗) —, but is indeed a stronger requirement, as shown by the example of
partial transpose below. The reason why we insist on a map being CP is the following. Imagine
that the system (and only the system) interacts with an environment HB, and that the quantum
map E emerges from this interaction. Then, an ancillary system HA is made to interact with
the system, and only the system. The global quantum map that accounts for the effect of the
environment must now be 1A ⊗ E, and this must still transform positive operators of HA ⊗HS

into positive operators, as the CP condition requires.

i

Transpose map. An interesting example of a map which is clearly positive but, as shown in the
example below, not completely positive, is the transpose map. Take an arbitrary density matrix,
written in an arbitrary basis, {|φj〉}, on which it is associated to a matrix [ρ̂]j′,j = 〈φj′ |ρ̂|φj〉, and
consider the following quantum map:

ρ̂ =
∑
j,j′

[ρ̂]j′,j |φj′〉〈φj | −→ ET(ρ̂) =
∑
j,j′

[ρ̂]Tj′,j |φj′〉〈φj | , (9.69)

which maps the matrix [ρ̂] associated to ρ̂ into its transpose [ρ̂]T, hence into a legitimate density
matrix: Hermitian, positive, trace-1. But it does not define a completely positive quantum map, as
the following 2-Qbit example shows.

Example: Partial transpose for 2-Qbits. Consider the transpose map ET for a system made of a
single Qbit. It is simple to verify that, when acting on a general pure state |ψS〉 = z0|0〉+ z1|1〉, this
map acts as:

ET

(
|ψS〉〈ψS|

)
= |ψS〉〈ψS| with |ψS〉 = z∗0 |0〉+ z∗1 |1〉 .

Take now an ancillary Qbit and consider the entangled (Bell) state |ψAS〉 = 1√
2
(|00〉AS + |11〉AS) which

you can view as a legitimate positive (entangled) state:

ÔAS = |ψAS〉〈ψAS| = 1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
.

Upon applying the partial transpose 1A ⊗ ET we get:(
1A ⊗ ET

)
(ÔAS) =

1

2

(
|00〉〈00|+ |10〉〈01|+ |01〉〈10|+ |11〉〈11|

)
.

189

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

When represented in the standard product basis {|00〉, |01〉, |10〉, |11〉} the matrix associated to such
an operator is:

(
1A ⊗ ET

)
(ÔAS)→

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (9.70)

and you recognize that it possesses an eigenvalue −1 originated by the σ̂x block in the center. Hence
ET is positive but not CP: it is therefore not a valid (physical) quantum map.

Evidently, a Kraus map

ρ̂S → E(ρ̂S) =

DK∑
k

K̂k ρ̂S K̂†k with
DK∑
k

K̂†k K̂k = 1S

verifies all 4 conditions of a quantum map. We have already shown that a Kraus map (which is linear)
is trace-preserving and positive. To prove that it is CP, simply observe that HA ⊗HS can be seen as
an enlarged system to which the original Kraus operator can be extended, by acting as an identity on
the ancillary space. Hence, the proof of positivity we have made automatically implies CP.

Interestingly, one can also prove (but we will not do that) the reverse result:

Theorem 9.1. If a quantum map E is linear, trace-preserving and CP — i.e., it satisfies properties
1), 2) and 3∗) — then there exists a Kraus representation with DK = d2

S.

9.5. Ambiguity of the Kraus representation and purification

Consider a set of DK Kraus operators K̂k, and a second set of DM Kraus operators M̂m. If, for
instance, DM > DK you can extend the K̂k to a larger set by adding zeros (seen as trivial operators)
to the set: {K̂1, · · · , K̂DK , 0, · · · , 0}.

It is simple to verify that if these two sets are unitarily related, in the sense that a DM×DM unitary
matrix Umk exists such that:

M̂m =
∑
k

Umk K̂k , (9.71)

then they generate the same Kraus map.
Proof. It is easy to show that 11

DM∑
m=1

M̂†m M̂m =

DK∑
k=1

K̂†k K̂k = 1S

DM∑
m=1

M̂m ρ̂S(0) M̂†m =

DK∑
k=1

K̂k ρ̂S(0) K̂†k = ρ̂S(t)

. (9.73)

�

In the following, we will prove the reverse of this statement, known as Hughston-Jozsa-Wootters
(HJW) theorem, which essentially states that if two different sets of Kraus operators provide the
11To prove the second, for instance:∑

m

M̂m ρ̂S(0) M̂†m =
∑
k,k′

(∑
m

U∗mk′Umk
)

︸ ︷︷ ︸
(U†U)k′k=δk′,k

K̂k ρ̂S(0) K̂†
k′ =

∑
k

K̂k ρ̂S(0) K̂†k . (9.72)

190

https://en.wikipedia.org/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem

(Lecture Notes by G.E. Santoro) 9.5 Ambiguity of the Kraus representation and purification

same Kraus map, then they must be unitarily related. In the process of proving such a theorem,
we will make a digression on the issue of purification, which shows a nice application of the Schmidt
decomposition.

We rewrite the Kraus map

ρ̂S =

DK∑
k=1

K̂k ρ̂S(0) K̂†k ,

for the case of a pure initial state ρ̂S(0) = |ψS〉〈ψS|, by defining

|ψS

k〉 =
K̂k|ψS〉
||K̂k|ψS〉||

=⇒ ρ̂S =

DK∑
k=1

Pk |ψS

k〉〈ψS

k| , (9.74)

with Pk = ||K̂k|ψS〉||2 = 〈ψS|K̂†kK̂k|ψS〉. This shows that we have expressed ρ̂S as an ensemble
preparation EK = {Pk, |ψS

k〉} of generally non-orthogonal states. But it is very simple to verify that
ρ̂S can be purified as follows:

ρ̂S = TrB |ΨSB

1 〉〈ΨSB

1 | with |ΨSB

1 〉 =

DK∑
k=1

√
Pk |ψS

k〉 ⊗ |φ
(1,B)
k 〉 (9.75)

where {|φ(1,B)
k 〉} is an orthogonormal basis for HB.

We now repeat the same procedure with the second, equivalent, form of the Kraus map

ρ̂S =

DM∑
m=1

M̂m ρ̂S(0) M̂†m

obtaining:

|χS

m〉 =
M̂m|ψS〉
||M̂m|ψS〉||

=⇒ ρ̂S =
∑
m

Qm|χS

m〉〈χS

m| , (9.76)

with Qm = ||M̂m|ψS〉||2 = 〈ψS|M̂†mM̂m|ψS〉. This is, evidently, a second equivalent ensemble prepara-
tion EM = {Qm, |χS

m〉} with different non-orthogonal states of the same density matrix ρ̂S, which can,
again, be purified as:

ρ̂S = TrB |ΨSB

2 〉〈ΨSB

2 | with |ΨSB

2 〉 =
∑
m

√
Qm |χS

m〉 ⊗ |φ(2,B)
m 〉 (9.77)

where {|φ(2,B)
m 〉} is another orthogonal basis for HB.

How are the two different purifications |ΨSB
2 〉 and |ΨSB

1 〉 related?

Question:

The answer requires the following lemma:

Theorem 9.2. If |ΨSB
1 〉 and |ΨSB

2 〉 are two different purifications of the same state ρ̂S, then a unitary
ÛB exists such that

|ΨSB

1 〉 =
(

1S ⊗ ÛB

)
|ΨSB

2 〉 (9.78)

191

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Proof. We write the Schmidt decomposition of |ΨSB
1 〉 and |ΨSB

2 〉 as:

|ΨSB
1 〉 =

NS∑
k=1

√
λk|ΛS

k〉 ⊗ |Λ̂
(1,B)
k 〉

|ΨSB
2 〉 =

NS∑
k=1

√
λk|ΛS

k〉 ⊗ |Λ̂
(2,B)
k 〉 (9.79)

where |Λ̂(1,B)
k 〉 and |Λ̂(2,B)

k 〉 are different orthonormal basis of HB, and λk are the eigenvalues of ρ̂S with
orthonormal eigenvectors |ΛS

k〉, i.e., ρ̂S =
∑NS
k=1 λk|Λ

S
k〉〈ΛS

k|. The two different orthonormal basis of HB must
be related by a unitary matrix ÛB such that:

|Λ̂(1,B)
k 〉 = ÛB|Λ̂

(2,B)
k 〉 . (9.80)

With the same matrix we evidently have |ΨSB
1 〉 =

(
1S ⊗ ÛB

)
|ΨSB

2 〉. �

We are now ready to prove the following Hughston-Jozsa-Wootters (HJW) Theorem:

Theorem 9.3. Given two sets of Kraus operators that realise the same quantum map:

ρ̂S =

DK∑
k=1

K̂k ρ̂S(0) K̂†k =

DM∑
m=1

M̂m ρ̂S(0) M̂†m (9.81)

there exist a unitary transformation U between the two sets of Kraus operators:

K̂k =
∑
m

UkmM̂m . (9.82)

Proof. Consider ρ̂S =
∑
k K̂k ρ̂S(0) K̂†k, and assume an initial pure state ρ̂S(0) = |ψS〉〈ψS|. We purify the

evolved state as before, but we now write it:

ρ̂S = TrB

(
|ΨSB

1 〉〈ΨSB
1 |
)

with |ΨSB
1 〉 =

∑
k

K̂k|ψS〉 ⊗ |φ(1,B)
k 〉 ,

The second Kraus representation allows us to construct the second different purification:

ρ̂S = TrB

(
|ΨSB

2 〉〈ΨSB
2 |
)

with |ΨSB
2 〉 =

∑
m

M̂m|ψS〉 ⊗ |φ(2,B)
m 〉 .

As proved before via the Schmidt decomposition, a ÛB exists such that |ΨSB
1 〉 =

(
1S ⊗ ÛB

)
|ΨSB

2 〉. Hence:

|ΨSB
1 〉 =

∑
k

K̂k|ψS〉 ⊗ |φ(1,B)
k 〉 =

∑
m

M̂m|ψS〉 ⊗
(
ÛB|φ(2,B)

m 〉
)

=
∑
m

∑
k

M̂m|ψS〉 ⊗
(
|φ(1,B)
k 〉〈φ(1,B)

k |ÛB|φ(2,B)
m 〉

)
=

∑
k

(∑
m

UkmM̂m

)
|ψS〉 ⊗ |φ(1,B)

k 〉 , (9.83)

where we defined Ukm = 〈φ(1,B)
k |ÛB|φ

(2,B)
m 〉. Since this equality is true for any state |ψS〉, we deduce that

K̂k =
∑
m UkmM̂m. �

9.6. Composition laws of Quantum Maps

From now on, by definition, a physically allowed quantum map will be a Trace-preserving (T)
Completely-Positive (CP) map, or TPCP map for shortness. 12 There are several games that we
can play with such TPCP maps. We will omit indicating the time t in all our equations since it is
assumed to be fixed.
12Some use the acronym CPT, which might create a bit of confusion with fundamental particle symmetries.

192

https://en.wikipedia.org/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem

(Lecture Notes by G.E. Santoro) 9.6 Composition laws of Quantum Maps

Maps of two independent systems) If two independent systems H1 and H2 evolve with the TPCP
maps E1 and E2, respectively, then the combined system described by H1 ⊗H2 will evolve with
a product map E1 ⊗ E2 which is constructed from the Kraus form of the two maps, and can be
shown to be TPCP, because we can write it in Kraus form as well.

Composition of two maps for the same system) Let now E1 and E2 be two TPCP maps for the
same system HS. One can obviously define the composition (or product) of the two as:(

E2 ◦ E1

)
(ρ̂S) = E2(E1(ρ̂S)) . (9.84)

Obviously, the order is important in general: E2 ◦ E1 6= E1 ◦ E2.

Irreversibility) One might wonder if a map E−1 exists such that:

E−1 ◦ E = 1S ?

Unfortunately, such a map that does a sort of undo of the generally dissipative evolution induced
by E does not exist, at least in general. In some sense, this is a manifestation of irreversibility.
Obviously, the inverse exists for a coherent unitary evolution. Other cases in which an inverse
exists are discussed in Ref. [44]. The ability to construct an inverse would of course be crucial for
quantum error correction. One can show that this can be partly achieved in particular subspaces.

Convex combination) Given two TPCP maps E0 and E1 one can consider the convex interpolation:

Eq = qE1 + (1− q)E0 with q ∈ [0, 1] , (9.85)

which can be shown to be TPCP as well. The generalisation to a convex linear combination of
n > 2 maps, with coefficients qk ≥ 0 such that

∑
k=1,n qk = 1, is quite obvious.

Unitary map) A unitary map is the exceptional (and easily invertible) case describing the evolution
under a unitary evolution operator Û :

E(ρ̂S) = Û ρ̂SÛ
† .

Convex combination of unitary maps) Consider now n unitary operators Ûk=1···n and the corre-
sponding convex combination of unitary maps:

E(ρ̂S) =

n∑
k=1

qkÛk ρ̂SÛ
†
k , (9.86)

which can be shown to be TPCP. You can view it as a special Kraus map with K̂k =
√
qkÛk .

Notice that such a map is not unitary, in general, except for n = 1.

Unital map) A TPCP map is called unital if it leaves the identity invariant:

E(1S) = 1S . (9.87)

Since the identity often emerges as an infinite temperature density matrix, we understand the
role of unital maps in connection to the fact that the infinite temperature thermal state would
be conserved by such a map. Notice that the map in Eq. (9.86) — a convex combination of
unitaries — is automatically unital, as you can easily check. 13 But the inverse is not true:
there are unital maps which are not convex combinations of unitaries.

13

E(1S) =
n∑
k=1

qkÛk1SÛ
†
k =

(n∑
k=1

qk

)
1S = 1S .

193

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Heisenberg representation of a map) In the ordinary coherent evolution, you can shift the time
dependence from the state (density matrix) to the operators. In our open system dynamics, the
expectation value of a system operator Ô at time t would be given by:

〈Ô〉t = TrS

(
ρ̂S(t) Ô

)
= TrS

(
E(t,0)(ρ̂S(0)) Ô

)
?
= TrS(ρ̂S(0)EH,t(Ô)) , (9.88)

where the question mark highlights the fact that this would be our requirement for the Heisenberg
map EH transforming now the operator Ô, and the equality should hold for all possible ρ̂S(0)

and Ô. If you recall the Kraus representation in Eq. (9.60)

ρ̂S(t) = E(t,0)(ρ̂S(0)) =
∑
k

K̂k(t) ρ̂S(0) K̂†k(t) , (9.89)

we can easily get, using the cyclic property of the trace, that:

EH,t(Ô)
def
=
∑
k

K̂†k(t) Ô K̂k(t) (9.90)

This is called dual map. Notice that such a map is unital since, as you recall (see Eq. (9.7)):

EH,t(1S) =
∑
k

K̂†k(t) K̂k(t) = 1S .

Nevertheless, the dual map is in general not trace-preserving, as it is not of the Kraus form,
since: ∑

k

K̂k(t) K̂†k(t) 6= 1S in general.

9.7. Useful examples of single-Qbit maps

We consider here very useful maps for a system made of a single Qbit. 14 The general input state
of these maps will be a mixed state of the form:

ρ̂S =
1 + p · σ̂

2
=

(
p0 γ∗

γ p1

)
, (9.91)

where p = (px, py, pz) with |p| ≤ 1 is the polarisation vector in the Bloch sphere, p0 = (1 +pz)/2, and
p1 = (1− pz)/2 are the populations of the two states

|0〉 = |↑〉 and |1〉 = | ↓〉 .

Finally, γ = px + ipy is the so-called coherence, with |γ|2 = p2
x + p2

y ≤ 1− p2
z = 4p0p1.

9.7.1. Phase damping (or dephasing)

Consider a system Qbit {|0S〉, |1S〉} in interaction with a “pointer” system. We would like to device
an “interaction” term in such a way that the pointer might effectively “measure” (with some small
probability) the state in which the Qbit is, without changing the state of the Qbit itself. This is a
kind of “which way” measurement. To have a picture in mind, think that you have a spin that with
probability (1−q) passes undisturbed the apparatus, while with probability q it enters a Stern-Gerlach
device that can effectively “measure” the σ̂z operator. Our “pointer” Hilbert space HB will therefore
have three states {|0B〉, | + 1B〉, | − 1B〉}: a state |0B〉 — a kind of fiducial or idle state — if the spin
passes undisturbed, a state | + 1B〉 to which the pointer switches if the spin is in |0S〉, and a state
14The present section is heavily based on John Preskill’s lecture notes.

194

http://theory.caltech.edu/~preskill/ph229/

(Lecture Notes by G.E. Santoro) 9.7 Useful examples of single-Qbit maps

| − 1B〉 to which the pointer moves if the spin is in |1S〉. The “Stinespring representation” 15 of such a
system-pointer interaction is:

Ûdeph|0S〉 ⊗ |0B〉 = |0S〉 ⊗
(√

1− q|0B〉+
√
q|+ 1B〉

)
Ûdeph|1S〉 ⊗ |0B〉 = |1S〉 ⊗

(√
1− q|0B〉+

√
q| − 1B〉

) . (9.92)

To get a Kraus representation, 16 we trace over the pointer, obtaining the following three Hermitian
Kraus operators:

K̂0 =
√

1− q 1S K̂+ =
√
q

1 + σ̂z

2
K̂− =

√
q

1− σ̂z

2
, (9.94)

where you recognise the projector on |0S〉 in K̂+ and the projector on |1S〉 in K̂−. These three Kraus
operators are clearly redundant, as the basic ingredients are 1 and σ̂z. Substituting in the Kraus map
we get:

Edeph

q (ρ̂S) = (1− q)ρ̂S + q 1+σ̂z

2 ρ̂S
1+σ̂z

2 + q 1−σ̂z
2 ρ̂S

1−σ̂z
2 =

(
1− q

2

)
ρ̂S +

q

2
σ̂z ρ̂Sσ̂

z . (9.95)

Info: We recognise here a convex combination of two unitary maps: the identity and the map
ρ̂S → σ̂z ρ̂Sσ̂

z. Recall that σ̂zσ̂zσ̂z = σ̂z, while σ̂zσ̂x,yσ̂z = −σ̂x,y. Hence ρ̂S → σ̂z ρ̂Sσ̂
z changes

sign to the off-diagonal elements:

ρ̂S =

(
p0 γ∗

γ p1

)
−→ σ̂z ρ̂Sσ̂

z =

(
p0 −γ∗
−γ p1

)
. (9.96)

Putting the two terms together, we realise that the diagonal elements (the “populations”) are
untouched, while the off-diagonal elements (the “coherences”) are multiplied by a factor (1− q):

ρ̂S =

(
p0 γ∗

γ p1

)
−→ Edeph

q (ρ̂S) =

(
p0 (1− q)γ∗

(1− q)γ p1

)
. (9.97)

i

Bloch-sphere representation. The dephasing map leaves untouched the pz component of the Bloch
polarization vector p, while it shrinks px,y → (1− q)px,y. The Bloch sphere is shrinked into a “cigar-
like” ellipsoid aligned along the z axis. 17

Continuous dephasing. Consider a pure dephasing map occurring continuously in time. To get to
the time-continuum limit, we imagine that q = Γϕ∆t, where Γϕ is the probability-rate (or probability
per-unit-time) of dephasing, so that q � 1 when ∆t� 1. In a time t = n∆t we can think of applying
the map n times, each time multiplying the off-diagonal elements by (1 − q) = (1 − Γϕt/n), hence
obtaining in the off-diagonal elements a factor:

(1− q)n =
(

1− Γϕt

n

)n
n→∞−−−→ e−Γϕt . (9.98)

15Observe that we define it only on a subspace in which the initial pointer state is |0B〉.
16One can verify that these other choices are also possible Kraus representations:

K̂1 =

(
1 0

0 (1− q)

)
= K̂†1 and K̂2 =

(
0 0

0
√
q(2− q)

)
= K̂†2 (9.93)

17Interestingly, there is no TPCP map that can shrink one component of the Bloch polarisation vector only, mapping
the Bloch sphere into a “pancake” close to the equator plane. This is called the no-pancake theorem.

195

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

So, the off-diagonal elements decrease in time with a rate Γϕ, and eventually the density matrix
becomes purely diagonal in the “preferred basis” |0S〉 and |1S〉:

ρ̂S =

(
p0 γ∗

γ p1

)
−→

(
p0 e−Γϕtγ∗

e−Γϕtγ p1

)
n→∞−−−→

(
p0 0

0 p1

)
. (9.99)

Visibility. The previous discussion did not take into account the intrinsic system dynamics. Suppose
that we have a system initially in the state |ψS(0)〉 = 1√

2
(|0S〉+ |1S〉, an equal superposition of the two

basis states obtained by the Hadamard, H|0S〉, and that the system Hamiltonian is ĤS = ~ω(1−σ̂z)/2,
so that the unperturbed evolution would be

|ψS(t)〉 =
1√
2

(|0S〉S + e−iωt|1S〉) =⇒ ρ̂S(t) =
1

2

(
1 e−iωt

eiωt 1

)
. (9.100)

Now, let us account for a continuous dephasing on top of the free evolution:

ρ̂S(t) =
1

2

(
1 e−iωt

eiωt 1

)
dephasing−−−−−→ ρ̂S(t) =

1

2

(
1 e−iωt−Γϕt

eiωt−Γϕt 1

)
. (9.101)

Now imagine we measure repeatedly, for different realisations of the dynamics up to time t, the
two-level system in the basis of σ̂x, and calculate

Prob(+,x|ρ̂S(t)) = 〈+,x|ρ̂S(t)|+,x〉 =
1

2

(
1 + e−Γϕt cosωt

)
. (9.102)

We see that the dephasing rate can be measured by fitting the exponential decay of the visibility of
the measured coherent oscillations versus t. See 3.4.2 in Preskill’s lecture notes for more comments
on this issue.

A different look at phase-damping. Imagine we have an apparatus (like a Stern-Gerlach) that
produces a certain Qbit state of the form:

|ψφ〉 = z0|0〉+ z1eiφ|1〉 ,

where z0 and z1 are fixed (for instance, real), but the phase φ is not entirely determined: it can
fluctuate from a given preparation of the state to the next, with a probability density p(φ) = p(−φ).
The state produced by a large ensemble of similar preparations is therefore:

ρ̂S =

∫ π

−π
dφ p(φ)|ψφ〉〈ψφ| =

(
|z0|2 (1− q)z0z

∗
1

(1− q)z∗0z1 |z1|2

)
(9.103)

where (1 − q) =
∫ π
−π p(φ) cosφ. This is, in essence, another physical realisation of a phase-damping

map, but this time the mechanism behind the map is not induced by the usual framework of system-
plus-environment interaction, but rather by an imperfect preparation.

9.7.2. Amplitude damping (or relaxation)

This is a model for a map describing the spontaneous emission of a photon from an excited two-level
atom, in the state |1S〉, decaying with probability q to its ground state |0S〉. We call |0B〉 the state of the
“environment” without the photon, and |1B〉 the state where one photon has been emitted: evidently,
you could think of the “environment”, here, as the quantum electromagnetic field surrounding the
atom, whose degrees of freedom have been quite drastically truncated. A “Stinespring” isometry
representing such an interaction might be written as: Ûrelax|0

S〉 ⊗ |0B〉 = |0S〉 ⊗ |0B〉

Ûrelax|1
S〉 ⊗ |0B〉 =

√
1− q |1S〉 ⊗ |0B〉+

√
q |0S〉 ⊗ |1B〉

, (9.104)

196

http://theory.caltech.edu/~preskill/ph229/

(Lecture Notes by G.E. Santoro) 9.7 Useful examples of single-Qbit maps

where, notice, we have restricted the environment’s initial state to |0B〉, the state without photons.
To get a Kraus representation, we trace over the bath, obtaining the following two Kraus operators:

K̂0 =

(
1 0

0
√

1− q

)
K̂1 =

(
0
√
q

0 0

)
=
√
q σ̂+ , (9.105)

where you should recall that |1S〉 = |↓〉, hence σ̂+ describes the decay to the ground state |0S〉 = |↑〉.
The operator K̂1 describes the so-called “quantum jump”, while K̂0 describes the change of the state
when there is no jump.

Disregarding the state of the environment, we get the following Kraus map:

Erelax
q (ρ̂S) = K̂0ρ̂SK̂†0 + K̂1ρ̂SK̂†1 =

(
p0 + q p1

√
1− q γ∗√

1− q γ (1− q) p1

)
. (9.106)

In the extreme limit q = 1, we have:

Erelax
q=1 (ρ̂S) =

(
1 0

0 0

)
= |0S〉〈0S| , (9.107)

hence the system is mapped into the ground state |0S〉〈0S|. Such a map describes relaxation towards
the ground state, and hence dissipation. 18

The arbitrariness of the reconstruction. Recall that we defined Ûrelax only on the subspace of input
states in which the photon is absent: |0B〉. One might extend it on the full 4×4 Hilbert space at hand,
but the extension has no physical meaning. Here is one possibility. Order the states of the basis as

{|0S〉 ⊗ |0B〉, |1S〉 ⊗ |0B〉, |0S〉 ⊗ |1B〉, |1S〉 ⊗ |1B〉} ,

and write the matrix for the extended Ûrelax as:

Ûrelax =

1 0 0 0

0
√

1− q −
√

q
2

√
q
2

0
√
q

√
1−q

2 −
√

1−q
2

0 0 1√
2

1√
2

 . (9.109)

Notice the elements of the right 2 columns, which have been “invented” to make the matrix a 4 × 4

unitary. They possess no physical meaning! Here is a second possible extension, less meaningless:

Ûrelax =

1 0 0 0

0
√

1− q −√q 0

0
√
q

√
1− q 0

0 0 0 1

 , (9.110)

predicting a re-excitation by photon absorption:

Ûrelax|0
S〉 ⊗ |1B〉 =

√
1− q|0S〉 ⊗ |1B〉 − √q |1S〉 ⊗ |0B〉 . (9.111)

Needless to say, the full physics comes out properly only from an appropriate treatment of the QED
interaction Hamiltonian [45].

18Notice that for this relaxation map the composition is closed, multiplicative and abelian:

Eq2 ◦ Eq1 = Eq2 q1 . (9.108)

197

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Continuous relaxation. As before, consider a relaxation map occurring continuously in time. To
get to the time-continuum limit, we take q = ΓR∆t, where ΓR is the probability-rate (or probability
per-unit-time) of the relaxation process, so that q � 1 when ∆t � 1. At time t = n∆t, i.e. after n
applications of the map, the excited state population becomes

(1− q)n p1 =
(

1− ΓRt

n

)n
p1

n→∞−−−→ e−ΓRt p1 . (9.112)

The off-diagonal elements after n applications of the map become:(√
(1− q)

)n
γ =

(
1− ΓRt

n

)n
2

γ
n→∞−−−→ e−ΓRt/2 γ . (9.113)

The whole continuous-time map then reads:

ρ̂S =

(
p0 γ∗

γ p1

)
−→

(
p0 + (1− e−ΓRt) p1 e−ΓRt/2 γ∗

e−ΓRt/2 γ e−ΓRt p1

)
t→∞−−−→

(
1 0

0 0

)
. (9.114)

Relaxation, decoherence, dephasing: T1 and T2. There are standard names — originating
from the NMR literature — for the inverse rates appearing in the previous expression: one calls
T1 the relaxation time, i.e., the exponential decay time of the excited population, and T2 the
decoherence time, i.e., the exponential decay time of the off-diagonal terms in the density matrix,
the so-called coherences. For the present “pure-relaxation” map we have:

T2 =
2

ΓR

= 2T1 . (9.115)

If we consider that a dephasing mechanism accompanies the relaxation process, the off-diagonal
element will decay as

γ → e−
(

ΓR
2 +Γϕ

)
t
γ

def
= e−ΓDt γ

hence the decoherence time would be: a

1

T2
= ΓD =

ΓR

2
+ Γϕ =

1

2T1
+ Γϕ . (9.116)

aNotice that T2 can be arbitrarily small in the presence of a large dephasing, and approaches at most 2T1 in the
absence of dephasing.

i

Watching the environment. So far we have considered a relaxation map, even occurring repeatedly
n times, disregarding the environment: this is what quantum maps are supposed to do. Now we take
a different perspective and imagine keeping track of the measurements performed on the environment
(i.e., the photon detection). Let us look again at the unitary representation of the relaxation map in
Eq. (9.104), but this time we write it for an arbitrary initial state |ψS〉 = z0|0S〉+ z1|1S〉:

Ûrelax

(
z0|0S〉+ z1|1S〉

)
⊗ |0B〉 =

(
z0|0S〉+ z1

√
1− q |1S〉

)
⊗ |0B〉+ z1

√
q |0S〉 ⊗ |1B〉 . (9.117)

Imagine applying the evolution for a second time:

Û2
relax

(
z0|0S〉+ z1|1S〉

)
⊗ |0B〉 =

(
z0|0S〉+ z1

√
(1− q)2 |1S〉

)
⊗ |0B〉

+ z1

(√
q +

√
1− q√q

)
|0S〉 ⊗ |1B〉

+ z1
√
q Ûrelax |0

S〉 ⊗ |1B〉 , (9.118)

where the last term describes the action of Ûrelax on an input state with a photon, hence that part of
the Hilbert space where the extension of Ûrelax has a large arbitrariness.

198

(Lecture Notes by G.E. Santoro) 9.7 Useful examples of single-Qbit maps

Let us assume that the photon, once emitted, is gone forever, and it will not be able to induce
back a transition described by Ûrelax. So, we drop this term, and do the same for the next steps. We
proceed iterating n times. If we project on the state with no photons we get:

〈0B|Ûnrelax

(
z0|0S〉+ z1|1S〉

)
⊗ |0B〉 = z0|0S〉+ z1

√
(1− q)n |1S〉 . (9.119)

So, if we detect no photon, then we have automatically projected on a state that, up to normalization,
can be written as:

(K̂0)n|ψS〉 = z0|0S〉+ z1

√
(1− q)n|1S〉 n→∞−−−→ z0|0S〉+ z1e−ΓRt/2|1S〉 . (9.120)

The a posteriori quantum state of the system, given that no photon was detected, approaches the
ground state, as t→∞. Strange but true: we have projected on |0S〉 by not having detected a photon.

Exercise 9.3. Assume that the full 4 × 4 unitary Ûrelax is given by Eq. (9.110). Calculate the
effect of applying n times the unitary, writing down the system state when no photon is detected,
〈0B|Ûnrelax

(
z0|0S〉+ z1|1S〉

)
⊗ |0B〉, and when a photon is detected, 〈1B|Ûnrelax

(
z0|0S〉+ z1|1S〉

)
⊗ |0B〉.

9.7.3. Depolarising channel

We have already seen that the dephasing map can be regarded as a convex combination of the unit
map with ρ̂S → σ̂z ρ̂Sσ̂

z, describing the effect of a phase flip error. To be more precise, the effect of
the three Pauli matrices on a state is:

Phase flip error) |ψ〉 → σ̂z|ψ〉 or: |0〉 → |0〉 , |1〉 → −|1〉

Bit flip error) |ψ〉 → σ̂x|ψ〉 or: |0〉 → |1〉 , |1〉 → |0〉

Phase and Bit flip error) |ψ〉 → σ̂y|ψ〉 or: |0〉 → i|1〉 , |1〉 → −i|0〉

(9.121)

Now we define an environment HB with 4 states: {|0B〉, |1B〉, |2B〉, |3B〉}, and a Stinespring isometry of
the form:

V̂ |ψS〉 =
√
q0|ψS〉 ⊗ |0B〉+

3∑
k=1

√
qk σ̂

(k)|ψS〉 ⊗ |kB〉 , (9.122)

where q0 + q1 + q2 + q3 = 1, and σ̂(1,2,3) is an alternative notation for σ̂x,y,z. We trace over the
environment, TrB(V̂ |ψS〉〈ψS|V̂ †), obtaining the quantum map:

E(ρ̂S) = q0 ρ̂S +

3∑
k=1

qk σ̂
(k)ρ̂Sσ̂

(k) with
3∑
k=0

qk = 1 . (9.123)

This is a convex combination of unitary maps obtained with the Pauli matrices. It is called the
depolarising map or channel. It is a unital map, i.e., it keeps the identity unchanged. If we express
the final density matrix in the usual Bloch polarisation vector representation:

E(ρ̂S) =
1S + p′ · σ̂

2
(9.124)

we have a map that transforms p→ p′.

Exercise 9.4. Show that for the depolarising map one has:

p′x = px (1− 2(q2 + q3)) p′y = py (1− 2(q1 + q3)) p′z = pz (1− 2(q1 + q2)) . (9.125)

Notice that for q0 = q1 = q2 = q3 = 1
4 we get p′ = 0 no matter what the initial polarisation p is: the

final density matrix is the “infinite temperature” state 1
21S.

199

Open Quantum Systems and Quantum Maps (Lecture Notes by G.E. Santoro)

Exercise 9.5. Show that, as a consequence of the previous exercise:

1

2
1S =

1

4

(
ρ̂S +

3∑
k=1

σ̂(k)ρ̂Sσ̂
(k)
)
. (9.126)

Using this result, show that
E(ρ̂S) =

p

2
1 + (1− p)ρ̂S , (9.127)

is a particular depolarising map. Identify the corresponding values of qk, for k = 0, · · · , 3.

200

10. Open Quantum Systems and Lindblad
Quantum Master Equation

So far we were concerned with quantum maps where the evolution time t was considered fixed, and
might be eliminated from most of the notation. Now we want to consider a continuous time evolution,
and we want to see under what conditions we can write a differential equation for the system density
matrix, of the form:

d

dt
ρ̂S(t) = L(ρ̂S(t)) , (10.1)

where L(·) is a suitable super-operator. The crucial requirement is that the r.h.s depends only on
ρ̂S(t).

In this chapter we will discuss the Markovian conditions which we need to write a time-evolution
differential equation for the state in this form, known as quantum master equation (QME). Later
in the Chapter, we will see the Lindblad construction [46] for such a QME. Appendix D contains a
perturbative derivation of various forms of QME valid in the limit in which the interaction between
the system and the environment is weak.

10.1. The Markovian condition

Obviously, for an isolated system the evolution is described by the von Neumann equation, hence

L(ρ̂S(t)) =
1

i~
[ĤS, ρ̂S(t)] . (10.2)

For a system interacting with a bath (or environment) we know that we can write a TPCP (Kraus)
map:

ρ̂S(0)→ ρ̂S(t) = E(t,0)(ρ̂S(0)) =
∑
k

K̂k(t)ρ̂S(0)K̂†k(t) , (10.3)

but taking a time derivative of such an expression leads us nowhere. It turns out that an important
requirement for the quantum map E describing the dissipative evolution is a Markovian condition
[44, 47]. More precisely, we need a one-parameter map of the form

ρ̂S(0)
Et−→ ρ̂S(t) = Et(ρ̂S(0)) , (10.4)

where Et — notice the absence of the usual label (t, 0) keeping track of the initial time — satisfies the
following three conditions:

1) E0 = 1S

2) Et is continuous in t, which means that:

〈Ô〉t = TrS(ÔEt(ρ̂S)) is continuous in t ∀ρ̂S, ∀Ô observable . (10.5)

3) Et is a semi-group, which means that:

Et+s = Et ◦ Es = Es ◦ Et . (10.6)

201

Open Quantum Systems and Lindblad Quantum Master Equation (Lecture Notes by G.E. Santoro)

Divisibility vs one-parameter semigroup. Observe how condition 3) is different from the
composition law:

Et+s,0 = Et+s,s ◦ Es,0 = Et+s,t ◦ Et,0 ,

which is often referred to as divisibility condition. For more discussions about quantum Marko-
vianity, see Refs. [44, 47]. a

aIndeed, Et+s,s has nothing to do with Et,0: the initial time is generally important, because the whole history of
the evolution leaves in principle important effects on the combined state of the system (recall that we assume
that system and environment are in a product state at time t = 0). To better understand this point, consider
the Stinespring form of a time-independent ĤS:

ρ̂S(t+ s) = TrB

(
Ûtot(t+ s)ρ̂S(0)⊗ ρ̂B(0)Û†tot(t+ s)

)
= TrB

(
Ûtot(t)

(
Ûtot(s)ρ̂S(0)⊗ ρ̂B(0)Û†tot(s)

)
Û†tot(t)

)
6= TrB

(
Ûtot(t)

(
Es(ρ̂S(0))⊗ ρ̂B(0)

)
Û†tot(t)

)
, (10.7)

where our candidate Es would be given by:

Es(ρ̂S(0)) = TrB

(
Ûtot(s)ρ̂S(0)⊗ ρ̂B(0)Û†tot(s)

)
. (10.8)

Observe that, in the correct expression, the initial bath state ρ̂(0) is evolved for a time s and entangled with
the system, while in the candidate expression, the initial state ρ̂B(0) of the bath appears. We understand the
Markovian nature as requiring, in some sense, that the bath’ state is not affected by the evolution.

!

Info: In some sense, the semi-group property is reminiscent of the ordinary exponential, or of
the Schrödinger evolution operator of a free system:

e−i(t+s)ĤS/~ = e−itĤS/~e−isĤS/~ = e−isĤS/~e−itĤS/~ .

i

Let us see the crucial role played by condition 3) in obtaining a Quantum Master Equation (QME).
Start from ρ̂S(t) = Et(ρ̂S(0)) and take a time derivative with respect to t:

ρ̂S(t) = Et(ρ̂S(0)) =⇒ d

dt
ρ̂S(t) =

(d

dt
Et

)
(ρ̂S(0)) . (10.9)

Now calculate the derivative of Et, which we will show to exist thanks to the semi-group property:

d

dt
Et = lim

s→0

Et+s − Et

s
= lim
s→0

(Es ◦ Et − Et)

s
= lim

s→0

(Es − 1S) ◦ Et
s

= L ◦ Et , (10.10)

where we have defined:

L
def
= lim

s→0

(Es − 1S)

s
, (10.11)

which can be shown to be well defined thanks to continuity and the semi-group property. 1

The Quantum Master Equation. Hence we finally deduce that:

d

dt
ρ̂S(t) =

(d

dt
Et

)
(ρ̂S(0)) =

(
L ◦ Et

)
(ρ̂S(0)) = L(Et(ρ̂S(0))) = L(ρ̂S(t)) , (10.12)

which is the desired QME.

i

1Recall that in ordinary analysis one can show that a continuous function with the property f(t + s) = f(t)f(s) and
f(0) = 1 is indeed infinitely differentiable: it uniquely defines the exponential function!

202

(Lecture Notes by G.E. Santoro) 10.2 The Lindblad construction

Notice that sometimes, in analogy with the Schrödinger evolution operator, this differential equation
is formally integrated as:

ρ̂S(t) = etLρ̂S(0) , (10.13)

which is however only useful for formal purposes, as the exponential of the Liouvillian super-operator
is a formidable object.

Lindblad form of the QME. We will now show that the most general Quantum Master
Equation (QME) compatible with the three requirements given above — in particular with the
(Markovian) semi-group property of the evolution map Et — has the Lindblad form:

d

dt
ρ̂S = L(ρ̂S) =

1

i~
[H̃S, ρ̂S] +

d2
S−1∑
µ=1

γµ

(
L̂µρ̂SL̂

†
µ −

1

2

{
L̂†µL̂µ, ρ̂S

})
. (10.14)

i

10.2. The Lindblad construction

Consider the Kraus representation of Et:

Et(ρ̂S) =

DK∑
k=1

K̂k(t) ρ̂S K̂†k(t) , (10.15)

where DK = d2
S. We fix a basis for the d2

S operators in HS in this way: F̂0 = 1S, while F̂j for
j = 1 · · ·DK − 1 are traceless matrices which generalise the Pauli matrix set {σ̂+, σ̂−, σ̂z} for dS > 2.
For instance, denoting by {|a〉 with a = 1 · · · dS} a system orthonormal basis, we take:

F̂0 = 1S F̂j=1···dS−1 =

dS∑
a=1

ei2πaj/dS |a〉〈a| F̂j≥dS
= |a〉〈a′| , (10.16)

where the last dS(dS − 1) terms have a′ 6= a, and are represented by matrices having a single 1 in any
of the off-diagonal elements. 2 In terms of this fixed basis we write:

K̂k(t) =

DK−1∑
j=0

Ckj(t) F̂j , (10.17)

with appropriate complex coefficients Ckj(t). From this, by substituting into the Kraus representation,
we deduce:

Et(ρ̂S) =

DK−1∑
j=0

DK−1∑
j′=0

Φjj′(t) F̂j ρ̂SF̂
†
j′ (10.18)

where

Φjj′(t) =

DK∑
k=1

Ckj(t)C
∗
kj′(t) = Φ∗j′j(t) . (10.19)

Notice the Hermitean nature of the matrix of coefficients Φjj′(t). In a short while, we will also show
that such a matrix is positive definite.

2The traceless nature of F̂j for j = 1 · · · dS − 1 is guaranteed by the fact that we are using the roots-of-unity in the
diagonal.

203

Open Quantum Systems and Lindblad Quantum Master Equation (Lecture Notes by G.E. Santoro)

Now we calculate the Liouvillian operator, by taking the time-derivative of the map at t = 0:

L(ρ̂S) =
d

dt
Et(ρ̂S)

∣∣∣
t=0

=

DK−1∑
j=0

DK−1∑
j′=0

Φ̇jj′(0)F̂j ρ̂SF̂
†
j′

= Âρ̂S + ρ̂SÂ
† +

DK−1∑
j=1

DK−1∑
j′=1

Γjj′ F̂j ρ̂SF̂
†
j′ , (10.20)

where, using F̂0 = 1S, we singled out the j = 0 and j′ = 0 terms by defining:

Â
def
=

1

2
Φ̇00(0) 1S +

DK−1∑
j=1

Φ̇j0(0) F̂j and Γjj′
def
= Φ̇jj′(0) . (10.21)

Observe that the trace conservation implies that ∀ρ̂S:

0 = TrS

(
L(ρ̂S)

)
= TrS

((
Â+ Â† +

DK−1∑
j=1

DK−1∑
j′=1

Γjj′ F̂
†
j′ F̂j

)
ρ̂S

)
, (10.22)

which in turns implies that the quantity multiplying ρ̂S inside the trace must vanish identically:

Â+ Â† = −
DK−1∑
j=1

DK−1∑
j′=1

Γjj′ F̂
†
j′ F̂j . (10.23)

To proceed, two properties are now useful:
E0 = 1S =⇒ Φjj′(0) = δj,0δj′,0

DK−1∑
j=1

DK−1∑
j′=1

v∗jΦjj′(t)vj′ =

DK∑
k=1

∣∣∣∣ d
2
S−1∑
j=1

Ckj(t)v
∗
j

∣∣∣∣2 ≥ 0

(10.24)

The second property tells us that the restriction of Φjj′(t) to non-zero indices is not only Hermitean,
but also non-negative definite. It follows therefore that the rate matrix Γjj′ (defined only for j, j′ ≥ 1)
is also Hermitean and non-negative:

Γjj′ = lim
s→0

Φjj′(s)− Φjj′(0)

s
= lim
s→0

Φjj′(s)

s
. (10.25)

Finally, the operator Â is in general not Hermitean, but can always be decomposed as:

Â =
1

2

(
Â+ Â†

)
+

1

2

(
Â− Â†

)
=

1

2

(
Â+ Â†

)
+

1

i~
H̃S , (10.26)

where the Hermitean part of Â is fixed by Eq. (10.23), while the anti-Hermitean part has been identified
with a suitable “Hamiltonian” of the system, H̃S, generating the von Neumann coherent evolution.

Lamb shift terms. Notice that in general H̃S differs from the free Hamiltonian ĤS of the
system by the presence of bath-induced extra terms, usually called “Lamb shift terms”, by analogy
with the very small QED corrections to the hydrogen spectrum.

!

Collecting all pieces we have:

L(ρ̂S) =
1

i~
[H̃S, ρ̂S] +

DK−1∑
j=1

DK−1∑
j′=1

(
Γjj′ F̂j ρ̂SF̂

†
j′ −

1

2

{
Γjj′ F̂

†
j′ F̂j , ρ̂S

})
. (10.27)

204

(Lecture Notes by G.E. Santoro) 10.2 The Lindblad construction

To get the final Lindblad diagonal form, we use the fact that rate matrix Γjj′ is Hermitean and
non-negative. Hence we can find a unitary matrix U such that

U† Γ U = diag(γµ) with γµ=1···DK−1 ≥ 0 . (10.28)

Define now the new DK − 1 Lindblad operators:

L̂µ =

DK−1∑
j=1

F̂j (U)jµ =⇒ F̂j =

DK−1∑
µ=1

L̂µ(U†)µj . (10.29)

We finally arrive at the final QME in Lindblad form anticipated in Eq. (10.14):

d

dt
ρ̂S = L(ρ̂S) =

1

i~
[H̃S, ρ̂S] +

d2
S−1∑
µ=1

γµ

(
L̂µρ̂SL̂

†
µ −

1

2

{
L̂†µL̂µ, ρ̂S

})
. (10.30)

For the specific example of a two-level system, dS = 2, one can show, see App. D, that the 4
Lindblad operators, with the associated rate constants, are:

γ1 = γg←e → L̂1 = σ̂+

γ2 = γe←g → L̂2 = σ̂−

γ3 = γϕ → L̂3 = 1√
2
σ̂z

γ4 = 0 → L̂4 = 1√
2
1

(10.31)

You recognise the relaxation map term involving σ̂+, and the dephasing map term involving σ̂z. On
top of those terms, we have, in general, an excitation term involving σ̂−. For a two-level system
coupled to a large thermal bath, the two rates γe←g and γg←e will eventually lead to a final steady
state in which the population ratio of the two levels — ground and excited state — obeys what is
predicted by the detailed balance requirement.

205

11. Introduction to quantum error
correction

... omni autem cui multum datum est multum quaere-
tur ab eo et cui commendaverunt multum plus petent
ab eo. a

Luca 12:48.

aFrom everyone who has been given much, much will be
demanded; and from the one who has been entrusted
with much, much more will be asked.

Let me start with a few useful references for the subject quantum error correction which we briefly
discuss here. First of all, as usual, a good elementary introduction is given by Chap. 5 of Mermin’s
book [1][Chap.5]. A companion reading is also given by a small review [48], by David Bacon’s chapter
[49], and by Chap. 10 of Nielsen [3]. Moving to more advanced treatments, I would suggest Preskill’s
lecture notes, and Chapter 15 of Kitaev’s book [19]. A comprehensive reference for classical coding
and error correction is the book by MacWilliams and Sloane [50]. For quantum error correction,
consider also studying [51].

Correcting errors might sound like a dreary practical problem, of little aesthetic or conceptual
interest. But aside from being of crucial importance for the feasibility of quantum computation,
it is also one of the most beautiful and surprising parts of the subject. The surprise is that
error correction is possible at all, since the only way to detect errors is to make measurements,
but measurement gates disruptively alter the states of the measured Qbits, apparently making
things even worse. “Quantum error correction” would seem to be an oxymoron. The beauty
lies in the ingenious ways that people have found to get around this apparently insuperable
obstacle.

N. David Mermin, Quantum Computer Science, Chapter 5

We will see how one can circumvent the difficulty associated to quantum measurement and collapse.
Moreover, we will appreciate how the great power of the quantum computation scheme brings about
a much larger possibility of errors, without a classical counterpart. For Qbits, you not only have the
possibility of bit flips (operated by σ̂x = X): there are, for instance, phase errors, like in 1√

2
(|0〉+|1〉)→

1√
2
(|0〉−|1〉). More generally, the continuous nature of the Qbit is in principle much more fragile than

a digital Cbit, which can only flip.

11.1. Classical error correction and Shannon’s theorem

Classical bits in our current digital computers are encoded by the miniaturised transistors packed
in silicon chips, each transistor involving a very large number of microscopic degrees of freedom. As
such, the probability that a Cbit is flipped due to thermal fluctuations or electromagnetic interactions

207

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

with the surrounding world is extremely small: classical error correction is not an important issue for
classical computation in our digital computers.

In the classical world, classical error correction is important for classical communication of Cbits
over noisy communication channels.

The binary symmetric channel. The simplest example of a noisy classical communication
model is a binary symmetric channel: each single transmitted Cbit, independently of any other
Cbits, can suffer a flip with a (small) probability p. In formulas, if P (br|bt) is the conditional
probability that we receive the bit br = 0, 1 conditional on the fact that the transmitted bit was
bt = 0, 1, then

P (1|0) = P (0|1) = p and P (0|0) = P (1|1) = 1− p . (11.1)

i

If p = 0.1, and we aim at transmitting a black-and-white picture of 100 × 100 = 104 bits (pixels),
on average 103 pixels will be received wrong: a quick look at Fig. 11.1 (under the column “r”) gives a
feeling for that error.

To improve on this, a simple strategy is given by repetition codes. The simplest such repetition code
R3 consists in adding redundancy in the coding of bits — each bit is repeated three times, mapping
0 → 000 and 1 → 111. Suppose that the source message is the 8-bit string s = 00101100, then the
transmitted message is the 24-bits string t = 000 000 111 000 · · · (space added for clarity). A noisy
binary symmetric channel can be thought as a random binary string e where the probability of a 1 is
p. The “noise” or “error” string e is summed modulo-2 to the transmitted string t, giving a received
string r = t ⊕ e. To decode the received string you apply the majority vote1: you split the received
message in chuncks of 3 bits and read out

000→ 0 , 100→ 0 , 010→ 0 , 001→ 0 , 110→ 1 , 101→ 1 , 011→ 1 , 111→ 1 .

Here is the effect of encoding-transmission-decoding of a string:

s 0 0 1 0 1 1 0 0

t 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

e 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0

ŝ 0 0 1 0 0 1 0 0

Here ŝ is the decoded string obtained by applying the majority vote to r. Notice also that while
an error was successfully corrected (in the 2nd bit), the occasional presence of two flips in the same
repeated block of bits leads to uncorrected decoding for the 5th bit.

Figure 11.1 shows the effect of repetition codeR3 on a simple binary picture of 104 pixels transmitted
over a channel with an error probability p = 0.1. Notice how the decoded picture is much better than
each of the three received copies. All the blocks in which at most one flip error occurs (a single 1 in
the corresponding block of n) are decoded correctly. Incorrect decoding occurs in the less likely event
that two or more flip errors occur within the same block. You can calculate the probability of error
in decoding a block of 3 bits as:

pb = 3p2(1− p) + p3 ≈ 3p2 , (11.2)

where the approximation applies for p sufficiently small. Hence, the probability of error in decoding
is pb ≈ 0.03 for p = 0.1: we have considerably reduced the error probability from the bare value 0.1,
1See MacKay [52][Sec.1.2] for a proof, based on Bayes’ theorem, that the majority vote is the optimal decoding
algorithm, in the sense of being the that with the smallest probability of being wrong.

208

(Lecture Notes by G.E. Santoro) 11.1 Classical error correction and Shannon’s theorem

Figure 11.1: Transmission
of a figure in a noisy classi-
cal channel with p = 0.1 with
a repetition code R3. The
probability of a mistake in
the decoding is pb ≈ 3p2 =

0.03. But the rate of trans-
mission is reduced to R =

1/3. Figure adapted from
MacKay (Fig.1.11).

at the price of having to transmit 3 copies of the same bit, hence reducing the rate of transmission to
R = 1/3.

Repetition codes of longer length, for instance, R5, might be adopted to further reduce the decoding
error: one can show that R61 would reduce pb to below 10−15 2, but the rate would be reduced to
R = 1/61. For a very nice introduction to this topic, I urge you to read Chapter 1 of MacKay [52].

Figure 11.2 shows the phase diagram of the probability of decoding error pb versus the transmission
rate for repetition codes, and other alternative codes, like the Hamming (7,4) block code, based on
adding 3 parity check bits every 4 transmitted bits. 3 This figure shows the great achievement of
Shannon in his famous noisy-channel coding theorem: Shannon proved that you can in principle reach
arbitrarily small decoding errors pb at a rate R which is finite, depending on the so-called channel
capacity C, which is related to the Shannon entropy of the noisy channel

C(p) = 1−H(p) = 1−
(
p log2

1

p
+ (1− p) log2

1

1− p

)
. (11.3)

For a noise level of p = 0.1, one calculates C ≈ 0.53, showing the remarkable result that one can in
principle achieve coding algorithms with arbitrarily small error and rates as large as R ∼ 0.53, much
larger than the value R = 1/3 for the R3 code!

We will not discuss more the theory of classical error correction, which, as remarked, is central in
classical communication and information theory. More information on that in Appendix E, which
gives a short overview of classical linear codes, following Ref. [50]. For the remainder of our present
discussion, confined to error correction, it is enough to have in mind the majority vote idea behind
the repetition scheme R3, which will inspire some of the considerations which follow.

2A 100-Terabyte hard-disk, with about 8× 1014 bits, would be guaranteed to be essentially free from errors. But the
rate reduction in repetition codes is terrible: we would need 61 such hard-disks to perform repetition majority voting
with that low level of error.

3Hamming codes H(n, n − r) are linear codes defined by r modulo-2 addition constraints. You consider elements of
{0, 1}n, i.e., bit strings x = (xn−1, · · · , x1, x0). Then, you take n = 2r − 1 so that you can assign to each index
j = 0, · · · , n an r-bit binary string, j = (jr−1, · · · , j0), with jl = 0, 1, and l = 0, · · · , r − 1. Finally, you define the r
check-sum constraints:

µl(x) =

n−1∑
j|jl=1

xj (mod 2) .

The set of binary strings satisfying all the constraints defines the “codewords”. For instance, for H(7, 4), where r = 3

and n = 23 − 1 = 7 you require the codewords to be binary strings satisfying:

x111+ x101+ x011+ x001 = µ0(x) = 0 (mod 2)

x111+ x110+ x011+ x010 = µ1(x) = 0 (mod 2)

x111+ x110+ x101+ x100+ = µ2(x) = 0 (mod 2)

.

209

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

Figure 11.2: The phase diagram of
the probability of decoding error pb ver-
sus the transmission rate R. R3 de-
notes the repetition code R3 we have
discussed. H(7,4) denotes a different
code, the (7,4) Hamming code, the sim-
plest example of a block code using par-
ity checks bits: 3 parity check bits every
4 source bits. C denotes the channel ca-
pacity, discovered by Shannon. Figure
taken from MacKay (Fig.1.19).

11.2. Quantum error correction: the simple case of bit flips

As Mermin’s quote suggests, it is far from clear, at the outset — and, indeed, it was unclear until
Peter Shor came out with a brilliant idea in 1996 — that quantum error correction is possible at all.
Various difficulties come to mind:

1) The no-cloning theorem forbids from making “copies” of arbitary single-Qbit quantum states |ψ〉,
to mimick the classical repetition-code idea.

2) While classically only bit-flip errors have to be considered, quantum mechanically you have to
consider phase errors, for instance, 1√

2
(|0〉 + |1〉) → 1√

2
(|0〉 − |1〉), or, more generally, small

unitary errors like

|ψ〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉 −→ cos θ+δθ2 |0〉+ ei(φ+δφ) sin θ+δθ

2 |1〉 .

3) Every time you attempt to “measure” if an error has occurred, you should be aware of the collapse
of the wavefunction, which might ruin any quantum superposition.

We start with the simplest example of quantum error correction, which shows some of the remarkable
facts behind this topic. The example discussed is a toy model since it shows how to correct only a very
simple type of error: single-bit flips. It does so by exploiting, essentially, the R3 classical repetition
code.

Encoding. So, let us start encoding, like in the classical case, a bit into three identical bits. However,
the non-cloning theorem forbids us from constructing an encoding machine that does |ψ〉 → |ψ〉 ⊗
|ψ〉 ⊗ |ψ〉. The idea is, on the contrary, to encode |0〉 → |0L〉 = |000〉, |1〉 → |1L〉 = |111〉, so that a
general Qbit is encoded, by the superposition principle, as:

|ψ〉 = z0|0〉+ z1|1〉 → |ψL〉 = z0|000〉+ z1|111〉 . (11.4)

We define the code Hilbert space HC as:

|ψL〉 ∈ HC = span{|000〉, |111〉} . (11.5)

Physical vs Logical bits. The subscript L here reminds us that a logical bit (or Qbit) is
different from a physical bit: in the present case, 3 physical Qbits are used to encode a single
logical Qbit.

i

One can easily construct a small quantum circuit which does precisely this encoding, using two CNOT
gates, see Fig. 11.3.

210

(Lecture Notes by G.E. Santoro) 11.2 Quantum error correction: the simple case of bit flips

z0|0〉+ z1|1〉

|0〉1 X

|0〉2 X

= z0|000〉+ z1|111〉

Figure 11.3: The 3-Qbit encoding. Two
CNOT are used to transform a product
state |0〉2 ⊗ |0〉1 ⊗ (z0|0〉0 + z1|1〉0) into a
3-Qbit entangled state z0|000〉+ z1|111〉.

A simple model of noise: rare bit flips. Let us now assume our extremely simplified model of error
occurring on the encoded logical Qbit: at most one of the three bits can suffer from the presence of
an unwanted bit flip operator X. If |ψL〉 denotes the encoded Qbit, there could be three corruptions
occurring:

|ψ(0)〉 = X0|ψL〉 = z0|001〉+ z1|110〉 ∈ span{|001〉, |110〉} = H0

|ψ(1)〉 = X1|ψL〉 = z0|010〉+ z1|101〉 ∈ span{|010〉, |101〉} = H1

|ψ(2)〉 = X2|ψL〉 = z0|100〉+ z1|011〉 ∈ span{|100〉, |011〉} = H2

(11.6)

Notice that the full Hilbert space H for n = 3 spins has dimension 23 = 8, and is given by the direct
sum of the various

H = HC ⊕H0 ⊕H1 ⊕H2 . (11.7)

We take therefore the state after encoding and corruption to be given by:

|ψerr
L 〉 =

(√
1− 3p1 + i

√
p (X0 + X1 + X2)

)
︸ ︷︷ ︸

Ê

|ψL〉 = Ê|ψL〉 , (11.8)

where the i might be safely omitted, as it is largely irrelevant here. You might wonder about normal-
isation of the state: the state is normalized because

〈ψL|Xj |ψL〉 = 0 and 〈ψL|XjXj′ |ψL〉 = 0 for j′ 6= j .

However, strictly speaking the operator Ê applied to the state |ψL〉 is not a unitary 3-Qbit operator:
you only have that 〈ψL|Ê†Ê|ψL〉 = 1, which is enough to guarantee normalization. One might wonder
how to write a “small” unitary operator acting on the three-Qbit state. There are many possibilities,
and a quite natural one is to assume that each Qbit is acted independently by a small unitary Uj =√

1− p1j + i
√
pXj , so that we have

U = U0U1U2 =
√

(1− p)31 + i
√
p(1− p)(X0 + X1 + X2)

−p
√

1− p(X0X1 + X0X2 + X1X2)− i
√
p3X0X1X2 .

Detecting (rare) bit flips without loosing coherence. The issue is now how the get information
on the corrupted state without a direct measurement of the logical Qbits, which would destroy the
superposition. The idea is to measure information on correlations among the Qbits, in particular
about the presence of pairs of parallel spins. We can do that with CNOT gates, by entangling the
Qbits with an ancillary Qbit, as shown in Fig. 11.4.

|y〉ancX|0〉anc X M Figure 11.4: Detecting information on two Qbits with an an-
cillary Qbit. If y = 0 upon measuring the ancillary Qbit, then
the two Qbits are guaranteed to be in |00〉, |11〉 or any linear
combination of such two states. Incidentally, notice that this is
precisely the bitwise-modulo-2 sum used in the quantum adder.

Quite clearly, if we measure y = 1 in the ancillary Qbit, then the two Qbits must have components
of the form |01〉 or |10〉. If we perform a similar measurement on both Qbits 0-1 (through the first

211

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

ancilla |y〉1) and Qbits 1-2 (through a second ancilla |y〉2) we can easily deduce, from these two
measurements, where the bit flip occurred, and correct it. Figure 11.5 illustrates the whole process,
including the encoding, the possible error, the error detection — known as syndrome — and the final
correction, through an appropriate X.

z0|0〉+ z1|1〉

|0〉1 X

|0〉2 X

X

or
X

or
X

|0〉 |y1〉

|0〉 |y2〉X X

X X

Xc0

Xc1

Xc2

M

M

encoding error detection correction

= |ψL〉

Figure 11.5.: The 3-Qbit encoding (left), followed by error (at most one bit flip), followed by a circuit that
detects the presence of error by making measurements on two supplementary ancillary Qbits, with results y0

and y1. The final stage is the coherence-preserving correction of the detected error by appropriate controlled
Qbit flips. Here the control bits are — as you can easily verify — to be set to c0 = (1 − y2)y1, c1 = y2y1,
c2 = y2(1− y1), depending on the results y1 and y2 of the measurements on the two ancillary Qbits.

11.3. Measuring error syndromes: general idea

There is an interesting reformulation of the syndrome detection which will be useful later on. It
starts from the circuit equivalence shown in Fig. 3.7, which we report here again. Using this, we can

X

≡
H H

H HX

≡
H H

Z

Figure 11.6: The identity in Eq. (3.37), illus-
trating how to exchange control- and target-
Qbit by a sandwich with H on both lines. The
second form (below) comes from observing that
HXH = Z.

equivalently rewrite the circuit in Fig. 11.4 to measure the correlations between two spins as shown
in Fig. 11.7.

X X

≡

H H H H

Z

Z

≡

H H

Z

Z

Figure 11.7.: Transforming the circuit to detect information on two Qbits with an ancillary Qbit.

212

(Lecture Notes by G.E. Santoro) 11.3 Measuring error syndromes: general idea

This reformulation deserves a few general remarks, which will prove useful alter on, when discussing
more general “syndrome detections”. Consider a multi-Qbit controlled unitary operator, where the
control Qbit is a single ancilla. Let CU

n,a denote this controlled-unitary, hence, by definition:

CU
n,a |0〉a ⊗ |ψ〉n = |0〉a ⊗ |ψ〉n CU

n,a |1〉a ⊗ |ψ〉n = |1〉a ⊗U|ψ〉n . (11.9)

Hence, by sandwiching the ancilla between two Hadamards, we find:

(H× 1)CU
n,a(H× 1)|0〉a ⊗ |ψ〉n = (H× 1)CU

n,a

1√
2

(|0〉a + |1〉a)⊗ |ψ〉n

= (H× 1)
1√
2

(
|0〉a ⊗ |ψ〉n + |1〉a ⊗U|ψ〉n

)
=

1

2
(|0〉a + |1〉a)⊗ |ψ〉n +

1

2
(|0〉a − |1〉a)⊗U|ψ〉n

= |0〉a ⊗
1

2
(1 + U)|ψ〉n + |1〉a ⊗

1

2
(1−U)|ψ〉n . (11.10)

Particularly relevant, for our discussion, is the case in which the unitary U squares to the identity,

|0〉

|ψ〉n

|y〉

1√
2

(
1 + (−1)yS

)
|ψ〉n

H H

S

M

Figure 11.8: Measuring an Hermitean oper-
ator S such that S2 = 1. The thick lower line
denotes an n-Qbit state |ψ〉n. If y = 0 is measured
for the ancilla, the state collapses into an eigenstate
with λ = +1 for S, and vice-versa for y = 1, the
state collapses into an eigenstate with λ = −1. The
two measurement outcomes have equal probability
1
2
.

U2 = 1, which immediately implies that it must be also Hermitean. Hence, taking U = S, with
S† = S and S2 = 1, we know that S can have only eigenvalues +1 or −1, and

1

2
(1± S) = Π̂S

± (11.11)

are projector operators on the subspace with eigenvalue ±1.

Hermitean S which squares to the identity. If S = S† and S2 = 1, then:

(H× 1)CS
n,a(H× 1)|0〉a ⊗ |ψ〉n = |0〉a ⊗ Π̂S

+|ψ〉n + |1〉a ⊗ Π̂S
−|ψ〉n . (11.12)

Hence, upon measuring the ancilla, see Fig. 11.8, obtaining 0, one is guaranteed that the system
is in an eigenstate of S with eigenvalue +1, while if 1 is obtained, the system is in an eigenstate
of S with eigenvalue −1. This idea can be generalised by considering a set of commuting
operators S1,S2, · · · which square to 1. Since they commute, they have common eigenstates,
which can be classified by measuring an appropriate ancilla for each of the Sj . The eigenvalues
of these commuting operators are called syndromes, because an eigenvalue −1 can diagnose the
presence of an error.

i

To conclude, we rewrite here the syndrome detection part of the 3-Qbit encoding, as shown in
Fig. 11.9. Observe that the detection part effectively involve measuring the two commuting “syndrome
detectors” S1 = Z0Z1 and S2 = Z1Z2. The results of the measurements of the two ancillas associated
to them unambiguously tell us which bit-flip operators we need to apply to correct the state. More
about this device of measuring commuting Hermitean operators which “square to 1” in the following.

Automating the error correction. It is worth remarking that the measurement part of the circuit
might be implemented as a unitary “automatic correction”, by using (multi)-controlled cNOTs and
avoiding measurements [1]. This is shown in Fig. 11.10.

213

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

z0|0〉+ z1|1〉

|0〉1 X

|0〉2 X

X

or
X

or
X

|0〉 |y1〉

|0〉 |y2〉H

H

H

H

Z

Z Z

Z Xc0

Xc1

Xc2

M

M

encoding error syndrome detection correction

= |ψL〉

Figure 11.9.: Alternative syndrome formulation. The 3-Qbit encoding (left), followed by error (at
most one bit flip), followed by a circuit that detects the presence of error by making measurements on two
supplementary ancillary Qbits, with results y0 and y1. The final stage is the coherence-preserving correction of
the detected error by appropriate controlled Qbit flips. Here the control bits are — as you can easily verify —
to be set to c0 = (1−y2)y1, c1 = y2y1, c2 = y2(1−y1), depending on the results y1 and y2 of the measurements
on the two ancillary Qbits.

z0|0〉+ z1|1〉

|0〉1 X

|0〉2 X

X

or
X

or
X

|0〉

|0〉 H

H

H

H

Z

Z Z

Z

X

X X

X

X

encoding error syndrome detection correction

= |ψL〉

Figure 11.10.: Error correction without measurements. The 3-Qbit encoding (left), followed by error
(at most one bit flip), followed by a circuit that detects the presence of error with two supplementary ancillary
Qbits. The final stage is the coherence-preserving error correction by appropriate (multi)-controlled cNOTS.

11.4. More general errors: error digitisation

This section is mostly based on Ref. [1], but a good reading is also Ref. [3][Sec. 10.3.2]. Let me start
with the simple case of small unitary (coherent) errors for a single Qbit. You can think of having a
2× 2 unitary matrix u, close to the identity,

u = 1 +O(ε) =

 u00 u01

u10 u11

 ,

such that the unitary error acts as |ψ〉 → u|ψ〉. On the computational basis we then have:

|0〉 u−→ u00|0〉+ u01|1〉

|1〉 u−→ u10|0〉+ u11|1〉
. (11.13)

It is easy to verify that if |x〉 denotes an element of the Qbit computational basis (with x = 0, 1) you
can combine the two previous equations as:

|x〉 u−→
(u00 + u11

2
1 +

u00 − u11

2
Z +

u01 + u10

2
X +

u01 − u10

2i
Y
)
|x〉 . (11.14)

214

(Lecture Notes by G.E. Santoro) 11.4 More general errors: error digitisation

Being linear, this implies that small unitary errors on any single Qbit state can always be “expanded”
into the effect of the identity (the largest part) plus small contributions from the other three Pauli
matrices:

|ψ〉 → u|ψ〉 =
(
α01 + α1X + α2Y + α3Z

)
|ψ〉 , (11.15)

with appropriate complex coefficients αj , to guarantee normalisation.

Digitisation. Remarkably, the action of any unitary coherent error (a continuum of them)
on a single Qbit can be expanded in terms of a discrete subset: bit flip errors (X), phase-errors
(Z) and a combination of bit-and-phase error (Y). This is, after all, no surprise, since any 2× 2

unitary matrix can be expanded in terms of the identity and the three Pauli matrices — all of
them being unitary as well as Hermitean — by using appropriate complex coefficients.

i

What about errors that involve the entangling effect with other degrees of freedom, an “environ-
ment”, for the Qbit under consideration? Suppose that Qbit and environment are originally decoupled,
and that a small entangling interaction — officially unwanted, and represented by some unitary evo-
lution Û tot — acts. The computational basis states are changed as follows:

|0〉 ⊗ |φB〉 Ûtot

−−−→ |0〉 ⊗ |χB
00〉+ |1〉 ⊗ |χB

01〉

|1〉 ⊗ |φB〉 Ûtot

−−−→ |0〉 ⊗ |χB
10〉+ |1〉 ⊗ |χB

11〉
, (11.16)

where the environment states |χB

jj′〉 are in general neither normalized, nor orthogonal. 4 Once again,
for a general computational basis state |x〉 (with x = 0, 1) we can rearrange these two expressions as:

|x〉 ⊗ |φB〉 Ûtot

−−−→ 1|x〉 ⊗ |χB
0 〉+ X|x〉 ⊗ |χB

1 〉+ Y|x〉 ⊗ |χB
2 〉+ Z|x〉 ⊗ |χB

3 〉

with

|χB

0 〉 =
1

2

(
|χB

00〉+ |χB

11〉
)
, |χB

3 〉 =
1

2

(
|χB

00〉 − |χB

11〉
)

|χB

1 〉 =
1

2

(
|χB

01〉+ |χB

10〉
)
, |χB

2 〉 =
1

2i

(
|χB

01〉 − |χB

10〉
)

. (11.17)

By linearity, for a general state |ψ〉 = z0|0〉+ z1|1〉 we get:

|ψ〉 ⊗ |φB〉 → Û tot|ψ〉 ⊗ |φB〉 =
(
1|ψ〉 ⊗ |χB

0 〉+ X|ψ〉 ⊗ |χB

1 〉+ Y|ψ〉 ⊗ |χB

2 〉+ Z|ψ〉 ⊗ |χB

3 〉
)
. (11.18)

Notice that the algebra to get to this form is identical to unitary coherent case, which is recovered
by taking |χB

µ〉 = αµ|φB〉 for µ = 0, · · · , 3, so that no entanglement results. Just be aware of the fact
that the environment states are neither normalised nor orthogonal, as opposed to the basis we used in
writing the Kraus representation, although in general they can be assumed to be linearly independent.
You can always insist on a Kraus form, by rewriting the bath states in terms of a proper orthonormal
set {|φB

k〉} with an invertible matrix Ak,µ:

|χB

µ〉 =

4∑
k=1

Ak,µ|φB

k〉 .

4Unitarity requires:

〈χB
00|χB

00〉+ 〈χB
01|χB

01〉 = 1 , 〈χB
10|χB

10〉+ 〈χB
11|χB

11〉 = 1 , 〈χB
10|χB

00〉+ 〈χB
11|χB

01〉 = 0 .

215

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

An environment with 4 states is enough. The orthonormal basis of the bath is so chosen
that the first 4 elements are obtained by a Gram-Schmidt orthogonalization of the 4 states |χB

µ〉,
while the remaining states are arbitrary. This shows that a bath with only 4 states is enough for
the purpose of writing the dynamics.

i

Hence, you can rewrite:

|ψ〉 ⊗ |φB〉 → Û tot|ψ〉 ⊗ |φB〉 =

3∑
µ=0

σ̂(µ)|ψ〉 ⊗ |χB

µ〉 =

4∑
k=1

Êk︷ ︸︸ ︷(3∑
µ=0

Ak,µσ̂
(µ)
)
|ψ〉 ⊗ |φB

k〉

=

4∑
k=1

Êk|ψ〉 ⊗ |φ
B

k〉 , (11.19)

where you realise that at most 4 independent Kraus operators Êk need to be invoked and, to simplify
our notation, we redefined the identity and Pauli operators by using an index:

σ̂(µ) =

1 for µ = 0

X for µ = 1

Y for µ = 2

Z for µ = 3

. (11.20)

In Kraus form, therefore, the most general error that a single Qbit can suffer can always be written
as:

ρ̂C
Ûtot

−−−→
4∑
k=1

Êkρ̂CÊ†k , (11.21)

where ρ̂C is a general state in the code Hilbert space HC.

Let us now consider the case of n Qbits. The entangling interaction starting from the initial state
|ψ〉 ⊗ |φB〉 brings to a generally corrupted and entangled superposition with 4n terms:

|ψ〉 ⊗ |φB〉 Ûtot

−−−→ Û tot|ψ〉 ⊗ |φB〉 =

3∑
µ1=0

· · ·
3∑

µn=0

σ̂
(µ1)
1 σ̂

(µ2)
2 · · · σ̂(µn)

n |ψ〉 ⊗ |χB

µ1···µn〉 . (11.22)

The general Kraus form would be, once again:

ρ̂C
Ûtot

−−−→ E(ρ̂C) =

4n∑
k=1

Êkρ̂CÊ†k , (11.23)

where the Kraus operators are linear combinations of Pauli string operators:

Êk =

3∑
µ1=0

· · ·
3∑

µn=0

Ak,µ1···µn σ̂
(µ1)
1 σ̂

(µ2)
2 · · · σ̂(µn)

n . (11.24)

Suppose that n is the number of physical Qbits encoding each logical Qbit. And suppose that your
hardware is good enough that the probability of corruption of the codewords is small, hence the terms
differing from the uncorrupted codeword |ψ〉 — that involving only identities, hence all µj = 0, in the
previous equation — are dominated by the errors involving a single physical Qbit. Disregarding all
terms affecting more than one Qbit, we would therefore write an expression involving 3n+ 1 terms:

|ψ〉 ⊗ |φB〉 unitary−→ Û tot|ψ〉 ⊗ |φB〉 ≈
(
|ψ〉 ⊗ |χB

00···0〉+

n−1∑
j=0

3∑
µj=1

σ̂
(µj)
j |ψ〉 ⊗ |χB

0···0µj0···0〉
)
, (11.25)

216

(Lecture Notes by G.E. Santoro) 11.5 The five-Qbit encoding

corresponding to the uncorrupted codewords, plus a possible corruption due to action of a single Pauli
operator — either X, Y or Z — in each of the n physical Qbits. In Kraus form, we now have:

ρ̂C
single Qbit errors−−−−−−−−−−−→

≈
Et(ρ̂C) =

3n+1∑
k=1

Êkρ̂CÊ†k , (11.26)

with the only caveat that Et is a truncated map, hence not trace preserving, in general.

As a particular example of a noise process describing independent errors occurring on the various
Qbits, we can consider the case where each Qbit is affected by a depolarising map, see Sec. 9.7.3 and
Eq. 9.123, for instance:

Edep(ρ̂1−Qbit) = (1− p) ρ̂1−Qbit +
p

3

3∑
µ=1

σ̂(µ)ρ̂1−Qbit σ̂
(µ) . (11.27)

Evidently the combined map where the depolarising map acts on each Qbit independently can be
written as:

E(ρ̂C) = (1− p)nρ̂C + (1− p)n−1 p

3

n−1∑
j=0

3∑
µj=1

σ̂
(µj)
j ρ̂C σ̂

(µj)
j︸ ︷︷ ︸

Et(ρ̂C)

+ · · · , (11.28)

where the dots represent terms with two or more Pauli operators acting independently on various
Qbits. Evidently, we can take:

Ê1 =
√

(p− 1)n 1 Êk>1 =
√

(1− p)n−1p/3 σ̂
(µj)
j with µj = 1, 2, 3 .

Hamming bound for single logical-Qbit encoding. This form is suggestive. Suppose that we use n
physical Qbits to code a single logical Qbit, with the uncorrupted state |ψL〉 being a combination of
the two logical computational states {|0L〉, |1L〉} (more details later on how these are expressed). 5

Out of the 2n possible states of the n physical Qbits, the uncorrupted codewords form a 2-dimensional
subspace HC, with elements z0|0L〉+z1|1L〉. Next, we need to clearly identify orthogonal 2-dimensional
subspaces corresponding to each of the possible corruptions σ̂(µj)

j |ψL〉, to be able to diagnose the error
with some appropriate ancilla measurement, and then correct it. The total n Qbit physical space
must therefore be large enough to allow for 3n+ 1 two-dimensional orthogonal subspaces, hence:

2n ≥ 2(3n+ 1) =⇒ 2n−1 ≥ (3n+ 1) . (11.29)

The minimal n that satisfies this equation is n = 5, which is therefore the minimal number of physical
Qbits that allows us to detect (and correct) single-Qbit errors in either of the three Pauli directions.
Incidentally, a similar reasoning applied to the case in which only bit flip errors are possible, suggests
that we would have to satisfy 2n ≥ 2(n+ 1), hence 2n−1 ≥ (n+ 1): the minimal n to do that is n = 3.
This was indeed our initial toy exercise with bit flip errors only.

11.5. The five-Qbit encoding

Let us now consider in more detail an n = 5 Qbit encoding, which is able to detect and correct errors
in either of the three Pauli directions for all the physical Qbits. We need to distinguish 1 + 3× 5 = 16

two-dimensional subspaces, corresponding to the uncorrupted and to any of the possible corruptions,
in the 25 = 32 dimensional total Hilbert space. The idea is to introduce – building them in terms of
Pauli operators for the physical Qbits — 4 mutually commuting Hermitean operators which square
to the identity, hence have eigenvalues ±1 and can be measured simultaneously, to discriminate the
different 24 = 16 subspaces and realise if an error occurred or not.

5In general, one might code k logical Qbits into n > k physical Qbits.

217

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

Stabilizers. A set of ns independent a operators 〈S1, · · · ,Sns〉 build out of the physical Qbits
Pauli matrices, Hermitean and squaring to the identity, which are mutually commuting is known
as the stabilizers of the (error correction) code.
aTechnically, see later, the generators of the stabilizer group.

i

For n = 5 we need ns = 4 stabilizers, having 24 = 16 different eigenvalues, all of the form ±1.
Consider the following:

S1 = Z1X2X3Z4

S2 = Z2X3X4Z0

S3 = Z3X4X0Z1

S4 = Z4X0X1Z2

(11.30)

It is clear that Sj are Hermitean and S2
j = 1. It is also easy to realise that they aremutually commuting.

For instance, consider S1 = Z1X2X3Z4 and S2 = Z2X3X4Z0, where we have highlighted with colors
Pauli operators that do not commute: indeed, recall that ZX = −XZ. But, by construction, these
anticommutation minus signs always appear in pairs. Hence S1S2 = S2S1. Similar reasoning apply
to all other pairs you might consider.

Is that all? The four stabilizers have a clear cyclic pattern ZXXZ, with a fifth possibility
which we omitted:

S5 = Z0X1X2Z3 .

Why? It is clear that if you multiply all of them you get the identity, because each Pauli matrix
appears squared, hence the fifth “stabilizer” is not really independent:

S1S2S3S4S5 = 1 =⇒ S5 = S1S2S3S4 .

i

Here are the codewords for |0L〉 and |1L〉, directly written in terms of the stabilizers:

Coding with 5 Qbits.

|0L〉 =
1

4
(1 + S1)(1 + S2)(1 + S3)(1 + S4)|00000〉

|1L〉 =
1

4
(1 + S1)(1 + S2)(1 + S3)(1 + S4)|11111〉

(11.31)

Since each Sj flips two spins, |0L〉 is a superposition of computational basis states with an even
number of 1, and |1L〉 a superposition with an even number of 0. Consequently, the two codewords
are orthogonal 〈1L|0L〉 = 0. For the actual circuit by which you can encode the logical 5-Qbit
states, see Mermin [1][Sec. 5.9].

i

Verifying that these states are normalised is very simple. 6 Moreover, since:

Sj(1 + Sj) = 1 + Sj ,

it is clear that |0L〉, |1L〉 as well as any state in the two-dimensional uncorrupted logical subspace

|ψL〉 = z0|0L〉+ z1|1L〉 ,

218

(Lecture Notes by G.E. Santoro) 11.5 The five-Qbit encoding

|y1〉

|y2〉

|y3〉

|y4〉

|0〉1

|0〉2

|0〉3

|0〉4

H

H

H

H

H

H

H

H

Z

X

X

Z

Z

Z

X

X

X

Z

Z

X

X

X

Z

Z

M

M

M

M

= 4Π̂S1
y1

Π̂S2
y2

Π̂S3
y3

Π̂S4
y4
|ψ〉|ψ〉 →

A
nc
ill
as

Figure 11.11.: The syndrome measurement for the 5-Qbits code. Here |ψ〉 = σ̂
(µj)

j |ψL〉 is one of the
possible corrupted states.

are eigenstates of all the stabilizers with eigenvalue +1. Here is a table of all possible eigenvalues of
the stabilizers (16 possibilities) with a corresponding signature for the eigenvalues of the corrupted
state σ̂µjj |ψL〉. The idea behind is very simple: some stabilizer will anticommute with the single Pauli
matrix for the corrupted state, hence you detect the error by simply measuring together all stabilizers
and looking at the table below.

1 X0 Y0 Z0 X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 X4 Y4 Z4

S1 = Z1X2X3Z4 + + + + − − + + − − + − − − − +

S2 = Z2X3X4Z0 + − − + + + + − − + + − − + − −
S3 = Z3X4X0Z1 + + − − + − + + + + − − + + − −
S4 = Z4X0X1Z2 + + − − + − − − − + + + + − − +

Figure 11.11 shows a circuit that reveals the error, the so called syndrome, by measuring all 4 stabilizers
with associated ancilla Qbits.

There is still one non-trivial aspect of the story to discuss: how the standard single-Qbit and
two-Qbit gates are translated into the appropriate multi-Qbit operators for the logical Qbits.

Exercise 11.1. Show that ZL = Z0Z1Z2Z3Z4 is such that

ZL|0L〉 = |0L〉 and ZL|1L〉 = −|1L〉 .

Similarly, show that XL = X0X1X2X3X4 is such that

XL|0L〉 = |1L〉 and ZL|1L〉 = |0L〉 .

This shows that these two multi-Qbit operators play the role of the Z and X for a single-Qbit.

The problem is that other standard gates that you would need to perform Quantum Computation
are difficult to write for this 5-Qbit encoding. Mermin [1][Sec. 5.6] discusses in some detail a 7-Qbit
encoding, the Steane code, where this task is easier. See also App. E.2.1.
6Using (1 + Sj)2 = 2(1 + Sj).

219

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

11.6. General criteria for quantum error correction

Let ρ̂C be a state with support in the code Hilbert space HC. Suppose that we want to correct an
approximate truncated quantum map affecting the state of the system ρ̂C:

ρ̂C
truncated errors−−−−−−−−−−→

≈
Et(ρ̂C) =

derr∑
e=1

Êe ρ̂C Ê†e , (11.32)

where, from now on, we will use the index e for the Kraus error operators. As discussed, the map is
in general not trace preserving. To get a feeling for this idea of a truncated, hence approximate,
Kraus map, consider the following exercise.

Exercise 11.2. Consider the 3-Qbit bit-flip code discussed previously, with HC = {|000〉, |111〉}.
Consider now the noise process with 4 Kraus operators:

Ê1 =
√

(1− p)3 1 , Ê2 =
√
p(1− p)2 X0 , Ê3 =

√
p(1− p)2 X1 , Ê4 =

√
p(1− p)2 X2 .

where p is the probability of a bit flip. Verify that Et is not trace-preserving, since we have
disregarded operation elements corresponding to bit flips on two and three qubits.

We now pretend that, while a general quantum map E is not invertible, we are still able to undo
the effects of the (truncated) error set on the state represented by Et, by an appropriate recovery
quantum map R such that:

R ◦ Et(ρ̂C) ∝ ρ̂C , (11.33)

where the proportionality sign ∝ is, once again, due to the truncation performed in considering Et.
Let {|φC

j 〉} be an orthonormal basis for the code Hilbert space HC, with associated projector

Π̂C =
∑
j

|φC
j 〉〈φC

j | . (11.34)

While Et brings the state “out of HC”, we would like to construct R such that it brings the state back
in the code Hilbert space HC.

The Knill-Laflamme quantum error correction code criterion. A necessary and sufficient condition
for a recovery map R to exist is that:

〈φC
j′ |Ê

†
e′Êe|φ

C
j 〉 = Ce′,eδj′,j , (11.35)

where C is a derr × derr Hermitean matrix, sometimes called the code matrix. Alternatively, and
equivalently, in terms of the projector Π̂C we can write the criterion as:

Π̂CÊ†e′ÊeΠ̂C = Ce′,eΠ̂C . (11.36)

It follows that C is positive-definite, 7 hence with non-negative eigenvalues λm, so that:

Tr(C) =
∑
m

λm > 0 .

7Indeed: ∑
e,e′

v∗e′Ce′,eve =

∥∥∥∥∥∑
e

veÊe|φC
j 〉

∥∥∥∥∥
2

≥ 0 .

220

(Lecture Notes by G.E. Santoro) 11.6 General criteria for quantum error correction

On the other hand:

Tr(C) = 〈φC
j |

derr∑
e=1

Ê†eÊe|φC
j 〉 ≤ 1 ,

and the deviation from 1 tells about how much the map fails to be trace-preserving.

Before proving the quantum error correction criterion, it is useful to discuss two general and useful
facts.

1. Unitary freedom. There is a unitary-mixing freedom in the choice of the Kraus error operators,
similarly to what discussed in Sec. 9.5, even if the map is truncated and not trace preserving. To
see this, consider redefining our error Kraus operators Êe by mixing them with an arbitrary unitary
matrix U:

M̂m =

derr∑
e=1

ÊeUe,m . (11.37)

The fact that the quantum map does not change is easy to verify:∑
m

M̂m ρ̂C M̂†m =
∑
e,e′

(∑
m

Ue,mU∗e′,m
)

︸ ︷︷ ︸
(UU†)e,e′=δe′,e

Êe ρ̂C Ê†e′ =
∑
e

Êe ρ̂C Ê†e . (11.38)

Hence, the error map Et is identical.

2. Diagonal errors. Next, we show that we can construct, by using the unitary freedom, a new set
of Kraus error operators for which the code matrix is diagonal. Consider the criterion in Eq. (11.36),
written for the new operators:

Π̂CM̂†m′M̂mΠ̂C =
∑
e,e′

U∗e′,m′ Π̂CÊ†e′ÊeΠ̂C Ue,m

=
∑
e,e′

U∗e′,m′ Ce′e Ue,mΠ̂C

= (U†CU)m′,mΠ̂C = λmδm′,mΠ̂C , (11.39)

provided the matrix U is so chosen as to diagonalise C, i.e., U†CU = diag(λm). The (non-negative)
eigenvalues λm of C are such that

∑
m λm = Tr(C) < 1 if Et is not trace-preserving.

Proof of sufficiency. We first show that if Eq. (11.36) is satisfied, than we can construct a recovery
map R. Observe that if ρ̂C is a state with support in HC, we can always write:

ρ̂C = Π̂Cρ̂CΠ̂C . (11.40)

We proceed by working with these diagonal error operators M̂m, and construct the recovery map
R with Kraus operators defined as follows:

R̂m =
1√
λm

Π̂CM̂†m for λm > 0 . (11.41)

The fact that this is a valid system of Kraus operators should be verified, by checking
∑
m R̂†mR̂m.

We postpone this check to the end, and proceed with the proof. Let us check the action of R ◦Et(ρ̂C),

221

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

by working with the Kraus operators:∑
m|λm>0

R̂m

(∑
m′

M̂m′ ρ̂CM̂†m′
)

R̂†m
Eq.(11.41)

=
∑

m|λm>0

1

λm
Π̂CM̂†m

(∑
m′

M̂m′ ρ̂CM̂†m′
)

M̂mΠ̂C

Eq.(11.40)
=

∑
m|λm>0

1

λm

∑
m′

Π̂CM̂†mM̂m′Π̂Cρ̂CΠ̂CM̂†m′M̂mΠ̂C

Eq.(11.39)
=

∑
m|λm>0

1

λm

∑
m′

λ2
mδm′,mΠ̂Cρ̂CΠ̂C

Eq.(11.40)
=

(∑
m

λm

)
ρ̂C . (11.42)

Hence, in summary, R ◦ Et keeps the state in the code Hilbert space HC:

R ◦ Et(ρ̂C) =
(∑

m

λm

)
ρ̂C . (11.43)

It remains to be checked that {R̂m} is a valid system of Kraus operators to define a quantum map.
For that purpose, consider Π̂R =

∑
m R̂†mR̂m.

Exercise 11.3. Show that:
Π̂R =

∑
m|λm>0

1

λm
M̂mΠ̂CM̂†m ,

and that Π̂R is a projector, i.e., Π̂2
R = Π̂R.

Hence, by possibly adding a further Kraus operator with support in 1− Π̂R, the system of Kraus
operators {R̂m} can be made to satisfy the completeness relationship:∑

m

R̂†mR̂m = 1 . (11.44)

Proof of necessity. By hypothesis, a trace-preserving recovery quantum map R exists such that:

R ◦ Et(ρ̂C) = c ρ̂C , (11.45)

with c ∈ (0, 1]. Let us now write this condition in terms of Kraus operators, using also that ρ̂C =

Π̂Cρ̂CΠ̂C. We have: ∑
m

R̂m

(∑
e

ÊeΠ̂Cρ̂CΠ̂CÊ†e

)
R̂†m = c Π̂Cρ̂CΠ̂C .

Let us rewrite the last equation in the following equivalent but suggestive form:∑
m,e

(
R̂mÊeΠ̂C

)
ρ̂C

(
R̂mÊeΠ̂C

)†
=
(√

c Π̂C

)
ρ̂C

(√
c Π̂C

)
.

So, the two Kraus maps, the LHS-one with (derr)
2 Kraus operators {R̂mÊeΠ̂C}, and the RHS-one

with a single Kraus operator {
√
c Π̂C} are equivalent maps. Hence, by the HJW theorem 9.3 8 there

exists a unitary matrix, of which only the first column vector ume is relevant, such that:

R̂mÊeΠ̂C = ume
√
c Π̂C =⇒ Π̂CÊ†e′R̂

†
m = u∗me′

√
c Π̂C .

Hence, by multiplying the two expressions we obtain:

Π̂CÊ†e′R̂
†
mR̂mÊeΠ̂C = c u∗me′ume Π̂C .

8Check that in the proof of that theorem we never actually used a completeness requirement, so that the quantum
map need not be necessarily trace preserving.

222

(Lecture Notes by G.E. Santoro) 11.6 General criteria for quantum error correction

Upon summing over m, recalling that
∑
m R̂†mR̂m = 1, we therefore get:∑

m

Π̂CÊ†e′R̂
†
mR̂mÊeΠ̂C = Π̂CÊ†e′ÊeΠ̂C =

(
c
∑
m

u∗me′ume

)
︸ ︷︷ ︸

Ce′,e

Π̂C . (11.46)

From this we conclude that the quantum error correction criterion in Eq. (11.36) is satisfied, with the
code matrix

Ce′,e = c
∑
m

u∗me′ume , (11.47)

which is manifestly Hermitean: Ce′,e = C∗e,e′ . Incidentally, we get Tr C = c, since
∑
m |ume|2 = 1.

11.6.1. Content of the QEC criterion and the quantum Hamming bound

Let us discuss more what the quantum error correction criterion tells us about errors affecting
codewords, following Ref. [49][Sec. 2.5]. First of all, you can consider the basis states |φC

j 〉 to be the
(orthogonal) codewords of the code. Consider now two different codewords, |φC

j 〉 and |φC
j′〉 with j′ 6= j.

The criterion tells us that Êe|φC
j 〉 is orthogonal to Êe′ |φC

j′〉, for all possible errors Êe′ , including e
′ = e.

Hence, orthogonality is maintained. Next, consider a single codeword |φC
j 〉, and two different errors

Êe and Êe′ . The criterion tells us that:

〈φC
j |Ê
†
e′Êe|φ

C
j 〉 = Ce′e . (11.48)

Hence, if C is non-diagonal, two different errors might lead to two different states Êe|φC
j 〉 and Êe′ |φC

j 〉
which are not orthogonal, but the scalar product is totally independent of the codeword |φC

j 〉. Such
codes exist, and are called degenerate codes. The situation we encountered so far was that different
errors lead tomutually orthogonal subspaces, and correspond to the so-called non-degenerate codes,
where the code matrix C is diagonal.

Exercise 11.4. Consider again Exercise 11.2. Verify that the quantum error-correction condition is
satisfied by the code with the given noise process, verifying that the code is non-degenerate.

For non-degenerate codes there is a simple bound on the dimensionality of the encoding n we
need. Indeed, let us be more general here. Assume that we want to encode k Qbits into a large space
of dimensionality 2n. So, the code subspace HC is now 2k dimensional. Suppose that we have a code
that can correct up to t ≥ 1 errors, generalizing our so-far restricted examples where t = 1 (single-Qbit
errors). A code of this type is conventionally denoted as [n, k, 2t + 1], where d = 2t or d = 2t + 1 is
the so-called distance between codewords, whose concept is simple to explain in classical linear codes,
as explained in Appendix E, but will be briefly mentioned at the end of Sec. 11.9.

The errors can affect j Qbits, with j = 0, 1, · · · t (j = 0 is actually the code space, without errors).
So, there are

(
n
j

)
way of choosing the Qbits where the errors occur, and for each of these j Qbits, there

are 3 possible errors — X, Y, and Z —, hence a total of
(
n
j

)
3j errors, for each of which we need to

distinguish 2k-dimensional orthogonal subspace (recall that the code is non-degenerate, hence errors
lead to orthogonal states). And all these subspaces have to fit within the 2n-dimensional encoding
space. Hence we find the general quantum Hamming bound:

2n ≥ 2k
t∑

j=0

(
n

j

)
3j =⇒ 2(n−k) ≥

t∑
j=0

(
n

j

)
3j . (11.49)

For k = 1 and t = 1 (single-Qbit errors for a single logical Qbit), this bound reduces to what we
derived at the end of Sec. 11.4:

2n−1 ≥ (3n+ 1) .

223

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

11.6.2. Digitization of quantum noise: again

Suppose that we have a truncated map Et, defined by a set of Kraus errors {Êe}— or equivalently,
by the corresponding diagonal errors {M̂m} — which are correctable. For instance, you might have
checked that when {Êe} are a particular restricted set of Pauli string operators, the quantum error
correction criterion is verified.

You now consider a different quantum error map Ẽt with Kraus operators which are made by
arbitrary linear superpositions of the correctable errors. Without loss of generality, we can assume
that the new Kraus error operators are expressed in terms of the correctable diagonal errors as follows:

K̂e =
∑
m

M̂m Am,e , (11.50)

and that the new quantum error map is given by:

ρ̂C
truncated errors−−−−−−−−−−→

≈
Ẽt(ρ̂C) =

derr∑
e=1

K̂e ρ̂C K̂†e . (11.51)

Q1: Is Ẽt correctable? Q2: If so, what is the recovery map?

Question: Arbitrary linear combinations are correctable?

Q1. Write down the quantum error correction criterion for the new error operators:

Π̂CK̂†e′K̂eΠ̂C =
∑
m,m′

A∗m′,e′Π̂CM̂†m′M̂mΠ̂CAm,e
Eq.(11.39)

=
∑
m

(A†)e′,mλmAm,e Π̂C

=
(
A†diag(λm)A

)
e′,e

Π̂C . (11.52)

Hence, the new code matrix CK = A†diag(λm)A is Hermitean, and the quantum error correction
criterion in Eq. (11.36) is satisfied. Hence, the new map Ẽt is correctable as well.

Q2. To answer the second part of the question, you need to show that the same recovery map correct-
ing Et works fine here, by doing the following exercise. See Ref. [49][Sec. 2.6] for more discussions.

Exercise 11.5. Show that if R̂m are the recovery operators constructed in terms of the diagonal
errors M̂m as in Eq. (11.41), then we have:∑

m|λm>0

R̂m

(∑
e

K̂eρ̂CK̂†e

)
R̂†m =

(∑
m

∑
e

λm|Am,e|2
)
ρ̂C . (11.53)

Hence R can correct the new linear superposition of errors as well.

11.7. The stabilizers and the Pauli group

224

(Lecture Notes by G.E. Santoro) 11.7 The stabilizers and the Pauli group

Stabilizers. A set of stabilizers S = {S1,S2, · · · } is:

1) a set of mutually commuting Hermitean operators which square to 1.

2) the identity 1 ∈ S, while −1 /∈ S.

S is an Abelian group. a All the stabilizers in S, since they square to 1, have eigenvalues ±1.
aIndeed: 1 ∈ S; SsSs′ ∈ S, since (SsSs′)2 = 1; S−1

s = Ss, since S2
s = 1.

i

The stabilized space. The stabilized space HS is the subspace of the Hilbert space H made
up by all states |ψ〉 which are eigenstates with eigenvalue +1 of all stabilizers:

|ψ〉 ∈ HS ⇐⇒ Ss|ψ〉 = |ψ〉 ∀Ss ∈ S . (11.54)

i

The generators. There exist a minimal set of ns independent 9 stabilizers which generate the group
S by taking products of the generators. We will denote the generators as follows:

S = 〈S1,S2, · · · ,Sns
〉 . (11.55)

Any element of S can be written as:

Sa1
1 Sa2

2 · · ·S
ans
ns

with aj = 0, 1 .

Encoding with stabilizers. You can encode logical Qbits into a 2n-dimensional encoding space H,
with the set of vectors |ψ〉 which have eigenvalues +1 on all stabilizers generators, which form a linear
subspace HS ≡ HC:

Ss|ψ〉 = |ψ〉 for s = 1, · · · ,ns . (11.56)

Simple counting — for each of the “independent constraints” of having eigenvalue +1 on the generators,
you lower the space dimensionality by a factor 2; for a more formal proof see App. E.3 — tells us that
the dimensionality of such a subspace is 2n−ns , hence we have k = n − ns independent codewords in
HC. As usual, we consider a basis {|φC

j 〉}, with j = 1, · · · , 2k, of orthogonal states (codewords) for
HC.

One might wonder how to construct stabilizers in practice. We now see that they can be written
in terms of Pauli matrices.

Question: How to construct stabilizers?

The Pauli group. Suppose that we have a single Qbit, and we would be asked to write a multiplicative
group containing the Pauli matrices. A naive idea is to think that this is made by {1,X,Y,Z}, but
this is wrong, because this set is not a group. Indeed, for instance, XZ = −iY and ZX = +iY, hence
also ±iY must be included in the set. By similar reasoning ±iX, and ±iZ must be included. But also
(−iX)Z = −Y, hence ±Y must be be included, and similarly ±X, and ±Z must be included. Finally

9Independent here means, effectively, that by eliminating any of the generators you obtain a smaller group. Proving
independence can be done, in a rather simple way, by relying on a check-matrix and on the familiar concept of linear
independence of linear algebra. See App. E for details.

225

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

(iX)2 = −1, and (±iX)X = ±i1. So, we must admit an overall roor-of-unity factor wm = eimπ/2

with m = 0, 1, 2, 3. Summarizing:

P1 = {wm1, wmX, wmY, wmZ} = {wmσ̂(µ)} with µ = 0, 1, 2, 3 . (11.57)

For n Qbits — for simplicity, we number them from 1 to n rather than from 0 to n − 1, as usual —
we have the Pauli group

Pn = {wmσ̂(µ1)
1 σ̂

(µ2)
2 · · · σ̂(µn)

n } with µj = 0, 1, 2, 3 , (11.58)

made up by all possible Pauli strings with an overall factor wm, hence with 4n+1 elements, half of
them, 22n+1 are Hermitean and squaring to 1, the remaining half are anti-Hermitean and squaring
to −1. Stabilizers groups S can be constructed as appropriate subgroups of the Pauli group Pn:
S ⊂ Pn.

Examples. The 3-Qbit encoding which protect agains single Qbit-flip errors is evidently described
by the stabilizer group:

S = 〈S1 = Z0Z1 , S2 = Z1Z2〉 . (11.59)

The 5-Qbit encoding which protect against single Qbit error of any type (X, Y, or Z) is described by
the stabilizer group:

S = 〈S1 = Z1X2X3Z4 , S2 = Z2X3X4Z0 , S3 = Z3X4X0Z1 , S4 = Z4X0X1Z2〉 . (11.60)

11.8. Unitary transformations and the Clifford group

Consider a unitary transformation U in the Hilbert space and a state in a stabilized subspace
|ψ〉 ∈ HS . Then for any stabilizer Ss:

U|ψ〉 = USs|ψ〉 =
(
USsU†

)
U|ψ〉 . (11.61)

Hence USsU† stabilizes the vector space UHS . Similarly to the more familiar Heisenberg represen-
tation of operators, you can write the transformed stabilizer group as

USU† = 〈US1U†, · · · ,USns
U†〉 . (11.62)

The operation g → UgU† is known as conjugation. Let us now restrict our attention to elements
of the Pauli group, g ∈ Pn. We want to study the set of unitaries U that preserve the Pauli group by
conjugation, i.e.,

{unitary U such that: g ∈ Pn =⇒ UgU† ∈ Pn} . (11.63)

Let us start from a single Qbit, n = 1. If U ∈ P1, then obviously UgU† for all g ∈ P1, because
of the group property. But there are unitaries that are not in the Pauli group, which still transform
Pauli group elements into Pauli group elements. Let us see some examples.

The Hadamard gate Consider the Hadamard gate U = H = 1√
2
(X + Z). Notice that H = H† and

H2 = 1, but H /∈ P1. Still:

HXH† = Z , HZH† = X , HYH† = −Y .

Similarly, for any other element g of the Pauli group, you can show that HgH† ∈ P1. 10

10Incidentally, |0〉 is a state stabilized by Z, since Z|0〉 = |0〉. And H|0〉 = |+〉 is a state stabilized by HZH† =

X, since X|+〉 = |+〉. There are interesting consequences of this simple idea, for which we refer the reader to
Ref. [3][Sec. 10.5.2].

226

(Lecture Notes by G.E. Santoro) 11.8 Unitary transformations and the Clifford group

The S-gate. Consider the S-gate, S = diag(1, i), which is unitary, not Hermitean and such that
S2 = Z. It is easy to show that:

SXS† = Y , SZS† = Z , SYS† = −X .

Similarly, for any other element g of the Pauli group, you can show that SgS† ∈ P1.

The T-gate. Notice, however, that the T-gate, where T = diag(1, eiπ/4), which is unitary, not
Hermitean and such that T4 = Z, behaves very differently, as it does not preserve the Pauli
group by conjugation:

TXT† =
1√
2

(X + Y) , TZT† = Z , TYT† =
1√
2

(Y −X) .

!

The CNOT-gate. Let us now move the n = 2 Qbits, and consider the cNOT-gate. Recall that C10

— the cNOT with 1 as a control-bit, and 0 as a target-bit — is given by:

C10 =
1

2
(1 + Z)1 +

1

2
(1− Z)1X0 . (11.64)

We know that C10 = C†10, C
2
10 = 1, but evidently C10 /∈ P2. Still, you can easily show that the Pauli

group is preserved by conjugation.

Exercise 11.6. Show that:

C10

X0

X1

Z0

Z1

C†10 =

X0

X0X1

Z0Z1

Z1

 . (11.65)

The Clifford group. The set of all n-bit unitaries U which preserve the Pauli group by
conjugation is known as Clifford group Cn, or also as the normalizer of the Pauli group, N(Pn):

Cn ≡ N(Pn)
def
= {U | g ∈ Pn =⇒ UgU† ∈ Pn} . (11.66)

The Clifford group is a proper subgroup of the group of all possible n-Qbit unitaries, while, clearly
Pn ⊂ Cn. Interestingly, the Clifford group is generated by a restricted set of gates, known as
Clifford gates, given by:

Clifford gates = {H,S,Cij} , (11.67)

where “generated” means that any U ∈ Cn can be decomposed into O(n2) Clifford gates, see
Ref. [3][Theorem 10.6].

i

Clifford gates are not universal. The Clifford gates are not a universal set of gates. To
make them universal, you would need to add, for instance, the T-gate:

A universal set of gates = {H,S,T,Cij} . (11.68)

!

Notice that Clifford gates do create entanglement, by using H and cNOT. Still, the Gottesmann-
Knill theorem, see App. E.4, demonstrates that quantum circuits composed only with Clifford gates

227

https://en.wikipedia.org/wiki/Clifford_gates
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

can be efficiently simulated with classical computers. This would open the discussion to an
important recent topic in the quantum computing literature, the so-called Magic.

Fortunately, there are many interesting things that can be done invoking only Clifford gates and
using the stabilizer’s formalism, including:

• Create quantum codes, the so-called stabilizers codes. See Sec. 11.9 and App. E.2.

• Encode (prepare) and decode (if necessary) logical states. See Ref. [3][Sec. 10.5.8].

• Construct the logical gates. See App. E.3.2 and Ref. [3][Sec. 10.5.7].

• Do measurements. See App. E.3.1 and Ref. [3][Sec. 10.5.3].

• Do quantum error correction. See Sec. 11.9 and Ref. [3][Sec. 10.5.8].

11.9. Stabilizer codes

As mentioned, encoding of logical Qbits into a large space of n physical Qbits can be done by using
an appropriate stabilizer group S, a subgroup of Pn. There is a standard form in which you can put
the stabilizer group, see App. E.3.2 and Ref. [3][Sec. 10.5.7], which I will not discuss here, which makes
relatively simple to construct logical ZL and XL gates. Assuming that, I now illustrate a bit more
in dept the stabilizer code construction, concentrating in particular on the ability to perform error
correction.

Consider a stabilizer group with ns independent generators, for which we know that the stabilized
space HS has dimensionality 2k, with k = n− ns, hence:

S = 〈S1, · · · ,Sn−k〉 . (11.69)

We denote the code associated to such a S as C(S): it is a [n, k] code, where n is the number of
physical Qbits, and k the number of logical Qbits.

As mentioned, there is a standard form for writing the stabilizer generators, see App. E.3.2, that
makes it not difficult to construct k Pauli operators Zj,L ∈ Pn, with j = 1, · · · , k which play the role
of the Z logical gates. These operators obey Z2

j,L = 1, and, moreover, there is a state in HS , which
we denote as |0

L
〉 ∈ HS — where 0 = (0, · · · , 0) denotes a k-bit string of 0s —, such that:

Zj,L|0L〉 = |0L〉 .

You realise that these k logical Z operators must all commute with the stabilizers. Consider then the
enlarged stabilizer group

S0 = 〈S1, · · · ,Sn−k,Z1,L, · · · ,Zk,L〉 ,

with n elements. Its associated stabilized space is evidently just |0
L
〉. Alternatively, you say that

|0
L
〉 is the stabilized state associated to S0. Similarly, for any binary string x = (xk, · · · , x1) with

xj = 0, 1, you can define an enlarged stabilizer group with n elements

Sx = 〈S1, · · · ,Sn−k, (−1)x1Z1,L, · · · , (−1)xkZk,L〉 ,

which stabilizes the logical computational basis state |xL
〉. The k logical X operators are defined as

Xj,L ∈ Pn such that Xj,LSsX
†
j,L = Ss and:

Xj,LZj′,LX†j,L =

 Zj′,L if j′ 6= j

−Zj,L if j′ = j
.

228

https://en.wikipedia.org/wiki/Magic_state_distillation

(Lecture Notes by G.E. Santoro) 11.9 Stabilizer codes

Although all this sounds mysterious at this stage, because we did not enter into the details of how
these logical operators can be constructed, let us assume that this can be done. We now turn our
attention to errors.

11.9.1. Error correction for stabilizer codes

Let us examine possible Pauli errors Ê ∈ Pn.

Pn
N(S) \ S

S

Figure 11.12: The stabilizer S, a subgroup of the
normalizer N(S), coincident with the centralizer
C(S), formed by all Pauli strings that commute with
the stabilizers. Both are subgroups of the Pauli
group Pn. In red, the difference set N(S)\S, i.e., all
the Pauli string operators that commute with S but
do not belong to S: any set of errors such that some
Ê†e′ Êe ∈ N(S) \ S is not correctable.

The centralizer and normalizer of S. The centralizer of the stabilizer group S, denoted
as C(S), is the subgroup of the Pauli group Pn composed by operators that commute with the
stabilizers:

C(S)
def
= {g ∈ Pn | g Ssg† = Ss ∀Ss ∈ S} . (11.70)

This should be contrasted with the definition of the normalizer N(S):

N(S)
def
= {g ∈ Pn | g Ssg† ∈ S ∀Ss ∈ S} , (11.71)

where we do not require the conjugation Ss → g Ssg† to lead to the same stabilizer element (totally
equivalent to a commutation requirement). Evidently, in general, S ⊂ C(S) ⊂ N(S). However, it
is easy to realize a that for the specific case of stabilizers in the Pauli group, centralizers and
normalizers do coincide: S ⊂ C(S) ≡ N(S).
aThe reason is that two Pauli strings either commute or anti-commute, hence conjugation (i.e., commutation)
must bring to the same element of the stabilizer. This is at variance with the case of N(Pn) where the elements
that realize the conjugation are taken from all the unitary operators.

i

Since two Pauli string operators either commute or anti-commute, there are only three possibilities,
illustrated in Fig. 11.12.

1) There is a stabilizer Ss ∈ S such that ÊSs = −SsÊ, i.e., Ê anti-commutes with some Ss: {Ê,Ss} =

0. This means that Ê ∈ Pn \ N(S), the yellow part in Fig. 11.12. Then, for any |ψ〉 ∈ HS , we
have:

Ê|ψ〉 = ÊSs|ψ〉 = −SsÊ|ψ〉 ,

229

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

which means that Ê|ψ〉 has eigenvalue λs = −1 for Ss, hence belongs to a subspace orthogonal
to HS . λs = −1 is known as the syndrome, because it allows to spot the occurrence of the
error.

2) Ê commutes with all the stabilizers, [Ê,Ss] = 0, and Ê ∈ S. Then for any |ψ〉 ∈ HS we have that
Ê|ψ〉 ∈ HS , hence no corruption at all.

3) Ê commutes with all the stabilizers, [Ê,Ss] = 0, but Ê /∈ S. This implies that Ê belongs to the
difference set N(S) \ S, the red part in Fig. 11.12. This is a very bad case, because Ê|ψ〉 /∈ HS ,
and yet it is impossible to measure any stabilizer Ss with an eigenvalue λs = −1: no syndrome
for the error is available!

With these preliminary considerations, it is very easy to prove the following theorem.

Error-correction conditions for stabilizer codes. Let S be the stabilizer of some code
C(S), and {Êe} a set of errors in Pn such that

Ê†e′Êe /∈ N(S) \ S ∀ (e′, e) .

Then {Êe} is a correctable set of errors for the code C(S).

i

Proof. The proof of this theorem is a simple application of the quantum error correction criterion discussed
previously, which we here repeat for convenience:

Π̂CÊ†e′ ÊeΠ̂C = Ce′eΠ̂C . (11.72)

The projector Π̂C on the code/stabilized subspace HC ≡ HS can be written in terms of projectors on the
eigenvalues +1 for all the stabilizer generators:

Π̂C =
1

2n−k

n−k∏
s=1

(1 + Ss) . (11.73)

By hypothesis Ê†e′ Êe /∈ N(S) \ S, hence, as illustrated in Fig. 11.12, two possibilities are left:

(e′, e) −→

 Ê†e′ Êe ∈ S Case 1)

Ê†e′ Êe ∈ Pn \N(S) Case 2)

In Case 1), since Π̂C is invariant under multiplication by an element of the stabilizer group, we have evidently:

Π̂CÊ†e′ ÊeΠ̂C = Π̂C =⇒ Ce′,e = 1 .

In Case 2), there exist a stabilizer Ss, which without loss of generality we can call S1, which anti-commutes
with Ê†e′ Êe:

Ê†e′ Êe S1 = −S1Ê†e′ Êe .

This implies that

Ê†e′ Êe Π̂C = (1− S1) Ê†e′ Êe
1

2n−k

n−k∏
s=2

(1 + Ss) .

But since (1− S1)(1 + S1) = 0 by orthogonality of the two subspaces, then you conclude that:

Π̂CÊ†e′ ÊeΠ̂C = 0 =⇒ Ce′,e = 0 .

This concludes our proof, since we have shown that a simple code matrix Ce′,e exists, hence the quantum
error correction criterion is satisfied. �

230

(Lecture Notes by G.E. Santoro) 11.9 Stabilizer codes

11.9.2. Syndrome detection for stabilizer codes

It remain to discuss how, given a set {Êe} of correctable errors with Êe ∈ Pn for the stabilizer code
C(S), to clearly identify the error, and eventually apply the recovery operation. This is done through
a syndrome measurement. In more detail, given the set of correctable Pauli string errors {Êe},
consider the conjungation of all the stabilizer generators:

Êe Ss Ê†e = λseSs ⇐⇒ Êe Ss = λseSs Êe . (11.74)

Evidently we must have λse = ±1: we have λse = +1 if Êe commutes with Ss (and is in the stabilizer,
since errors are correctable), while λse = −1 if Êe anti-commutes with Ss. Since for any |ψ〉 ∈ HS we
have:

Êe|ψ〉 = Êe Ss|ψ〉 = λseSsÊe|ψ〉 ,

you realize that λse is indeed the eigenvalue of Ss on the state Êe|ψ〉— recall the table we constructed
for the 5-Qbit encoding in Sec. 11.5. The stabilizer generators can be measured by the usual ancilla-
trick, as explained in Sec. 11.5 and illustrated in Fig. 11.11, providing a column vector of syndromes
λmeas = (λmeas

1 , · · · , λmeas
ns

)T.

Now, given the ns × derr syndrome table λse two possibilities are given:

1) Êe is the unique error which realizes the given measured syndrome λmeas. Spot the eigenvalue −1

in the syndrome column vector, and apply the appropriate recovery.

2) The measured syndrome λmeas is realized by two (or more) different errors, Êe and Êe′ , say, having
the same syndrome:

λse = λse′ ∀s = 1 · · · ns .

This implies, show it, that:
Êe Π̂C Ê†e = Êe′ Π̂C Ê†e′ .

Hence, you deduce that
Π̂C = Ê†eÊe′ Π̂C Ê†e′Êe .

From this, it follows that Ê†eÊe′ ∈ S. Hence you need to apply Ê†e after Êe′ to perform the error
recovery.

The distance d of a stabilizer code. Let me conclude with a useful concept: the distance of a code.
First we need to discuss the concept of weight of a Pauli string operator g ∈ Pn.

The weight of a Pauli string. The weight wt(g) of an operator g ∈ Pn is the number on
non-identity elements (i.e., X, Y and Z) in the string. So, for instance, g = iY0Z3X4 has weight
wt(g) = 3.

i

Now consider all the Pauli string errors Ê ∈ N(S) \ S, the dangerous errors that cannot be detected
because they are not stabilizers, but they commute with S, see red part of Fig. 11.12.

The distance of a stabilizer code. The distance d of a stabilizer code C(S) (recall that it is
an [n, k] code with ns = n− k) is given by:

d = {min(wt(Ê)) | Ê ∈ N(S) \ S} . (11.75)

In words, the distance d is the minimum weight of non-correctable Pauli string errors. A code of
distance d is often denoted as [n, k, d].

i

231

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

Exercise 11.7. Show that the 3-Qbit code that corrects single-Qbit bit flip errors had distance d = 2,
hence it is a [3, 1, 2] code. Show that the 5-Qbit code that corrects single-Qbit errors of any type has
distance d = 3, hence it is a [5, 1, 3] code.

11.10. The Toric code

An interesting route is to device stabilizer codes that have intrinsic topological properties, like the
toric code introducted by Kitaev [53].

Ĝx′

x′

Ẑx∗

x `1

`3

`2`4

Figure 11.13.: Representation of a star operator Ĝx (in red) and a plaquette operator Ẑx∗ (in blue), with
the corresponding Qbits on all the links (solid circles, only partially shown).

For that purpose consider a square lattice with quantum spins on the links, as pictorially indicated
in Fig. 11.13. We denote the links by the shorthand ` = x, ν ←→ (x,x + eν) where eν are the
nearest-neighbor vectors on the lattice (ν = ±1,±2, with e−1 = −e1 and e−2 = −e2) and x are the
sites of the lattice. We then define a plaquette operator made-up by four Pauli-Z matrices on the links
of each plaquette:

Ẑx∗ = σ̂z`1 σ̂
z
`2 σ̂

z
`3 σ̂

z
`4 =

∏
`∈plaq(x∗)

σ̂z` . (11.76)

Also, we define the “star” at a lattice site x to be set of all 4 links touching x:

star(x) =
{
` = x, ν with ν = ±1,±2

}
, (11.77)

and the associated “flip” operator 11 at each vertex x, defined as:

Ĝx =

2∏
ν=1

(
σ̂xx,ν σ̂

x
x,−ν

)
=

∏
`∈star(x)

σ̂x` . (11.78)

Toric code model. On a L×L square lattice with PBC in both directions, Kitaev’s toric code
model reads: a

ĤK = −hK

∑
x
Ĝx − JK

∑
x∗

Ẑx∗ (11.79)

Since, as argued below, all the individual terms appearing in this Hamiltonian commute — this is
a so-called frustration free Hamiltonian — hence, for hK, JK > 0, the ground states of the model
are simultaneous eigenvectors of all these (stabilizer) operators with eigenvalue +1:

Ĝx|ψgs〉 = |ψgs〉 ∀x and Ẑx∗ |ψgs〉 = |ψgs〉 ∀x∗ . (11.80)

aKitaev calls As our Ĝx, s being a “star” associated to a site (or vertex) of the lattice, and Bp our Ẑx∗ , p being
a “plaquette” associated to the center of the lattice squares. Since the two terms commute a common choice of
parameters is to set hK = JK = 1, the energy unit.

i

11In the language of lattice gauge theory, this would be the local gauge symmetry operator [54].

232

(Lecture Notes by G.E. Santoro) 11.10 The Toric code

Plaquette and star operators as stabilizers. Clearly Ẑ2
x∗ = 1 and Ĝ2

x = 1, hence they have eigenval-
ues ±1. Plaquette operators and star operators commute among themselves, because they are made
all of Z or X operators, respectively. Moreover, since Ĝx flips pairs of spin on the star, it is simple to
show that Ĝx commutes with any plaquette operator, [Ĝx′ , Ẑx∗] = 0.

We will now describe the ground states of Kitaev’s toric code model in more detail.

11.10.1. The toric code ground states

Constraints and counting of ground states. As mentioned above, since Ĝ2
x = 1 and Ẑ2

x∗ = 1,
both operators can have only eigenvalues ±1. The total number of states in the Hilbert space is
22L2

= 4NV , where NV = L2 is the number of vertices, the factor 2 coming from the two links at each
vertex. Imposing each of the constraints, for instance Ĝx|ψ〉 = |ψ〉, reduces by a factor 2 the number
of states. One might think that there are 2NV constraints implied by Eq. (11.80), one for each vertex
x and one for each plaquette x∗ (the number of plaquettes is equal to NV in two dimensions). But in
reality, when the system has PBC, you can show that∏

x
Ĝx = 1 and

∏
x∗

Ẑx∗ = 1

simply because each X and Z appear twice. Hence, we have only (NV− 1) constraints for the vertices
and (NV − 1) constraints for the plaquettes. Therefore, we expect

4NV

2NV−1 2NV−1
= 4 ground states .

Figure 11.14.: The 8 vertices for which the constraint Ĝx = 1 is satisfied. Dashed lines are links with a spin
in state |+, x〉, while solid lines denote links with a spin in state |−, x〉.

To write the ground states explicitly, we start from the reference state |+, x〉 =
∏
` |+, x〉` with all

links on the spin state |+, x〉 = 1√
2
(|↑ 〉 + |↓ 〉). Since this is an eigenstate of X with eigenvalue +1,

it satisfies Ĝx|+, x〉 = |+, x〉, but there are many more configurations that satisfy such constraints
everywhere. By analising all possible vertex configurations, 24 = 16 in total, one quickly discovers
that 8 of them indeed satisfy Ĝx = 1 because an even number of lines in states |−, x〉 = 1√

2
(|↑ 〉 − |↓ 〉)

enter the vertex. The 8 vertices satisfying Ĝx = 1 are shown in Fig. 11.14.

To construct the ground states, you can “glue together” the 8 types of vertices in Fig. 11.14 in such
a way that no vertex of the wrong type, with an odd number of solid lines (spin in states |−, x〉), is
present. A moment’s reflection should convince you that we need to impose that full lines always
close into loops C. Since a solid-line link is created by the application of σ̂z` on the state |+, x〉`
— σ̂z` |+, x〉` = |−, x〉` — you immediately realise that such a closed-loop of solid lines is precisely
associated with the Wilson loop 12 operator ẐC:

ẐC =
∏
`∈C

σ̂z` , (11.81)

which can be easily shown to be gauge invariant, which here simply means that they commute with
any Ĝx, again for the very simple reason that Ĝx flips pairs of spins on the loop.

12The smallest such contour is a plaquette plaq(x∗), and for these, you recognise the plaquette operator:

ẐC=plaq(x∗) ≡ Ẑx∗ .

233

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

1 · · ·1

...

Figure 11.15: The Wilson loop. The
closed contour C (red thick line) contains
links ` and the Wilson loop operator is
defined by ẐC =

∏
`∈C σ̂

z
` . Equivalently,

ẐC can be seen as the product of all Ẑx∗

plaquette operators where x∗ is inside
the contour C.

States satisfying Ĝx = 1 everywhere. You immediately conclude that any state

|C〉 = ẐC|+, x〉 =⇒ Ĝx|C〉 = |C〉 (11.82)

where C is a closed loop of solid lines on the lattice, possibly made of several disconnected
sub-loops. The simple reason for this result is that, as previously remarked, the Wilson loop
operators are gauge invariant, [Ĝx, ẐC] = 0, and, trivially, Ĝx|+, x〉 = |+, x〉. All these states |C〉
are completely degenerate, for JK = 0, and have energy −NVhK.

i

Let us now consider the effect of the other term, −JKẐx∗ , in the toric code Hamiltonian. As
discussed, Ẑx∗ ≡ ẐC=plaq(x∗), the smallest closed loop C in the lattice: the plaquette. Hence, by
applying Ẑx∗ to a loop configuration |C〉 you obtain another loop configuration |C′〉 differing from |C〉
by a single plaquette loop. All in all, you realise that the best thing you can do to gain energy — by
the Perron-Frobenius theorem — is to create a superposition of all loop configurations with a uniform
positive coefficient

|Φ00〉 = N
∑
C

ẐC|+, x〉 =
1√

2NV−1

∑
C

ẐC|+, x〉 , (11.83)

with a suitable normalisation coefficient, which one can show to be N = 1√
2NV−1

. We can get this
result also by an explicit route. Indeed, consider the alternative writing

|Φ00〉 =
∏
x∗

(1 + Ẑx∗√
2

)
|+, x〉 =

1√
2NV

∑
{nx∗}

∏
x∗

Ẑ
nx∗
x∗ |+, x〉 (11.84)

with nx∗ = 0, 1 on each plaquette. Using the fact that
∏

x∗
Ẑx∗ = 1, you can show that all con-

figurations are indeed included twice. The fact that, given a bipartition A ∪ A of all plaquettes, we
have ∏

x∗∈A

Ẑx∗ = ẐC

234

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem

(Lecture Notes by G.E. Santoro) 11.10 The Toric code

completes the proof that Eqs. (11.83)-(11.84) are equivalent.

The other three ground states of the model on a 2-torus are obtained by applying non-contractible
Wilson loop operators to |Φ00〉.

Non-contractible Wilson loop operators. We define γ2 to be a closed straight contour of
links that goes through the boundary of the 2-torus in the direction e2, and define the associated
Wilson loop operator

Ẑ2 ≡ Ẑγ2
=
∏
`∈γ2

σ̂z` . (11.85)

By switching e2 ↔ e1, a similar definition can be given for γ1 and associated operator Ẑ1 ≡ Ẑγ1
.

i

Non-contractible ’t Hooft loop operators On the dual lattice, we define γ∗2 to be a non-
contractible loop that cuts a line of parallel links along the direction e2 — hence, running on the
dual lattice defined by the plaquette centers — and the associated ’t Hooft loop operator

X̂2 ≡ X̂γ∗2
=
∏
`⊥γ∗2

σ̂x` . (11.86)

In words, see Fig. 11.16: X̂γ∗2
creates a line of spin-flips on all parallel links in the direction e2. By

switching e2 ↔ e1, similar definitions can be given for γ∗1 , and associated operator X̂1 = X̂γ∗1
.

i

Since Ĝx always flips spin in pairs along any direction, while obviously commutes with σ̂x, it is
easy to show that:

Ĝ†xẐνĜx = Ẑν and Ĝ†xX̂νĜx = X̂ν ∀x . (11.87)

However, since γ2 and γ∗2 necessarily share a single link ` where σ̂x` σ̂
z
` σ̂

x
` = −σ̂z` (and similarly for γ1

and γ∗1) you must have that:

Ẑ2X̂2 = −X̂2Ẑ2 and Ẑ1X̂1 = −X̂1Ẑ1 . (11.88)

On the contrary, γ1 and γ∗2 share no link (and similarly γ2 and γ∗1) hence:

Ẑ1X̂2 = X̂2Ẑ1 and Ẑ2X̂1 = X̂1Ẑ2 . (11.89)

The two non-local Qbit operators. Summarizing, the four operators (Ẑ1, X̂1) and (Ẑ2, X̂2)
both realise the Pauli algebra:

{Ẑ1, X̂1} = 0 {Ẑ2, X̂2} = 0 , (11.90)

while they mutually commute:

[Ẑ1, X̂2] = 0 [Ẑ2, X̂1] = 0 . (11.91)

i

235

Introduction to quantum error correction (Lecture Notes by G.E. Santoro)

|C01〉 =

↑
γ2

→γ∗2

+ + + +

+ + + + +

+ + + +

− − − − −
+ + + +

+ + + + +

+ + + + +

+

+ + + +

+ + + +

+ − + +

++ + + + +

+ − + +

− − − − −
+ − + +

+ + + + +

+ + + + +

+

+ − + +

+ − + +

|C11〉 =

↑
γ2

↑
γ∗1

→γ1

→γ∗2

Figure 11.16.: Starting from a reference configuration |C00〉 with all spins in state ↑, denoted by a + inside
a circle, the configurations |C01〉 (left) and |C11〉 (right) in a PBC system, where a − inside a circle indicates
a spin in state ↓. On the left, γ2 (red solid line) is the non-contractible Wilson loop in the direction of e2,
associated to Ẑγ2 , and γ

∗
2 (black dashed line) is the non-contractible t’Hooft loop cutting parallel links in the

direction of e2, associated to X̂γ∗2 . On the right, the corresponding γ1 and γ∗1 in the other direction are shown.
Here ± denote spin components along the z-axis, i.e., in the standard configuration basis. The dotted circles
denote spins on links on the boundary.

The four ground states on the 2-torus. Define, for v1, v2 = 0, 1, the four (degenerate)
ground states

|Φv1,v2
〉 = Ẑv2

2 Ẑv1
1 |Φ0,0〉 . (11.92)

The non-contractible ’t Hooft operators act now as non-local order parameters:

X̂ν |Φv1,v2
〉 = (−1)vν |Φv1,v2

〉 =⇒ 〈Φv1,v2
|X̂ν |Φv1,v2

〉 = (−1)vν . (11.93)

The four ground states of the Kitaev toric code model on the 2-torus effectively realize an encoding
of two Qbits, robust against local perturbations, which would immediately generate frustrated
plaquettes, Ẑx∗ = −1, or stars where Ĝx = −1.

i

Obviously, on such states, the expectation value of any Wilson loop operator is exactly 1:

〈Φv1,v2 |ẐC|Φv1,v2〉 = 1 , (11.94)

for the very simple reason that any ẐC can be written as a product of Ẑx∗ , and all of these have
eigenvalues +1 on the ground states.

The Toric code as a topological stabilizer code. Summarizing, on an L × L lattice with
PBC, with n = 2L2 physical spins, we have been able to encode k = 2 logical Qbits. Moreover, the
distance d of the Toric code, by definition the minimum weight of a Pauli string that commutes
with all stabilizers but does not belong to the stabilizer group, is d = L, the dangerous Pauli
strings being precisely the non-contractible Wilson loop operators.

i

236

Part I.

Appendices

237

A. Simple tools from arithmetics

A.1. The Euclid algorithm for the greatest common divisor

The problem is to find the greatest common divisor of two integers a and b, denoted by gcd(a, b).
The algorithm is based on the division, with an integer remainder, which we learn in primary school.
Assume that a > b. Then divide a by b, finding a quotient q0 and an integer remainder r0 < b:

a = b q0 + r0 with q0 =
[a
b

]
and r0 = a− q0b ,

where [x] denotes the integer part of x. Do the same for the division of b by the remainder found, r0:

b = r0 q1 + r1 with q1 =

[
b

r0

]
and r1 = b− q1r0 ,

where now r1 < r0. Continue in this way with integer divisions of the (decreasing) remainders we
find, until we get a remainder that vanishes. More precisely, at step k of the algorithm we write:

Step k : rk−2 = rk−1qk + rk with

qk =

[
rk−2

rk−1

]
rk = rk−2 − rk−1 qk

, (A.1)

where rk−1 and rk−2 are inputs from previous steps, while the new quotient qk and remainder rk are
calculated. With these recursive equations, you see that you need to pose r−2 = a and r−1 = b to
recover step 0. Since 0 ≤ rk < rk−1 the algorithm necessarily stops at some step k = K where you
find a vanishing remainder, rK = 0.

Euclid’s algorithm for gcd(a, b). The last remainder before stopping is gcd (a, b):

rK−1 = gcd (a, b) . (A.2)

The crucial point in the proof is that rK−1 is a divisor of rK−2, since rK−2 = rK−1 qK without
remainder. rK−1 also divides its next predecessor rK−3 because:

rK−3 = rK−2 qK−1 + rK−1 .

Proceeding backwards, you realise that rK−1 divides both a and b, hence rK−1 ≤ gcd(a, b). By
a simple argument, you can show that any integer c that divides both a and b, must divide the
initial remainder r0 and all the subsequent ones, including rK−1. Hence rK−1 = gcd(a, b).

i

One can estimate the speed with which the iterations get to the final result: quite fast. With
some improvements Gabriel Lamè showed in 1844 that K ≤ 5Ndigits where Ndigits = nbits/ log 10

is the number of decimal digits of min (a, b). This finding marks the beginning of the studies in
computational complexity theory.

239

https://en.wikipedia.org/wiki/Computational_complexity_theory

Simple tools from arithmetics (Lecture Notes by G.E. Santoro)

Take a = 1071 and b = 462. Here is a table with the various steps:

Step k
0 1071 = 462 q0 + r0 q0 = 2, r0 = 147

1 462 = 147 q1 + r1 q1 = 3, r1 = 21

K→ 2 147 = 21 q2 + r2 q2 = 7, r2 = 0

.

Hence:
r1 = 21 = gcd (1071, 462) .

Example.

Euclid vs factorisation. In primary school they teach us to calculate the gcd (a, b) by a prime
factorisation of a and b, taking then the “common prime factors, with smallest exponent”. But
prime factorisation is a difficult problem, while Euclid’s algorithm is easy.

!

Co-prime numbers. A useful definition. You say that a and b are co-prime if gcd (a, b) = 1.
i

A.2. Finding the multiplicative inverse in modular arithmetics

The multiplicative inverse in modular arithmetics. We show that the multiplicative
inverse in modulo-a arithmetics of a number b co-prime with a, i.e., the integer c such that:

cb ≡ 1 (mod a) with gcd(a, b) = 1 , (A.3)

can be easily found by applying Euclid’s algorithm.

i

Indeed, let us apply Euclid’s algorithm. Since gcd(a, b) = 1, at step K− 1 of the algorithm we get
rK−1 = 1, before getting rK = 0 at the final step K. We know all the rk and qk from the algorithm.
Then we write the following chain of equalities:

1 = rK−1 = rK−3 − rK−2 qK−1

rK−2 = rK−4 − rK−3 qK−2

rK−3 = rK−5 − rK−4 qK−3

...

r1 = b− r0 q1

r0 = a− b q0

This means that, by iterating the equalities in the chain, I can find two integers ja and jb such that:

1 = jaa+ jbb with ja, jb ∈ Z . (A.4)

Observe that jb cannot be a multiple of a. Hence a non-vanishing remainder c < a can be found by
dividing jb by a:

jb = la+ c with l ∈ Z , 1 ≤ c < a .

240

(Lecture Notes by G.E. Santoro) A.3 The probability of two random integers being co-prime

Substituting, we get:

1 = jaa+ (la+ c) b = (ja + lb) a︸ ︷︷ ︸
≡0 (mod a)

+cb ≡ cb (mod a) , (A.5)

hence c is the desired multiplicative inverse (mod a) of b.

A.3. The probability of two random integers being co-prime

Euler Basel’s problem. Here is one of the many brilliant findings by Euler. The probability
that two random integers a and b are co-prime, hence that gcd (a, b) = 1, is:

Probgcd(a,b)=1 =
6

π2
∼ 0.6079 . (A.6)

i

We test for the probability of all prime factors one after the other. The probability of a number
being multiple of 2 is 1

2 , the probability that both are multiple of 2 is 1
4 , hence:

Prob2 not common factor = 1− 1

4
= 1− 1

22
.

Now we test by 3. The probability of a number being multiple of 3 is 1
3 , the probability that both are

multiple of 3 is 1
32 , hence:

Prob3 not common factor = 1− 1

32
.

By the same argument you discover that:

Prob5 not common factor = 1− 1

52
,

and so forth. So:

Probgcd(a,b)=1 =

all primes∏
p

(
1− 1

p2

)
. (A.7)

Now, in the typical Euler’s approach, you expand the inverse:

1

1− 1
p2

= 1 +
1

p2
+

1

p4
+ · · · .

Hence:

1

Probgcd(a,b)=1
=

(
1 +

1

22
+

1

24
+ · · ·

)(
1 +

1

32
+

1

34
+ · · ·

)(
1 +

1

52
+

1

54
+ · · ·

)
· · · ,

where the product should include all primes. Euler realised that, multiplying term by term, you get
in fact a much simpler object:

1

Probgcd(a,b)=1
= 1 +

1

22
+

1

32
+

1

42
+ · · · =

∞∑
n=1

1

n2
=
π2

6
,

where perhaps you recognise the Riemann ζ(2). Taking the inverse, we are done:

Probgcd(a,b)=1 =
6

π2
. (A.8)

241

B. Uniaxial birefringence

The following Appendix is intended to provide you a small guide into the world of optics phenomena
that have to do with the polarisation of photons. It is also a useful companion guide in case you plan
to read the wonderful book on Quantum Mechanics written by Asher Peres [29], whose first chapter
deals with what we are going to illustrate.

Let me start by recalling a few basic facts concerning classical electromagnetic waves in a medium.

Maxwell’s equations in a medium.
∇ ·D = ρf

∇×H = Jf +
∂D
∂t

∇ ·B = 0

∇×E = −∂B
∂t

. (B.1)

i

Constitutive relations between fields.
The fields are related as:

D = ε0E + P = ε ·E B = µ0H + M = µ ·H , (B.2)

where ε0 and µ0 are the so-called vacuum permittivity and permeability, with ε0µ0 = 1/c2, and the
second equality applies in the linear regime. These relationships are better interpreted in Fourier
space, where the matrices ε and µ are generally (k, ω) dependent: the usual assumption is that in
the optical range the microscopic crystalline structure is not important, since the wave-length of
light is much larger than the interatomic distances, and one recovers space translational symmetry.
In a non-magnetic material, one often assumes µ = µ01. Further, for dielectric materials one
usually takes ρf = 0, Jf = 0: free charges and currents are absent. In a lossless dielectric material
one assumes ε(ω) to be real in the (optical) frequency range of interest, although general causality
requirements forbid a dielectric function from being real for all frequencies.

i

In crystals which are optically anisotropic ε is a matrix. A simple but very important case is the
of uniaxial crystals where ε has a special axis — the optic axis — which is different from the other
two. Assuming that we work in a definite (optical) range of k and ω, where the dielectric properties
can be taken to be constant, we parameterise the eigenvalues of ε as ε0n

2
e, along the optic (extra-

ordinary) axis, and ε0n
2
o along the other two (ordinary) axes. The two values ne and no refer to the

corresponding index of refraction, as we will see. Taking ŷ to be the optic axis, we parameterise:

ε = ε0

 n2
o 0 0

0 n2
e 0

0 0 n2
o

 . (B.3)

243

Uniaxial birefringence (Lecture Notes by G.E. Santoro)

The most noteworthy uniaxial crystals are summarised here: 1

no ne ∆n

Calcite (CaCO3) 1.658 1.486 −0.172

Barium borate (BaB2O4) 1.6776 1.5534 −0.1242

Quartz (SiO2) 1.544 1.553 +0.009

(B.4)

The electric field in an optically anisotropic crystal.
The Ampère-Maxwell equation, written in terms of B and D reads:

∇×B = µ0
∂D
∂t

.

Taking the curl of the Faraday’s equation we get:

∇× (∇×E) = − ∂

∂t
(∇×B) = −µ0

∂2D
∂t2

.

In Fourier transform, ∇→ ik and ∂t → −iω, therefore:

k(k ·E)− k2E = −µ0ω
2ε ·E , (B.5)

where we used that D = ε ·E.

i

We now consider specifically the uniaxial case, and set our axes such that k lays in the y− z plane
(kx = 0), at an angle θ with the z axis. Figure B.1 shows our setting. The explicit form of Eq. (B.5)

k
θ

ẑ

x̂

ŷ=optic axis

Eo

Ee

Figure B.1: An electromagnetic plane-wave travelling along k in-
side a uniaxial crystals. The ordinary ray, with polarisation Eo,
and the extra-ordinary ray, with polarisation Ee, are shown, both
orthogonal to the propagation direction k.

reads, with our choices: −k2 + ω2

c2 n
2
o 0 0

0 −k2 + k2
y + ω2

c2 n
2
e kykz

0 kykz −k2 + k2
z + ω2

c2 n
2
e

 Ex

Ey
Ez

 = 0 . (B.6)

The equation for Ex is decoupled, and shows that a wave polarised along x̂, with εk,o = (1, 0, 0)T

would satisfy the equation ω2 = k2c2

n2
o
. So, for given ω, the wave-vector k is larger by a factor no

than the wave-vector in vacuum: k0 = ω
c . For electric fieldd in the y − z plane, we see that there is

1β-BaB2O4, often abbreviated as BBO, is crucial in most of the papers dealing with generation of polarisation entangled
photon pairs. What one exploits in that context is the crucial fact that the indices of refractions are indeed frequency
dependent over the whole optical range: they decrease for increasing wave-length. This is used in many non-linear
phenomena of quantum optics, most notably in parametric down-conversion.

244

an unphysical longitudinal solution with E ∝ k, for ω = 0, which we discard, and a second physical
transverse solution with εk,e = k

k × εk,o with a k vs ω that depends on the angle of propagation θ. To
summarise:

Ordinary and extra-ordinary rays.
Expressing our results in terms of the wave-vector in vacuum k0, i.e., setting ω = k0c, we write
the two physical transverse solutions for the electric field propagating inside the uniaxial crystal,
with our choice of axes, as: Ordinary ray: k = k0no εk,o = (1, 0, 0)T

Extra-ordinary ray: k = k0nθ εk,e = (0,− cos θ, sin θ)T

(B.7)

where the effective angle-dependent index of refraction nθ is given by the ellipse equation illus-
trated in Fig. B.2:

1

n2
θ

=
cos2 θ

n2
e

+
sin2 θ

n2
o

. (B.8)

i

x̂

ŷ

ne

nθ
θ

no

Figure B.2: The ellipse of the index of refraction. For θ = 0 we have
nθ=0 = ne. As θ increases the index of refraction goes towards the ordi-
nary value no, obtained for θ = π

2
, corresponding to a wave propagating

along the optic axis ŷ, and therefore polarised along the ordinary axis ẑ.

The previous considerations are easy to generalise to an arbitrary direction of k. Indeed, taking k =

k(sin θ cosφ, sin θ sinφ, cos θ), one verifies that the polarisation vectors of the ordinary and extra-ordinary rays
are:

εk,o = 1√
cos2 θ+sin2 θ cos2 φ

(x̂ cos θ−ẑ sin θ cosφ)

εk,e = 1√
cos2 θ+sin2 θ cos2 φ

(−x̂ sin2 θ sinφ cosφ+ŷ(cos2 θ+sin2 θ cos2 φ)−ẑ sin θ cos θ sinφ) = k
k
× εk,o

(B.9)

The Maxwell’s equation Eq. (B.5) implies, for a transverse wave, that the polarisation vectors should satisfy:

k2εk = k2
0

1

ε0
ε · εk .

εk,o is an eigenvector of ε with eigenvalue ε0n
2
o, hence k = k0no follows immediately for the ordinary ray. For

the extra-ordinary ray, we first take the inverse of the previous equation, and then multiply both terms by εk,
obtaining:

k2εk ·
(

1

ε0
ε

)−1

· εk = k2
0εk · εk = k2

0 .

The LHS defines precisely the ellipsoid relationship for the effective index of refraction nk of the extra-ordinary
ray:

εk ·
(

1

ε0
ε

)−1

· εk
def
=

1

n2
k

=⇒ k = k0nk .

Explicitly, we have:
1

n2
k

=
cos2 θ + sin2 θ cos2 φ

n2
e

+
sin2 θ sin2 φ

n2
o

, (B.10)

which reduces to Eq. (B.8) when k is in the y-z plane (φ = π
2
).

245

Uniaxial birefringence (Lecture Notes by G.E. Santoro)

B.1. The wave-plate geometry

One of the most interesting applications of uniaxial crystals is in a planar geometry where the wave
enters the crystal orthogonally to the surface, and the optic axis is along the surface. This means that
the wave suffers no refraction, and propagates along the ẑ axis, with θ = 0. Fig. B.3 illustrates the
wave-plate geometry, with L the thickness of the crystal along the propagation direction.

k

ẑ ≡ k̂

x̂

L
ŷ = optic axis

εα,0
α

Figure B.3: An electromagnetic
plane-wave travelling along z,
with an incoming electric field
E = Re εα,0 ei(k0z−ωt) linearly po-
larised along εα,0 = x̂ cosα + ŷ sinα,
entering a uniaxial crystal of thick-
ness L orthogonally to the surface
where the optic axis lays. When
exiting the polarisation is generally
complex: εα,δ = x̂ cosα + ŷ eiδ sinα,
with δ = 2π(ne − no) Lλ0

.

For z < 0 the plane-wave electromagnetic field is given by E = Re εα ei(k0z−ωt), where the transverse
polarisation εα forms an angle α with respect to the x̂ axis in the xy-plane containing the optic axis:
εα = x̂ cosα + ŷ sinα. Inside the crystal, the electric field component along the ordinary direction x̂
travels with a wave-vector k0no, while the component along the optic axis ŷ travels with wave-vector
k0ne. This implies that

For z < 0 : E = Re
((
x̂ cosα+ ŷ sinα

)
eik0(z−ct)

)
For 0 < z < L : E = Re

(
x̂ cosα eik0no(z− c

no
t) + ŷ sinα eik0ne(z− c

ne
t)
)

For z ≥ L : E = Re
((
x̂ cosα+ ŷ sinα eik0L(ne−no)

)
eik0(z−L−ct)+ik0Lno

) . (B.11)

The second expression shows very clearly that the two components travel inside the crystal with
different velocities and have different wavelengths. The expression, for z ≥ L, back in vacuum, shows
that the polarisation vector is in general no longer real, with an extra phase which will make the field
to “spiral” as it travels further.

Elliptical polarisation.
An elliptical polarisation is obtained on exit from the crystal:

εα,δ = x̂ cosα+ ŷ eiδ sinα with δ = 2π(ne − no)
L

λ0
, (B.12)

where λ0 = 2π
k0

is the wave-length in vacuum.

i

As you see, the final polarisation depends on the difference between the two refractive indices,
and on the ratio between L, the thickness of the crystal, and λ0, the wave-length of the radiation in
vacuum. Two cases are particular noteworthy. The first is known as quarter-wave-plate.

246

(Lecture Notes by G.E. Santoro) B.2 The double-refraction geometry

Quarter-wave plates (QWP).
In a quarter-wave-plate L is such that:

δ = 2π(ne − no)
L

λ0
= ±π

2
. (B.13)

The x̂ and ŷ components of the field now advance out-of-phase by π
2 . In the particularly important

case in which the original polarisation was perfectly diagonal, α = π
4 , the exit polarisation is

circular:
επ

4
,0 =

1√
2

(x̂ + ŷ) → επ
4
,±π

2
=

1√
2

(x̂± iŷ) . (B.14)

i

The second quite important case is that of a half-wave-plate.

Half-wave plates (HWP).
In a half-wave-plate L is twice as much as in the corresponding QWP:

δ = 2π(ne − no)
L

λ0
= π . (B.15)

The ŷ component is precisely reversed, hence α→ −α. In the particularly important case in which
the original polarisation was perfectly diagonal, α = π

4 , the exit polarisation is anti-diagonal:

επ
4
,0 =

1√
2

(x̂ + ŷ) → ε−π
4
,0 =

1√
2

(x̂− ŷ) . (B.16)

i

Practical remarks

1) The so-called zero-order plates have L such that δ = 2π(∆n) Lλ0
with |δ| ≤ 2π, where ∆n = ne−no.

For |∆n| = 0.172, as for calcite, this requires extremely thin plates, hard to fabricate:

L ≤ λ0

|∆n|
∼ 10λ0 for Calcite .

The case of Quartz, where ∆n = 0.009, is much easier to deal with:

L ≤ λ0

|∆n|
∼ 100λ0 for Quartz .

2) Even full-wave-plates find there usefulness, for instance in minarology, where a plate with δ = 2π

for λ0 = 540 nm (green light) is such that only such green light remains linearly polarised, all
other wave-lengths becoming elliptically polarised. With a polaroid filter, one could therefore
eliminate the λ = λ0 component.

3) Multiple order wave-plates are thicker and therefore simpler to build. With two wave-plates of, for
instance, 37π2 and 36π2 = 18π, glued in opposite direction, one can create a QWP.

B.2. The double-refraction geometry

Depending on the relative orientation of beam axis, and its polarisation, with respect to the optic
axis of the birefringent crystal, a classical beam is seen to be “split into two beams” of different
polarisations, due to the different Snell’s-law-induced refraction.

247

Uniaxial birefringence (Lecture Notes by G.E. Santoro)

n̂ = optic axis

ŷ
ẑCalcite crystal

θi

θo θe

|ki, εα,0〉

|ki, x̂〉

cos2 α

sin2 α

|ki, ŷ〉

x̂
Figure B.4: Polarisation-dependent
refraction of a photon passing through
a calcite crystal. We are assuming that
the optic axis of the crystal is parallel
to the crystal surface, as you would
have for a wave-plate. The incoming
momentum ki is now tilted at an angle
θi with respect to the surface normal,
provoking refraction of the incoming
wave. Notice the orientation of the
axes: the optic axis is now denoted by
n̂. The convention is identical to that
of Ref. [29][Fig. 1.2].

The geometry is now slightly more complex. Figure B.4 illustrates the phenomenon of double-
refraction from a top-viewpoint. An ordinary ray, polarised along x̂ — out of the page in Fig. B.4 —
would have a normal refraction. According to Snell’s law, its angle of refraction θo would be:

sin θi = no sin θo , (B.17)

and it would come out still linearly polarised along x̂. Imagine now an incoming wave with linear
polarisation εα,0 = x̂ cosα+ ŷ sinα. Let us consider first the case α = π

2 . The wave has a component
along the optic axis n̂, but no component along x̂. It suffers a refraction with an effective index of
refraction nθ. Snell’s law would require:

sin θi = nθe sin θe . (B.18)

Notice that the refracting index is itself a function of the angle θe, which is therefore slightly more
complex to calculate. In particular, nθe should not be confused with ne: recall the ellipse of the index
of refraction in Fig. B.2. The outgoing beam would still be linearly polarised as the incoming beam.

The interesting situation is that of an incoming beam with a linear polarisation having a generic α.
The two components, that along x̂, of amplitude cosα, and the other along ŷ, of amplitude sinα, now
suffer two different refractions with angles θo and θe, and come out, for a sufficiently thick crystal, as
two separate beams, each of them linearly polarised as in input, with classical intensities partitioned
as cos2 α and sin2 α.

The first interesting question is what happens at the quantum level, for such a thick crystal. A
photon of energy ~ω cannot be split in two: this is a linear optics setup. What happens, quantum
mechanically, is that a photon either goes in the beam polarised as x̂, with probability Pα = cos2 α,
or in the beam polarised as ŷ, with probability 1−Pα = sin2 α. If you put two separate detectors you
can count and measure the individual photons arriving. If you include a coincidence measurement
electronics, you would see that no coincidence events are measured, if single photon states are sent
into the “measuring device”. 2

Thick uniaxial crystals as linear polarisation analysers.
It is clear that a thick uniaxial crystal acts as a Stern-Gerlach device for the polarisation. Contrary
to the case of a polaroid filter, here no photon is absorbed. The outgoing photon, however, is
“measured” into the two different linear polarisations associated to the crystal: x̂ and ŷ, the latter
having a component along the optic axis n̂.

i

2For a discussion regarding the difference between a single photon state and a very weak laser beam, see A. Aspect’s
public lecture upon receiving the N. Bohr Gold Medal 2013, available on YouTube.

248

https://www.youtube.com/watch?v=wcHdLKlybPM

(Lecture Notes by G.E. Santoro) B.3 Quantum optics single-Qbit gates with photon polarisation

The second interesting part of the story is what happens when the crystal is not thick enough, so
that the two beams, classically, have an overlap region. Classically, the electromagnetic field has an
elliptical polarisation in the overlap region, see [29][Fig. 1.3], as known, long before Maxwell, from
studies by Arago and Fresnel on interference of polarised light. 3 Quantum mechanically, the photon
is never a mixture of linearly polarised photons: it would be in a pure state of elliptical polarisation.
The apparatus, however, does not act as a “measuring device” in the ordinary sense, because it is not
able to clearly discriminate the different “beams”.

B.3. Quantum optics single-Qbit gates with photon polarisation

The two polarisation states of a photon provide a good way to encode a Qbit in Quantum Optics
implementation. With our Qbit computational states we would write:

Z− states:

 |0〉 = |↑〉 7→ |l〉

|1〉 = |↓〉 7→ |↔〉
X− states:

 H|0〉 = |+,x〉 7→ |↙↗〉

H|1〉 = |−,x〉 7→ |↘↖〉
. (B.19)

Clearly, there is an intrinsic arbitrariness in what you call | l〉 and | ↔〉, which for us would be
| l〉 = |ε = x̂〉 and | ↔〉 = |ε = ŷ〉, with the previous convention: people sometimes call them
|H〉 (horizontal) and |V 〉 (vertical), respectively. The arbitrariness is removed once you start using
birefringent crystals for measurements (in a double-refraction geometry), or for manipulating the
polarisation state (in a wave-plate geometry).

General elliptical polarisation.
A photon Qbit in a state of general elliptical polarisation

|εα,δ〉 = cosα|l〉+ eiδ sinα |↔〉 (B.20)

represents a computational Qbit in the usual Bloch sphere of spin-1/2 states.

i

x̂

ŷ

|l〉|↙↗〉 |↘↖〉
|↔〉

ŷHWP

x̂HWP
π
8

Figure B.5: A half-wave-plate (HWP) used as a Hadamard gate.
Recall that a HWP transforms α → −α, when a polarisation is ex-
pressed in terms of the HWP axes: ε = x̂HWP cosα+ŷHWP sinα. Here
ŷHWP denotes the optic axis of the HWP.

We already saw that a diagonally polarised photon, |↙↗〉, is turned anti-diagonal, |↘↖〉, by a half-wave
plate (HWP). This assumed that the optic axis of the HWP is along ŷ, as in all our figures so far.
But suppose that a photon linearly polarised as |l〉 goes through a HWP which is has his “x̂-axis”
tilted at an angle α = π/8 with respect to the photon polarisation: that would invert a component
of the photon polarisation, transforming |l〉 into a |↙↗〉-photon. Viceversa, the |↔〉-photon would be
transformed into |↘↖〉. See Fig. B.5. Hence:

The half-wave plate acting like a Hadamard. An appropriately oriented HWP, tilted by π
8

with respect to the standard |l〉, acts as Hadamard gate for polarisation encoded optical Qbits.

i

3F. Arago and A. Fresnel, Ann. de Chimie et Physique 10, 288 (1819).

249

Uniaxial birefringence (Lecture Notes by G.E. Santoro)

Arbitrary single-Qbit rotations in the “Bloch sphere” can be implemented by a sequence of QWP-
HWP-QWP.

B.4. Hands-on: Peres’ problems with calcite crystals

I propose here three exercises taken from Chapter 1 of Peres’ book, Ref. [29]. Start with Exercise
1.3.

Exercise B.1. Design an optical system which converts photons of a given linear polarisation into photons
of given elliptical polarisation. [Hint: A polariser at angle α would select the linear polarisation. Use
afterwords a wave-plate with the appropriate δ.]

Next, I propose you Exercise 1.4.

Exercise B.2. Show that a device consisting of a QWP, followed by a thick calcite crystal with its optic
axis at 45◦ to that of the QWP, followed in turn by a second QWP orthogonal to the first one, is a selector
of circular polarisations: Circularly polarised incident photons emerge from it with their original circular
polarisation, but in two separate beams, depending on their helicity. What happens if the optic axes of
the QWP are parallel, rather than orthogonal? [Hint: The middle calcite crystal should be with its
normal at an angle θi from the beam: any θi would do. It is crucial, however, that its optic axis is at
n̂ = 1√

2
(x̂ + ŷ) with respect to the standard axis of the first QWP. The second QWP has to have x̂

and ŷ exchanged. Verify that if the two QWP are identical, the final circular polarisation is switched.]

Finally, try Exercise 1.1.

Exercise B.3. Consider a beam of photons having a wave vector k along the ẑ-axis, and linear polarisation
initially along the x̂-axis. These photons pass throughN consecutive identical calcite crystals, with gradually
increasing tilts: the direction O of the optic axis of the m-th crystal (m = 1, · · · , N) is given, with respect
to the fixed coordinate system defined above, by Ox = sin(πm/2N) and Oy = cos(πm/2N) Show
that there are 2N outgoing beams. What are their polarisations? What are their intensities (neglecting
absorption)? Show that, as N → ∞, nearly all the outgoing light is found in one of the beams, which is
polarised in the ŷ-direction. [Hint: Put all thick calcite crystals with their surface normal tilted by
θi. The crystals have optic axis n̂m = (sinαm, cosαm, 0) with αm = mπ/(2N). The first crystal will
separate the beam into two components of intensities cos2 α1 and sin2 α1, where α1 = π/(2N). Then
these two are further separated into two, and so on. Half of the beams are polarised along x̂, half
along ŷ. The most intense beam will have intensity cos2N (α1). Taking the limit N →∞ is simple.]

250

C. Superconductivity

Here is a small introduction to a few standard concepts from the theory of superconductivity, mostly
based on the books by de Gennes [37] and Tinkham [38]. The goal is to provide the basic ingredients
to understand Josephson junctions, including its flux-tunable version, the dc-SQUID.

C.1. The BCS problem

Consider a system of interacting electrons:

Ĥ =
∑
k,σ

ξk ĉ
†
k,σ ĉk,σ + +

1

2

∑
k1,k2,q

∑
σ1,σ2

V (k1 + q,k2 − q|k1,k2) ĉ†k1+q,σ1
ĉ†k2−q,σ2

ĉk2,σ2
ĉk1,σ1

, (C.1)

where ξk = εk−µ is the single-particle energy dispersion minus the chemical potential µ, as appropriate
for a grand-canonical description, and V is the interaction potential:

V (k1 + q,k2 − q|k1,k2) =

∫
dx1dx2 φ

∗
k1+q(x1)φ∗k2−q(x2)Vint(|x1 − x2|)φk2

(x2)φk1
(x1) ,

with φk(x) single-particle orbitals labelled by a wave-vector k. Let us neglect most of the interaction
terms, retaining only those where k2 = −k1, and σ2 = −σ1. We arrive at the following reduced
Hamiltonian:

Ĥred =
∑
k,σ

ξk ĉ
†
k,σ ĉk,σ +

∑
k,k′

Vk,k′ ĉ
†
k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ , (C.2)

where Vk,k′ = V (k,−k|k′,−k′) and the factor 1
2 is cancelled by the presence of two spin contributions.

The final step is a mean-field approximation, where we introduce a parameter to be determined self-
consistently: 1

∆k = −
∑
k′
Vk,k′〈ĉ−k′↓ĉk′↑〉 , (C.3)

and rewrite a quadratic Hamiltonian in the form:

ĤBCS =
∑
k,σ

ξk ĉ
†
k,σ ĉk,σ −

∑
k

(
∆k ĉ

†
k↑ĉ
†
−k↓ + ∆∗k ĉ−k↓ĉk↑

)
. (C.4)

This quadratic fermionic problem can be solved by a Bogoljubov transformation, as follows.

We first notice that ĉ†k↓ĉk↓ = 1− ĉk↓ĉ
†
k↓, so that, dropping a constant term and using the ξk = ξ−k,

we can rewrite the kinetic term as
∑

k ξk(ĉ†k↑ĉk↑− ĉ−k↓ĉ
†
−k↓). The Hamiltonian can then be rewritten

in a convenient matrix (Nambu) form:

ĤBCS =
∑
k

(
ĉ†k↑ , ĉ−k↓

)(ξk −∆k

−∆∗k −ξk

)(
ĉk↑
ĉ†−k↓

)
. (C.5)

The goal is to find new combinations of the operators that diagonalize this 2 × 2 problem. With a
bit of imagination, you realize that we are dealing, effectively, with a Pauli matrix problem. Setting
1The minus sign is useful because superconductivity occurs for attractive interactions.

251

Superconductivity (Lecture Notes by G.E. Santoro)

∆k = |∆k|eiϕk we have:

Hk =

(
ξk −|∆k|eiϕk

−|∆k|e−iϕk −ξk

)
= ξkσ̂

z − |∆k|(cosϕk σ̂
x − sinϕk σ̂

y) = Eknk · σ̂ , (C.6)

where the effective magnetic field Ek and the unit vector nk along which the spin points are:

Ek =
√
ξ2
k + |∆k|2 and nk =

(
− |∆k|

Ek
cosϕk,

|∆k|
Ek

sinϕk,
ξk
Ek

.
)

(C.7)

Let us define the angle θk ∈ [0, π] in the usual spherical coordinate convention:

cos θk =
ξk
Ek

and sin θk =
|∆k|
Ek

. (C.8)

The standard azimuthal angle φk would then be φk = π−ϕk, so that cosφk = − cosϕk and sinφk =

sinϕk. As known from your lectures on the spinor eigenstates |±,n〉 in an arbitrary direction n, the
positive and negative spin states would be

|+,nk〉 =

(
cos θk2

−e−iϕk sin θk
2

)
and |−,nk〉 =

(
eiϕk sin θk

2

cos θk2

)
. (C.9)

Let us know define the two real and positive quantities

uk = cos
θk
2

and vk = sin
θk
2

=⇒ u2
k + v2

k = 1 , (C.10)

and organize the two spinor eigenvectors as columns of a 2× 2 unitary matrix

Uk =

(
uk vkeiϕk

−vke−iϕk uk

)
=⇒ U†k =

(
uk −vkeiϕk

vke−iϕk uk

)
. (C.11)

The explicit expression for uk and vk follow from simple trigonometry. In particular: 2ukvk = 2 cos θk2 sin θk
2 = sin θk = |∆k|

Ek

u2
k − v2

k = cos2 θk
2 − sin2 θk

2 = cos θk = ξk
Ek

(C.12)

This, together with u2
k + v2

k = 1, immediately leads to:
v2
k =

1

2

(
1− ξk

Ek

)
u2
k =

1

2

(
1 +

ξk
Ek

) . (C.13)

We can now introduce the two new (Bogoljubov) fermion operators as follows:(
ĉk↑
ĉ†−k↓

)
= Uk

(
γ̂k↑
γ̂†−k↓

)
and

(
γ̂k↑
γ̂†−k↓

)
= U†k

(
ĉk↑
ĉ†−k↓

)
, (C.14)

such that the Hamiltonian is diagonalized:

ĤBCS =
∑
k

(
γ̂†k↑ , γ̂−k↓

)
U†kHkUk

(
γ̂k↑
γ̂†−k↓

)
=

∑
k

Ek
(
γ̂†k↑γ̂k↑ − γ̂−k↓γ̂

†
−k↓
)

=
∑
k

Ek
(
γ̂†k↑γ̂k↑ + γ̂†−k↓γ̂−k↓

)
+ Egs , (C.15)

where we used the canonical anticommutation for the new fermions, defining also the ground state
energy:

Egs = −
∑
k

Ek . (C.16)

252

(Lecture Notes by G.E. Santoro) C.1 The BCS problem

The ground state is also know as Bogoljubov vacuum because it is annihilated by all γ̂kσ. To get it,
consider the following (unnornmalized) state obtained by applying all the operators:

|Ψ〉 =
∏
k

γ̂−k↓γ̂k↑|0〉 =
∏
k

(
vkeiϕk ĉ†k↑ + ukc−k↓

)(
ukck↑ − vkeiϕk ĉ†−k↓

)
|0〉

=
∏
k

(
− vkeiϕk

)(
uk + vkeiϕk ĉ†k↑ĉ

†
−k↓

)
|0〉 . (C.17)

This state is evidently annihilated by any γ̂k↑ and γ̂−k↓ for all k, hence it is the ground state of the
BCS Hamiltonian. By normalizing it, we finally arrive at the standard form of the BCS ground state.
Summarizing, we have:

The BCS problem. The BCS Hamiltonian

ĤBCS =
∑
k

ξk
(
ĉ†k↑ĉk↑ − ĉ−k↓ĉ

†
−k↓
)
−
∑
k

(
∆k ĉ

†
k↑ĉ
†
−k↓ + ∆∗k ĉ−k↓ĉk↑

)
= Ek

∑
k

(
γ̂†k↑γ̂k↑ + γ̂†k↓γ̂k↓ − 1

)
. (C.18)

is diagonalized by the Bogoliubov fermionic operators: γ̂k↑ = ukck↑ − vkeiϕk ĉ†−k↓

γ̂†−k↓ = vke−iϕkck↑ + ukĉ
†
−k↓

, (C.19)

where ∆k = |∆k|eiϕk , Ek =
√
ξ2
k + |∆k|2 and:

v2
k =

1

2

(
1− ξk

Ek

)
u2
k =

1

2

(
1 +

ξk
Ek

)
. (C.20)

Its normalized ground state is given by:

|ΨBCS〉 =
∏
k

(
uk + vkeiϕk ĉ†k↑ĉ

†
−k↓

)
|0〉 . (C.21)

i

The gap equation. It is now simple to verify that:

〈ΨBCS|ĉ−k↓ĉk↑|ΨBCS〉 = ukvkeiϕk =
|∆k|
2Ek

eiϕk . (C.22)

Hence, the self-consistency equation for ∆k reads:

∆k = |∆k|eiϕk = −
∑
k′
Vk,k′〈ĉ−k′↓ĉk′↑〉 = −

∑
k′
Vk,k′

|∆k′ |

2
√
ξ2
k′ + |∆k′ |2

eiϕk′ . (C.23)

Let us now assume that Vk,k′ is negative (attractive) and only dependent on the energy ξk and ξk′ of
initial and final states, hence, in particular, rotationally invariant. Even more drastically, we assume
it to be a constant within an energy shell ±~ωD of the Fermi energy:

Vk,k′ = − V

Vol
Θ(~ωD − |ξk|)Θ(~ωD − |ξk′ |) =

 −
V

Vol if |ξk|, |ξk′ | < ~ωD

0 otherwhise
. (C.24)

This leads to the following s-wave Ansatz for ∆k:

∆k = Θ(~ωD − |ξk|) ∆ eiϕ with ∆ > 0 . (C.25)

253

Superconductivity (Lecture Notes by G.E. Santoro)

By introducing the single-particle density-of-states 2 ρ(ξ) = (1/Vol)
∑

k δ(ξ − ξk) we can write the
self-consistent equation for ∆ as follows:

∆ = V

∫ ~ωD

−~ωD
dξ ρ(ξ)

∆

2
√
ξ2 + ∆2

≈ V ρ(0)

∫ ~ωD

0

dξ
∆√

ξ2 + ∆2
, (C.26)

where the second expression follows by approximating ρ(ξ) ≈ ρ(0) close to the Fermi energy. This
finally leads to an analytic expression for the gap:

1

ρ(0)V
=

∫ ~ωD

0

dξ
∆√

ξ2 + ∆2
= arcsinh(

~ωD
∆

) =⇒ ∆ =
~ωD

sinh(1
ρ(0)V)

≈ ~ωD e−
1

ρ(0)V , (C.27)

where the final approximation applies in the week-coupling limit ρ(0)V � 1.

The role of the phase. For an s-wave superconductor, where ϕk = ϕ, we write the BCS ground
state as:

|ΨBCS(ϕ)〉 =
∏
k

(
uk + eiϕvkĉ

†
k↑ĉ
†
−k↓

)
|0〉 . (C.28)

We recall that uk and vk real and positive. The relative phase eiϕ plays a relatively minor role if
you deal with a single superconductor: it will play a very important role in describing the Josephson
tunnelling between two superconductors separated by a thin insulating (oxide) layer.

|ΨBCS(ϕ)〉 describes a superposition of states with all possible (even) fermion numbers. To simplify
our writing, let us denote by b̂†k = ĉ†k↑ĉ

†
−k↓ the operator that creates a pair of fermions in the Cooper-

pair state (k ↑,−k ↓). By expanding the factor
∏

k
(
uk + eiϕvkb̂

†
k
)
you can write:

|ΨBCS(ϕ)〉 =
(∏

k

uk
)(
|0〉+ eiϕ

∑
k1

vk1

uk1

b̂†k1
|0〉+ e2iϕ

∑
(k1,k2)

vk1

uk1

vk2

uk2

b̂†k1
b̂†k2
|0〉+ · · ·

+e2niϕ
∑

(k1,··· ,kn)

vk1

uk1

· · · vkn
ukn

b̂†k1
· · · b̂†kn |0〉+ · · ·

)

=

∞∑
n=0

einϕAn|Ψn〉 (C.29)

where the notation (k1, · · · ,kn) means that the n-uple of wave-vectors should be included only once,
and |Ψn〉 denotes a normalised state with exactly n Cooper pairs (hence N = 2n fermions), appearing
with (real) amplitude An but with an overall phase einϕ. Normalisation of all states implies that the
coefficients A2

n can be thought as a probability distribution of the various n in the BCS state:

〈ΨBCS|ΨBCS〉 = 1 =⇒
∞∑
n=0

A2
n = 1 . (C.30)

At this stage, ϕ could be used as a technical tool to single-out the various fixed particle number
states. Indeed, by integrating over ϕ we get:

An|Ψn〉 =

∫ 2π

0

dϕ

2π
e−inϕ|ΨBCS(ϕ)〉 . (C.31)

The coefficients A2
n could also be explicitly calculated by an integral over ϕ, but this will not be

relevant to our discussion. 3 What is relevant, is that in a macroscopic superconductor, A2
n is

2Recall that this implies that for large quantization volumes:
1

Vol

∑
k
F (ξk) =

∫
dξ ρ(ξ)F (ξ) .

3One can verify that:

A2
n =

∫ 2π

0

dϕ

2π
e−inϕ

∏
k

(
u2
k + eiϕv2

k
)
. (C.32)

254

(Lecture Notes by G.E. Santoro) C.2 The Josephson effect

peaked around a mean value of the number of Cooper pairs, call it n0, which is extensive. Indeed, if
N̂ =

∑
k,σ ĉ

†
kσ ĉkσ denotes the total number of fermions operator, with average N0 = 〈ΨBCS|N̂ |ΨBCS〉,

you can write:

n0 =
1

2
N0 =

1

2
〈ΨBCS|N̂ |ΨBCS〉 =

∑
k

v2
k = Vol

∫
dk

(2π)3
v2
k . (C.33)

Interestingly, the width of the distribution A2
n scales with

√
Vol, as you can show that:

(∆n)2 =
1

4
(∆N)2 =

1

4

(
〈ΨBCS|N̂2|ΨBCS〉 − 〈ΨBCS|N̂ |ΨBCS〉2

)
=

∑
k

u2
kv

2
k = Vol

∫
dk

(2π)3
u2
kv

2
k . (C.34)

Hence, for a macroscopic superconductor, it makes no difference if you calculate physical properties by
using |ΨBCS〉 — a state that is simple to work with — or rather by using the much more complicated
state with fixed number of Cooper pairs |Ψn〉 with n ∼ n0. The rationale behind is very similar
to the grand-canonical description, as opposed to a canonical one, which become equivalent in the
thermodynamic limit.

C.2. The Josephson effect

Figure C.1: Sketch of a Josephson junction,
with the two superconductors characterized by a
phase ϕ1,2, separated by a thin insulating layer.
The charges highlight that a small enough junc-
tion should show Coulomb effects due to a finite
capacitance.

Let us consider now two macroscopic superconductors separated by a thin insulating layer (of order
of 30 Angstroms), as sketched in Fig. C.1. Neglecting charging effects, for the time being, we take:

Ĥ = ĤBCS

1 + ĤBCS

2 + Ĥtunn , (C.35)

where the tunnelling term is:

Ĥtunn =
∑
σ

∑
k1,k2

(
Tk1,k2

ĉ†k1σ,1
ĉk2σ,2

+ H.c.
)
. (C.36)

Suppose we have a state with a total number of Cooper pairs nt = n1 + n2 written as |Ψn1〉 ⊗ |Ψn2〉,
denoted as |n1;n2〉 for shortness. All possible sharing of nt in the two superconductors are perfectly
degenerate, with energy 2Egs, as you can transfer a Cooper pair from one superconductor to the other
without affecting the energy: recall that indeed a BCS state is a superposition of states with different
number of Cooper pairs. The action of Tk1,k2

ĉ†k1σ,1
ĉk2σ,2

on |n1;n2〉 is to create a single unpaired hole
in 2, and a single unpaired electron in 1. This intermediate state

Nk1,k2
|I; ek1σ;hk2σ〉 = ĉ†k1σ,1

ĉk2σ,2
|n1;n2〉 ,

has a higher energy 2Egs + Ek1
+ Ek2

. Here Nk1,k2
= uk1

vk2
is a normalization constant. 4 To

“undo” that, you can use the same tunnelling term, but now with opposite momenta and spin, so has

This gives, correctly, A2
0 =

∏
k u

2
k, A

2
1 =

∑
k1

(∏
k 6=k1

u2
k
)
v2
k1

, etc.
4To calculate it, use the fact that, for instance:

〈Ψn1 |ĉk1σ
ĉ†k1σ
|Ψn1 〉 = 〈ΨBCS|ĉk1σ

ĉ†k1σ
|ΨBCS〉 = u2

k1
.

255

Superconductivity (Lecture Notes by G.E. Santoro)

to return to a fully paired situation, but with a Cooper pair effectively donated from 2 to 1. More
precisely, you can reach the same intermediate state also as follows:

Ñk1,k2 |I; ek1σ;hk2σ〉 = ĉ†−k2−σ,2ĉ−k1−σ,1|n1 + 1;n2 − 1〉 ,

with a normalization constant Ñk1,k2
= vk1

uk2
. Therefore, to second order in perturbation theory in

the tunnelling, you predict a coupling between |n1, n2〉 and |n1 + 1, n2 − 1〉 with a matrix element:

−
∑
k1,k2

|Tk1,k2 |2
∑
σ

〈n1 + 1, n2 − 1|ĉ†−k1,−σ,1ĉ−k2,−σ,2|I〉
1

Ek1 + Ek2

〈I|ĉ†k1,σ,1
ĉk2,σ,2

|n1, n2〉 =

= −2
∑
k1,k2

|Tk1,k2
|2uk1vk1uk2vk2

Ek1
+ Ek2

≡ −EJ
2
, (C.37)

where we used that T−k1,−k2
= T ∗k1,k2

, and the factor 2 is due to the spin. 5 A similar calculation
predicts that an identical coupling exists, due to the Hermitean conjugate term, with the state |n1 −
1;n2 + 1〉. Summarizing, to second-order in Ĥtunn you predict that the Schrödinger equation reads:

Ĥ|n1;n2〉 = 2Egs|n1;n2〉 −
EJ
2

(
|n1 + 1;n2 − 1〉+ |n1 − 1;n2 + 1〉

)
. (C.38)

The Josephson energy constant EJ is a macroscopic parameter characteristic of the junction. One
can show that, when dealing with two BCS superconductors:

EJ =
1

8

h

e2
Gtunn∆ , (C.39)

where Gtunn is the normal state tunnelling conductance of the barrier — proportional to the trans-
parency of the barrier and to the surface of the junction — and ∆ the superconducting gap.

Notice that nt = n1 +n2 is conserved by the tunnelling. The only relevant variable is the difference:

n =
n1 − n2

2
=⇒ n1 =

nt
2

+ n and n2 =
nt
2
− n , (C.40)

where we assume that nt is even. If we define the state |n〉 as follows:

|n〉 = |Ψnt
2 +n〉 ⊗ |Ψnt

2 −n〉 , (C.41)

then Eq. (C.38) reads:

Ĥ|n〉 = 2Egs|n〉 −
EJ
2

(
|n+ 1〉+ |n− 1〉

)
. (C.42)

This looks formally very similar to a tight-binding problem, but there are differences, since n is
bounded to stay between −nt/2 and +nt/2, and there are no periodic boundary conditions which
we can impose. To simplify our discussion, it helps considering the fact that nt is macroscopically
large, hence we can effectively consider that n runs over all integers, from −∞ to +∞. With this
approximation, we proceed by constructing a “Bloch combination” of wave-vector φ:

|Ψ(φ)〉 =
1√
2π

+∞∑
n=−∞

einφ|n〉 . (C.43)

It is simple to verify that, as in the familiar tight-binding problem on a line:

Ĥ|Ψ(φ)〉 =
(
2Egs − EJ cosφ

)
|Ψ(φ)〉 . (C.44)

The physical meaning of the Bloch “wavevector” φ is just the difference between the phases of the
two-superconductors: 6

φ = ϕ1 − ϕ2 . (C.46)
5de Gennes gives a result larger by a factor of 2.
6You can make sense of this statement by considering that the product of two BCS states would give a wavefunction,

256

(Lecture Notes by G.E. Santoro) C.2 The Josephson effect

Charging effects. So far, we did not consider the fact that, when a Cooper pair moves from one
superconductor to the other, there is a charging energy associated. This effect is important for small
junctions, which have an intrinsically small capacitance C. This implies that a term in the Hamiltonian
of the junction should be associated to this charging effect:

Ĥcharge =
e2

2C
Q̂2 =

4e2

2C
n̂2 = 4EC n̂

2 , (C.47)

where EC = e2/(2C) and we assumed that n = 0 describes a charge-neutral junction. The factor 4

comes from Q̂ = 2en̂, the charge associated to a Cooper pair being 2e. The operator n̂ counts the
number of Cooper pairs transferred. It is a variable conjugate to φ, i.e.,[

φ̂, n̂
]

= i , (C.48)

a relationship which is actually a bit disrespectful of the periodic nature of the “coordinate” φ, but
can be made fully periodic-compliant by writing:[

n̂, e±iφ̂
]

= ±e±iφ̂ . (C.49)

Equivalently, we can think of n̂ as the momentum conjugate to φ̂, and represent n̂ = −i ∂∂φ .

The full Hamiltonian for the Josephson junction, including the charging term but neglecting the
constant 2Egs, therefore reads:

ĤJJ = 4EC n̂
2 − EJ cos φ̂ . (C.50)

The current. The current operator Î is extracted from the time derivative of n̂ — more precisely, its
Heisenberg representation —, hence we write:

Î = −2e
dn̂

dt
. (C.51)

The time-derivative of n̂ is obtained from the Heisenberg equation:

i~
dn̂

dt
=
[
n̂, ĤJJ

]
= −EJ

[
n̂, cos φ̂

]
= −iEJ sin φ̂ (C.52)

where we used Eq. (C.49) in the last step. Hence:

Î =
2e

~
EJ sin φ̂ = IJ sin φ̂ , (C.53)

where IJ = 2e
~ EJ is the so-called critical current of the junction, the maximum current that can

flow through the junction, in absence of any voltage applied, due simply to a non-vanishing phase
difference φ.

The voltage. So far, we assumed that no voltage is applied to the junction. In presence of a voltage
V , there is a difference in the chemical potential of the two superconductors which we can associate
to an extra term:

ĤVoltage = 2eV n̂ . (C.54)

which, upon projecting on a total number of Cooper pairs equal to nt, would read:

Π̂nt
(
|ΨBCS(ϕ1)〉 ⊗ |ΨBCS(ϕ2)〉

)
=

nt/2∑
n=−nt/2

Ant/2+ne
i(nt/2+n)ϕ1Ant/2−ne

i(nt/2−n)ϕ2 |Ψnt
2

+n〉 ⊗ |Ψnt
2
−n〉

= eint(ϕ1+ϕ2)/2
nt/2∑

n=−nt/2
Ant/2+nAnt/2−ne

in(ϕ1−ϕ2)|n〉 . (C.45)

257

Superconductivity (Lecture Notes by G.E. Santoro)

One can calculate the Heisenberg equation of motion for φ̂, obtaining:

i~
dφ̂

dt
=
[
φ̂, Ĥ

]
=
[
φ̂, 4EC n̂

2 + 2eV n̂
]

= i(8EC n̂+ 2eV) . (C.55)

Remarkably, neglecting charging effects, for a large junction, this would predict that the average phase
difference φ between the two superconductors would linearly increase in time:

φ̇ =
2e

~
V , (C.56)

a relationship that is known as ac Josephson effect, as it would lead to a sinusoidal supercurrent
in presence of a constant voltage:

I(t) = IJ sin
(2e

~
V t
)
. (C.57)

C.3. The Ginsburg-Landau description

The BCS approach is unable to treat space inhomogeneous superconductors in the presence of
external magnetic fields. In principle, a more sophisticated mean-field description can be developed,
leading to the Bogoljubov-de Gennes mean-field equations, see Ref. [37][Chap.5]. An alternative
phenomenological approach, proposed by Ginsburg and Landau in 1951, well before the microscopic
BCS theory, and later confirmed, in 1959, by a microscopic derivation using Green’s functions, due to
Gorkov, is quite useful in many cases. I will give here the essential ingredients of this theory, following
Refs. [37, 38].

The superconducting order parameter ψ(x) is complex, and proportional to the local pair-potential
∆(x) = −V 〈Ψ̂↓(x)Ψ̂↑(x)〉. The total free-energy, in gaussian units, reads:

Fs =

∫
Vol

dx
(
fn + a|ψ|2 +

b

2
|ψ(x)|4 +

1

2m∗

∣∣∣(− i~∇ +
2e

c
A
)
ψ
∣∣∣2 +

1

8π
h2(x)

)
, (C.58)

where h(x) = ∇ ×A is the (microscopic) magnetic field. The transition is dictated by a change of
sign of the quadratic term, a(T) = a′(T − Tc), with a′ > 0, and the theory should be appropriate
to describe the physics near Tc, where |ψ| is small. The presence of the vector potential A in the
minimal-coupling gradient terms, with a charge 2e, is dictated by gauge invariance. 7

The equilibrium GL equations are obtained by the standard calculus of variations approach: modify
ψ(x)→ ψ(x) + δψ(x) and A(x)→ A(x) + δA(x), and impose that the first order variation vanishes.
By calculating the variation we get:

δFs =

∫
Vol

dx
{
δψ∗

[
aψ + b|ψ|2ψ +

1

2m∗

(
− i~∇ +

2e

c
A
)2

ψ
]

+ cc.
}

+

∫
Vol

dx δA ·
{ 1

4π
∇× h +

e

m∗c

[
ψ∗
(
− i~∇ +

2e

c
A
)
ψ + cc.

]}
. (C.61)

7The microscopic form of the kinetic energy in presence of A is given by:

Ĥkin =
1

2m

∑
σ

∫
dx
((
− i~∇ +

e

c
A
)
Ψ̂σ(x)

)†
·
((
− i~∇ +

e

c
A
)
Ψ̂σ(x)

)
. (C.59)

A gauge transformation A → A + ∇Λ leaves the kinetic energy invariant provided we also transform the field
operator as

Ψ̂σ(x)→ Ψ̂σ(x) e−i
e
~cΛ(x) .

This implies that the local pair potential ∆(x), and therefore the local order parameter ψ(x), containing two fermionic
annihilation operators, should transform as:

ψ(x)→ ψ(x) e−i
2e
~cΛ(x) = ψ(x) e−i

2π
Φ0

Λ(x)
, (C.60)

where Φ0 = hc/(2e) is the flux quantum.

258

(Lecture Notes by G.E. Santoro) C.3 The Ginsburg-Landau description

By setting δFs for arbitrary δψ and δA we get the following two GL equations:

GL equations:

aψ + b|ψ|2ψ +

1

2m∗

(
− i~∇ +

2e

c
A
)2

ψ = 0

js =
ie~
m∗

(
ψ∗∇ψ − ψ∇ψ∗

)
− 4e2

m∗c
|ψ|2A

, (C.62)

where we used that js = c
4π∇× h is the (superconducting) current density, as dictated by Maxwell’s

equations. Notice the similarity between the expression of js and the quantum mechanical current for
a particle of charge 2e, and mass m = m∗/2, with wave-function ψ(x).

Let us briefly recall some simple consequences of these equations, i.e., the existence of two lengths
that naturally emerge: the coherence length ξ(T) and the penetration length λ(T), both diverging as
|Tc − T |−1/2.

The coherence length. Consider a one-dimensional superconductor, in absence of magnetic field,
for T < Tc, where a = −|a|. The order parameter, which we can take to be real, satisfies:

− ~2

2m∗

d2ψ

dx2
− |a|ψ + bψ3 = 0 .

The equilibrium constant value is ψ2
0 = |a|

b . By posinf ψ = ψ0f , you can rewrite this equation as:

|a|ψ0

(
− ξ2(T)

d2ψ

dx2
− f + f3

)
= 0 ,

where

ξ2(T) =
~2

2m∗|a(T)|
. (C.63)

This implies that spatial variations of f — hence of ψ — occur on a lengthscale ξ(T) — the coherence
length — which diverges for T → Tc because |a| ∝ |T − Tc|.

The penetration length. Consider now how the magnetic field and current behave, when the order
parameter is approximately constant: ψ ∼ ψ0. The superconducting current is therefore:

js = − 4e2

m∗c
ψ2

0 A =⇒ ∇× js = − 4e2

m∗c
ψ2

0 h .

Together with Maxwell’s equation ∇× h = 4π
c js, this implies that:

λ2(T)∇× (∇× h) + h = 0 with λ2 =
m∗c

2

16πe2ψ2
0

. (C.64)

Consider what happens in a simple planar geometry, where the superconductor occupies the space
with z > 0, while the region z < 0 is empty. It is simple to show [37][pag.180] that the only possibility
is that the magnetic field is parallel to the xy plane, for instance along x, and that hx(z) decays
exponentially inside the superconducting region as:

hx(z) = hx(0) e−z/λ(T) .

λ(T) is therefore the penetration length for the field: the bulk superconductor cannot have any
magnetic field (Meissner effect).

259

Superconductivity (Lecture Notes by G.E. Santoro)

The complex nature of ψ. Let us examine the role that the complex nature of ψ(x) plays. Let us
define

ψ(x) = |ψ(x)| eiϕ(x) .

Consider first the superconducting current js. After simple algebra, we can write:

js = − 2e

m∗
|ψ|2

(
~∇ϕ+

2e

c
A
)

︸ ︷︷ ︸
def
=m∗vs

= −2e|ψ|2vs , (C.65)

where we defined the superfluid velocity

m∗vs
def
= ~∇ϕ+

2e

c
A . (C.66)

This suggests a natural interpretation of |ψ|2 = ns as the superfluid (Cooper pair) density, so that
js = −2ensvs.

Equally inspiring is to consider the free-energy density contribution. With similar algebra, you
obtain:

1

2m∗

∣∣∣(− i~∇ +
2e

c
A
)
ψ
∣∣∣2 =

~2

2m∗
(∇|ψ|)2 +

1

2m∗
|ψ|2

(
~∇ϕ+

2e

c
A
)2

=
~2

2m∗
(∇|ψ|)2 +

1

2
nsm∗v2

s . (C.67)

The first term is the kinetic cost for changing the modulus of the order parameter, while the second
piece is associated to the superfluid kinetic energy. This suggests that, inside a bulk superconductor,
it is energetically favourable to have vs ≡ 0, hence:

∇ϕ = −2e

~c
A = − 2π

Φ0
A (vs ≡ 0) . (C.68)

The gauge-invariant phase difference. Gauge invariance dictates that if A → A + ∇Λ, then you
should change

ϕ(x)→ ϕ(x)− 2π

Φ0
Λ(x) . (C.69)

Notice that the expression for vs is explicitly gauge-invariant. These considerations suggest that
the phase difference appearing in the JJ energy and current should be modified and made gauge
invariant as follows:

φ = ϕ1 − ϕ2 +
2π

Φ0

∫
link 2→1

A · dl . (C.70)

Flux quantization inside a superconducting ring. As a first (simple) consequence of the previous
relation, consider a metallic ring with a magnetic field piercing the ring, see Fig. C.2(a). As the metal
becomes superconducting, see Fig. C.2(b), the magnetic flux trapped inside the ring is modified by
superconducting screening currents, and can be shown to be quantized. Even more surprising, the
quantized trapped flux survives even when the external field is turned off, see Fig. C.2(c). To deduce
that, consider a closed contour C well inside the bulk of the ring, which we suppose to be sufficiently
thick so that vs = 0 on the contour. Now integrate both sides of Eq. (C.68) along C. Since the phase
ϕ(x) has to return to the same value, modulo 2πn with n ∈ Z, we deduce that:

2πn =

∮
C

∇ϕ · dl = −2e

~c

∮
C

A · dl = −2π
Φ

Φ0
. (C.71)

So, the superconducting currents flowing along the surface of the ring partially screen the magnetic
field trapped inside, in such a way that the trapped flux Φ is an integer multiple of the flux quantum
Φ0 = hc/(2e).

260

(Lecture Notes by G.E. Santoro) C.4 Quantum interference of two JJ: The dc-SQUID

Figure C.2.: This is Fig. 21-4 in Feynman’s book. A metallic ring (a) is immersed in a magnetic field. As
the ring becomes superconducting (b) screening currents modify the trapped flux in such a way as to quantize
it (see text). The trapped flux survives (c) even when the external field is turned off.

C.4. Quantum interference of two JJ: The dc-SQUID

Let me now come to the application that justifies our excursion into the GL theory and the discussion
of gauge invariance. Consider a ring geometry with two Josephson junctions, A and B as sketched
in Fig. C.3, symmetrically placed and separating a first arm of the ring, with superconductor “1”,
from the second arm, with superconductor “2”. The two superconductors are connected to leads and
a current I is driven through the circuit. In the center of the ring, there is an external magnetic field
H, which can be changed. We want to show that the current flowing I(H) is periodically modulated
by the magnetic field H, in a way that closely resemble the interference effects in a double slit, or in
the two arms of a Mach-Zehnder interferometer.

Figure C.3: This is Fig. 7-7 in de Gennes’
book [37]. In the text, we indicate φ1A as ϕ1A,
and so on.

The superconducting current flowing through the two JJ in parallel is simply the sum of the two
currents along the branches:

I = IAJ sinφA + IBJ sinφB , (C.72)

where φA and φB are the gauge-invariant phase differences at the two junctions.

As discussed in the main text, see Sec. 7.2.1, there is a definite relationship between the two
gauge-invariant phase difference at the two JJ, φA and φB , and the magnetic flux trough the ring Φ.

The relationship between the phases at the two junctions. Therefore, we conclude that:

φA − φB = 2πn+ 2π
Φ

Φ0
. (C.73)

i

261

Superconductivity (Lecture Notes by G.E. Santoro)

By parameterising φA and φB as follows:

φA = φ+ + π
(
n+

Φ

Φ0

)
and φA = φ+ −

(
n+

Φ

Φ0

)
, (C.74)

with φ+ = (φA + φB)/2, the average phase difference, the total current is predicted to be:

I = IAJ sin
(
φ+ + π

(
n+

Φ

Φ0

))
+ IBJ sin

(
φ+ − π

(
n+

Φ

Φ0

))
. (C.75)

For two identical junctions, IAJ = IBJ = IJ , simple trigonometry allows us to conclude that:

I = 2IJ cos
(
π
(
n+

Φ

Φ0

))
sinφ+ . (C.76)

Hence, effectively, the two junctions in parallel act as a single junction with average phase difference
φ+, and a critical current — hence Josephson energy constant — that can be tuned by the magnetic
flux:

Ieff
J (Φ) = 2IJ

∣∣∣ cos
(
π

Φ

Φ0

)∣∣∣ =⇒ Eeff
J (Φ) =

~
2e
Ieff
J (Φ) = 2EJ

∣∣∣ cos
(
π

Φ

Φ0

)∣∣∣ . (C.77)

Notice the constructive interference for all fluxes that are multiples of Φ0, while the interference is
destructive for Φ = Φ0/2.

This calculation can be generalised to the case of two different JJs, with slightly more involved
trigonometry [41][Sec.IIE]. You define the total Josephson energy, and the asymmetry parameter:

E+
J = EAJ + EBJ d =

EBJ − EAJ
EAJ + EBJ

. (C.78)

The total potential energy of the two JJ can then be written as:

ĤJ = −EAJ cosφA − EBJ cosφB

= −E+
J cos

(
π

Φ

Φ0

)(
cosφ+ + d tan

(
π

Φ

Φ0

)
sinφ+

)
= −E+

J cos
(
π

Φ

Φ0

)√
1 + d2 tan2

(
π

Φ

Φ0

)
cos(φ+ − φoffset) , (C.79)

where the offset phase is defined by:

tanφoffset = d tan
(
π

Φ

Φ0

)
. (C.80)

262

D. Quantum master equations for
dissipative systems

We give here a perturbative derivation of the quantum Master equation (QME), closely following
the treatment of Gaspard and Nagaoka [55], except for a generalization to the time-dependent case.
Similar derivations are given in many books, for instance in [45].

D.1. A general framework: system plus environment

Suppose that we have a system in interaction with its environment and we want to write the
total Hamiltonian that describes both. A general expression for the Hamiltonian of system-plus-
environment can be [56,57]

Ĥtot(t) = ĤS(t) + ĤB + ĤSB , (D.1)

where ĤS(t) is the system Hamiltonian (which can be time-dependent), ĤB is the environment Hamil-
tonian 1 and ĤSB describes the interaction between the two. The interaction between system and
environment can be conveniently modelled as 2

ĤSB =
∑
ν

Âν ⊗ B̂ν , (D.3)

Âν and B̂ν acting respectively on the system and on the bath Hilbert space. We take these operators
to be Hermitean, without loss of generality. 3 Sometimes, however, one considers operators that are
explicitly not Hermitean, like σ̂+b̂ + σ̂−b̂†, in which case we might write:

ĤSB =
∑
ν

(
Âν ⊗ B̂ν + Â†ν ⊗ B̂†ν

)
.

1When the interaction is weak, a good description for the environment Hamiltonian is to consider one or more sets of
harmonic oscillators with different frequencies [58,59],

ĤB =
∑
ν

∑
l

~ωlν b̂†lν b̂lν (D.2)

where ν identifies the set of harmonic oscillators and l indicates their modes. The b̂†lν operator creates an excitation
of energy ~ωlν .

2In principle, we can allow for a possible time-dependence of Â, which we omit from our notation. This happens, for
instance, whenever the problem is described in an appropriate “rotating basis”, as in the dissipative Landau-Zener
case, or when doing NMR in the rotating frame representation.

3If they are not, simply define the four Hermitean combinations

Âν,1 =
1
√

2

(
Âν + Â†ν

)
and Âν,2 = +

i
√

2

(
Âν − Â†ν

)
B̂ν,1 =

1
√

2

(
B̂ν + B̂†ν

)
and B̂ν,2 = −

i
√

2

(
B̂ν − B̂†ν

)
and the interaction term will simply read:

ĤSB =
∑
ν

(
Âν ⊗ B̂ν + Â†ν ⊗ B̂†ν

)
=
∑
ν

(
Âν,1 ⊗ B̂ν,1 + Âν,2 ⊗ B̂ν,2

)
.

263

Quantum master equations (Lecture Notes by G.E. Santoro)

The last form, however, can always be recast, in the end, in the compact form (D.3). Even more
directly, indeed, with a suitable extension of the labels ν over which we sum: for every ν, there is a
suitable ν̄ such that Âν̄ = Â†ν and B̂ν̄ = B̂†ν .

We will assume that the initial state of the system at time t = 0 is factorised:

ρ̂tot(0) = ρ̂S(0)⊗ ρ̂B(0) . (D.4)

and that ρ̂B is an equilibrium state for the bath in absence of ĤSB, which implies that:

e−iĤ
Bt/~ρ̂B(0)eiĤ

Bt/~ = ρ̂B(0) .

Technically, this means that ρ̂B(0) can be represented in the basis of the bath Hamiltonian eigenstates
|Φn〉, such that ĤB|Φn〉 = En|Φn〉, as:

ρ̂B(0) =
∑
n

pn|Φn〉〈Φn| , (D.5)

with
∑
n pn = 1. In particular, the bath state might be thermal in which case pn = e−βEn

ZB
, but this

is a priori not required.

We also assume that the bath operator B̂ν have vanishing averages over the density matrix ρ̂B:

〈B̂ν〉
def
= TrB(B̂ν ρ̂B) = 0 . (D.6)

This is certainly appropriate when the B̂ν operators are “position operators” of a bath of “harmonic
oscillators”, but might otherwise seem a loss of generality. In the end, it is not really so, 4 but these
terms certainly would give rise to simple shifts of the system energy levels. 5

We will encounter later the crucial ingredient of the bath entering in our story: the free bath
correlation function:

Cνν′(t− t′) = TrB

(
B̂νI(t)B̂ν′I(t

′)ρ̂B

)
, (D.7)

where B̂νI(t) = eiĤ
Bt/~B̂νe−iĤ

Bt/~ is the interaction representation bath operator.

There are some general expressions that directly follow from the definition of Cνν′(t) and the
Hermitean nature of B̂ν , for instance that

C∗νν′(t) = Cν′ν(−t) . (D.8)

In the course of our QME calculation, we will encounter spectral densities in the form of one-sided
Fourier transforms of Cνν′(t): 6

Γνν′(ω
+) =

∫ ∞
0

dt ei(ω+iε)tCνν′(t) , (D.9)

4You can in principle redefine the Hamiltonian by adding and subtracting the unwanted average as follows:

ĤS(t) → ĤS(t) +
∑
ν

〈B̂ν〉Âν ,

ĤSB →
∑
ν

Âν ⊗
(
B̂ν − 〈B̂ν〉

)
and the trick is done. The price paid is that the system Hamiltonian now knows something about the state of the
bath.

5These shifts are not related to the Lamb shift of atomic physics, for instance between 2P1/2 and 2S1/2 hydrogen levels,
which comes from second-order effects.

6An equivalent way would be to introduce the Laplace transform

Γ̂νν′ (z) =

∫ ∞
0

dt e−ztCνν′ (t) .

with the one-sided Fourier transform being given by

Γνν′ (ω
+) = Γ̂νν′ (z = −iω + 0+) ,

where 0+ denotes a small (infinitesimal) real part.

264

(Lecture Notes by G.E. Santoro) D.1 A general framework: system plus environment

where ω+ = ω + iε, with the infinitesimal imaginary part added to guarantee convergence of the
integral. This expression should be contrasted with the ordinary Fourier transform which satisfies the
usual relationships:

γνν′(ω) =

∫ +∞

−∞
dt eiωtCνν′(t)

Cνν′(t) =

∫ +∞

−∞

dω

2π
e−iωtγνν′(ω) . (D.10)

Notice that the relationship C∗νν′(t) = Cν′ν(−t) immediately implies that γνν′(ω) = γ∗ν′ν(ω), i.e., the
ordinary Fourier transform is a Hermitean matrix: hence the diagonal terms γνν(ω) ∈ R. On the
contrary, we will now show that the one-sided Fourier transform has both a real and an imaginary
part. To see this, you start by inserting the expression for Cνν′(t) in terms of its Fourier transform in
the expression for Γνν′(ω

+), obtaining: 7

Γνν′(ω
+) =

∫ ∞
0

dt ei(ω+iε)t

∫ +∞

−∞

dω′

2π
e−iω

′tγνν′(ω
′)

= i

∫ +∞

−∞

dω′

2π

γνν′(ω
′)

ω − ω′ + iε

= i−
∫

dω′

2π

γνν′(ω
′)

ω − ω′
+ i(−i)π

∫ +∞

−∞

dω′

2π
γνν′(ω

′)δ(ω − ω′)

=
1

2
γνν′(ω) + iσνν′(ω) , (D.11)

where we have introduced the Hilbert transform of γ

σνν′(ω) = −
∫ +∞

−∞

dω′

2π

γνν′(ω
′)

ω − ω′
= σ∗ν′ν(ω) , (D.12)

(here −
∫

denotes the Cauchy principal value prescription) which is also an Hermitean matrix, hence
σνν(ω) ∈ R as well.

We observe one last important property of the bath: the matrix γνν′ is not only Hermitean, but
also positive, which means that:

∑
ν,ν′

x∗νγνν′(ω)xν′ ≥ 0 ∀ω ∀xν . (D.13)

7In the first step we use that: ∫ ∞
0

dt ei(ω
+−ω′)t =

i

ω − ω′ + iε
.

In the second step, we use that standard relationship

1

ω − ω′ + iε
= P

1

ω − ω′
− iπδ(ω − ω′) ,

where P denotes the Cauchy principal value prescription.

265

Quantum master equations (Lecture Notes by G.E. Santoro)

To prove the latter result, define B̂ =
∑
ν xνB̂ν and observe that:∑

ν,ν′

x∗νγνν′(ω)xν′ =

∫ +∞

−∞
dt eiωt TrB

(
e
i
~ Ĥ

Bt

(∑
ν

x∗νB̂ν

)
e−

i
~ Ĥ

Bt

(∑
ν′

xν′B̂ν′

)
ρ̂B

)

=

∫ +∞

−∞
dt eiωt

∑
n

pn〈Φn|e
i
~ Ĥ

BtB̂†e−
i
~ Ĥ

BtB̂|Φn〉

=

∫ +∞

−∞
dt eiωt

∑
n,m

pne
i
~ (En−Em)t〈Φn|B̂†|Φm〉〈Φm|B̂|Φn〉

=
∑
n,m

pn

∫ +∞

−∞
dt ei(ω+En−Em

~)t
∣∣∣〈Φm|B̂|Φn〉∣∣∣2

= 2π~
∑
n,m

pn δ(~ω + (En − Em))
∣∣∣〈Φm|B̂|Φn〉∣∣∣2 ≥ 0 . (D.14)

D.2. The Bloch-Redfield quantum master equation

We derive here a useful tool to compute the dissipative dynamics of quantum systems: the Bloch-
Redfield Quantum Master Equation (QME) [45,56,57]. 8

As a first step, we need to move to the interaction picture, to focus just on the evolution induced by
the interaction between system and environment. Given the “non-interacting” Hamiltonian Ĥ0(t) =

ĤS(t) + ĤB, the corresponding free evolution operator is

Û0(t, 0) = Texp

(
− i
~

∫ t

0

dt′ Ĥ0(t′)

)
= Û0S(t, 0)⊗ Û0B(t, 0) , (D.15)

where Texp stands for the time-ordered exponential and Û0S(t, 0) and Û0B(t, 0) are the non-interacting
propagators for the system and the bath respectively. The second equality holds simply because the
system and bath Hamiltonians belong to different Hilbert spaces and therefore commute. The density
matrix in the interaction representation, 9

ρ̂tot,I(t) = Û†0 (t, 0)ρ̂tot(t)Û0(t, 0) , (D.16)

obeys a Liouville-von Neumann equation,

d

dt
ρ̂tot,I(t) =

1

i~

[
ĤSB,I(t), ρ̂tot,I(t)

]
, (D.17)

where ĤSB,I(t) = Û†0 (t, 0)ĤSB(t)Û0(t, 0) is the system-bath Hamiltonian in interaction representation.
Integrating Eq. (D.17) in the interval (0, t) we have

ρ̂tot,I(t) = ρ̂tot,I(0) +
i

i~

∫ t

0

dt1

[
ĤSB,I(t1), ρ̂tot,I(t1)

]
. (D.18)

We can then iterate Eq. (D.18) to express ρ̂tot,I(t1) on the r.h.s., to get

ρ̂tot,I(t) = ρ̂tot,I(0) +
1

i~

∫ t

0

dt1

[
ĤSB,I(t1), ρ̂tot,I(0)

]
− 1

~2

∫ t

0

dt1

∫ t1

0

dt2

[
ĤSB,I(t1),

[
ĤSB,I(t2), ρ̂tot,I(t2)

]]
.

(D.19)

8A totally equivalent derivation, making use of projector techniques, leads to the so-called Nakajima-Zwanzig equation,
a non-Markovian QME which reduces, in the Markovian limit, to the same result we will derive below. This derivation
using projector techniques is similar in spirit to a derivation one could give of the stochastic Schrödinger equation.

9Observe that the density matrix has to do with how the states evolve. In absence of interaction ĤSB, ρ̂tot(t) would
evolve as ρ̂tot(t) = Û0(t, 0)ρ̂tot(0)Û†0 (t, 0), hence ρ̂tot,I(t) = ρ̂tot,I(0). So, the interaction representation “discounts”
the state from the evolution occurring in absence of ĤSB.

266

(Lecture Notes by G.E. Santoro) D.2 The Bloch-Redfield quantum master equation

At this point, we make the crucial assumption of weak coupling. We redefine ĤSB,I → gĤSB,I,
with g � 1 which quantifies the coupling strength. Then, each occurrence of ĤSB,I in Eq. (D.19)
would yield a factor g in front. Moreover, the system’s state is perturbatively expanded in g, so that
ρ̂tot,I(t2) = ρ̂tot,I(0) +O(g) for t2 ∈ [0, t]. We can thus write Eq. (D.19) up to second order in g as

ρ̂tot,I(t) = ρ̂tot,I(0) +
g

i~

∫ t

0

dt1

[
ĤSB,I(t1), ρ̂tot,I(0)

]
− g2

~2

∫ t

0

dt1

∫ t1

0

dt2

[
ĤSB,I(t1),

[
ĤSB,I(t2), ρ̂tot,I(0)

]]
+O(g3) .

(D.20)

To obtain a master equation in differential form, we take a time derivative and trace out the bath
degrees of freedom, getting an evolution equation for the system alone, ρ̂S(t) = TrB (ρ̂tot). After this,
we obtain

d

dt
ρ̂S,I(t) = −g

2

~2

∫ t

0

dt2 TrB

[
ĤSB,I(t),

[
ĤSB,I(t2), ρ̂tot,I(0)

]]
+O(g3) . (D.21)

where the first correction in g, after tracing out the bath, is null due to the assumption that
TrB

(
ρ̂BB̂νI(t)

)
= 0. We can calculate the trace by using Eq. (D.3) and assuming that the sys-

tem and the bath start in a separable state, see Eq. (D.4). The crucial quantity emerging from such
a calculation is the free bath correlation function in Eq. (D.7):

Cνν′(t− t′) = TrB

(
B̂νI(t)B̂ν′I(t

′)ρ̂B

)
, (D.22)

where we have implicitly assumed that ρ̂B(0) is an equilibrium state of the bath. We find:

d

dt
ρ̂S,I(t) = −g

2

~2

∑
ν

([
ÂνI(t), Ŝν,I(t)ρ̂S,I(0)

]
+ H.c.

)
+O(g3) , (D.23)

where we defined the convoluted and integrated system operators

Ŝν,I(t) ≡
∑
ν′

∫ t

0

dt′ Cνν′(t− t′) Âν′I(t′) =
∑
ν′

∫ t

0

dτ Cνν′(τ) Âν′I(t− τ) . (D.24)

In the second equality we simply made the change of variable t− t′ = τ , to get an expression that will
be useful later on. Since, up to zero order in g, ρ̂S,I(t) = ρ̂S,I(0) +O(g), Eq. (D.23) can be equivalently
rewritten, in "closed" differential form, as:

Bloch-Redfield QME.

d

dt
ρ̂S,I(t) = −g

2

~2

∑
ν

([
ÂνI(t), Ŝν,I(t)ρ̂S,I(t)

]
+ H.c.

)
+O(g3) , (D.25)

valid up to second order in g. This is the so-called Bloch-Redfield quantum master equation
in interaction representation. Going back to the Schrödinger picture, Eq. (D.25) becomes

d

dt
ρ̂S(t) =

1

i~

[
ĤS(t), ρ̂S(t)

]
− g2

~2

∑
ν

([
Âν , Ŝν(t)ρ̂S(t)

]
+ H.c.

)
+O(g3) , (D.26)

where the convoluted operator in the Schrödinger picture now reads

Ŝν(t) ≡ Û0(t, 0)Ŝν,I(t)Û
†
0 (t, 0) =

∑
ν′

∫ t

0

dt′ Cνν′(t− t′) Û0(t, t′)Âν′Û
†
0 (t, t′)

=
∑
ν′

∫ t

0

dτ Cνν′(τ) Û0(t, t− τ)Âν′Û
†
0 (t, t− τ) , (D.27)

and the second expression again is obtained by changing variables t− t′ = τ .

i

267

Quantum master equations (Lecture Notes by G.E. Santoro)

Notice that, as a result of the approximations done on ρ̂tot,I(t) and ρ̂S,I(t) to lowest order in g,
we now have an equation that considers the evolution of the system disregarding completely the
evolution of the bath, which is kept unchanged in time. Therefore, this approach is consistent with
the application of the so-called Born approximation [56], i.e. neglecting the build-up of correlations
— in essence, the system and the bath get entangled — between system and bath in time:

ρ̂tot,I(t) ' ρ̂S,I(t)⊗ ρ̂B . (D.28)

Moreover, notice that the QME only depends on the system’s state at time t and not on previous
times. This lack of memory is usually called first Markov approximation. But this does not mean that
Eqs. (D.25) and (D.26) describe a truly Markovian interaction. Indeed, the non-Markovian nature
of such equations is hidden in the fact that the operator Ŝν(t) appearing in Eq. (D.27) depends on
the past through the integral over t′. However, in many physical situations, it is possible to perform
a further simplifying assumption, called the second Markov approximation [56, 57]. Suppose one can
define a characteristic time-scale of the bath τB , after which the bath correlation functions go to zero,
Cνν(τ > τB) ' 0. Then, one often assumes that the system’s dynamics is much slower than the bath
one, so that t � τB in Eq. (D.27). This means that the system’s dynamics is insensible to the short
memory of the bath, leading to an effective Markovian system’s dynamics. In this setting, for all
t� τB , Eqs. (D.24) and (D.27) can be approximated with

Ŝν(t) −→ Ŝ∞ν (t) =
∑
ν′

∫ ∞
0

dτ Cνν′(τ) Û0(t, t− τ)Âν′Û
†
0 (t, t− τ) (D.29)

Ŝν,I(t) −→ Ŝ∞ν,I(t) =
∑
ν′

∫ ∞
0

dτ Cνν′(τ) Âν′I(t− τ) , (D.30)

where we sent the upper limit of the integral in τ to infinity. Within this approximation, we can now
regard Eqs. (D.25) and (D.26) as describing a Markovian dynamics. 10

A very important property of Eq. (D.26) is that it preserves the trace of the density matrix. Indeed,

d

dt
TrS (ρ̂S(t)) = TrS

(
d

dt
ρ̂S(t)

)
= 0 , (D.31)

the last equality coming from the fact that in Eq. (D.26) only commutators appear and their trace
must be zero because of the cyclic property of the trace. Moreover, observe that the right-hand side
of Eq. (D.26) is manifestly Hermitean, which implies that the Hermitean nature of ρ̂S(t) is evidently
preserved during the evolution. Unfortunately, the positivity of the system’s density matrix is not a
priori preserved by the Bloch-Redfield quantum master equation. However, there are some special
cases in which one can write the Bloch-Redfield QME in Lindblad form, thus guaranteeing positivity
preservation. This topic is discussed further below.

D.3. The secular approximation and the Libdblad form

Under further specific approximations, it is possible to cast the Bloch-Redfield QME Eq. (D.26)
in Lindblad form, thus ensuring positivity preservation. For example, a bath with no memory at all,
i.e. τB → 0, leads almost straightforwardly to a Lindblad QME. However, this is an extreme limit
and we will not use it. On the other hand, one can also recover the Lindblad form by applying the
so-called Rotating-Wave Approximation (RWA) [56,57]. Despite some similarities, there may be
different ways of performing the RWA, which lead to different equations. For systems with sufficiently
slow drivings (or simply with static Hamiltonians), one may employ the RWA by looking at the
system energy levels [60], as detailed in Sec D.3.1. For periodic drivings, one can exploit the Floquet
representation of states and perform the RWA according to the system’s quasi-energies [61,62].
10Notice that in general t does not disappears from Ŝ∞ν (t), because the system Hamiltonian might depend on time. If

there is no time dependence of ĤS(t), then Ŝ∞ν is time-independent.

268

(Lecture Notes by G.E. Santoro) D.3 The secular approximation and the Libdblad form

D.3.1. Rotating-wave (or secular) approximation

We will consider here a time-independent system and show how we can get a Lindblad QME with
the RWA [56,57].

We start from the QME in interaction representation, Eq. (D.25). We work in the basis of system
eigenstates {|a〉}, where ĤS |a〉 = Ea |a〉, inserting identities 1 =

∑
a |a〉〈a| to get

ÂνI(t) = e
i
~ Ĥ

StÂνe−
i
~ Ĥ

St =
∑
ab

ei(Ea−Eb)t/~ |a〉〈a| Âν |b〉〈b|

=
∑
ab

e−iωbatA∗ν,baL̂
†
ba , (D.32)

where ~ωba = Eb − Ea and:

Aν,ab = 〈a|Âν |b〉 = A∗ν,ba and L̂ab = |a〉〈b| = L̂†ba . (D.33)

Similarly, we write:
Âν′I(t− τ) =

∑
a′b′

ei(Ea′−Eb′)(t−τ)/~Aν′,a′b′ L̂a′b′ , (D.34)

hence:

Ŝ∞ν,I(t) =
∑
ν′

∫ ∞
0

dτ Cνν′(τ) Âν′I(t− τ)

=
∑
ν′

∑
a′b′

(∫ ∞
0

dτ Cνν′(τ)ei(Eb′−Ea′)τ/~
)
ei(Ea′−Eb′)t/~Aν′,a′b′ L̂a′b′

=
∑
ν′

∑
a′b′

Γνν′(ωb′a′) e−iωb′a′ tAν′,a′b′ L̂a′b′ . (D.35)

where we have defined the one-sided Fourier transform: 11

Γνν′(ω) =

∫ ∞
0

dτ Cνν′(τ) eiωτ , (D.36)

and posed ~ωb′a′ = Eb′−Ea′ . We can insert these expressions in the Bloch-Redfield QME in interaction
picture, obtaining

d

dt
ρ̂S,I(t) = −g

2

~2

∑
νν′

∑
aba′b′

(
e−i(ωba+ωb′a′)tA∗ν,baAν′,a′b′Γνν′(ωb′a′) ×

×
[
L̂†ba, L̂a′b′ ρ̂S,I(t)

]
+ H.c.

)
.

(D.37)

Let us take a look at the exponential e−i(ωba+ωb′a′)t = ei(Ea−Eb+Ea′−Eb′)t/~. If t is large enough the
corresponding factor in the master equation would oscillate fast, and average out during the evolution,
unless there is a precise matching of the energies. Therefore, it would be legitimate to neglect these
terms, performing the so-called rotating-wave approximation (RWA), sometimes also referred to as
secular approximation [56, 57]:

ei(Ea−Eb+Ea′−Eb′)t/~ = e−i(ωba+ωb′a′)t RWA−→ δωba +ωb′a′ ,0 . (D.38)

We also recall that Γνν′ can be expressed in terms of the ordinary Fourier transform γνν′ and its
Hilbert transform σνν′ (both Hermitean matrices):

Γνν′(ω) =
1

2
γνν′(ω) + iσνν′(ω) . (D.39)

11Notice that the second Markov approximation consisted in having the upper limit in the integral to∞. In the original
derivation, the upper limit would be t.

269

Quantum master equations (Lecture Notes by G.E. Santoro)

This suggests defining:

γba,a′b′ =
g2

~2

∑
νν′

δωb′a′+ωba,0A
∗
ν,baAν′,a′b′ γνν′(ωb′a′)

=
g2

~2

∑
νν′

∑
ω

δωb′a′ ,ω δωab,ω A
∗
ν,baAν′,a′b′ γνν′(ω) , (D.40)

where the second form is useful to show that this matrix is Hermitean and positive. 12

The terms involving σνν′ partly cancel upon taking the complex conjugate. After exchanging some
dummy indices and using the Hermitean nature of all the quantities involved we arrived at a final
expression of the form:

d

dt
ρ̂S,I(t) =

1

i~

[
ĤLS, ρ̂S,I(t)

]
+
∑
ab,a′b′

γba,a′b′

(
L̂a′b′ ρ̂S,I(t) L̂

†
ba −

1

2

{
L̂†ba L̂a′b′ , ρ̂S,I(t)

})
, (D.42)

where we observe that there is a Lamb-shift term originating from the σνν′ terms (taking due notice
to the fact that L̂†baL̂a′b′ = δb,a′L̂ab′):

ĤLS =
g2

~
∑
ab

δωba,0

(∑
νν′

∑
b′

A∗ν,b′aAν′,b′bσνν′(ωbb′)
)
L̂ab . (D.43)

Notice that the Lamb-shift term couples levels which are precisely degenerate in energy. Hence, if
you switch representation, from interaction to Schrödinger, the phase factors cancel. Moreover, you
immediately conclude that it commutes with the system Hamiltonian ĤS and simply splits the possible
degeneracy of the unperturbed levels.

We can now rewrite Eq. (D.42) in the Schrödinger representation by using

d

dt
ρ̂S(t) =

1

i~

[
ĤS, ρ̂S(t)

]
+ Û0S(t, 0)

d

dt
ρ̂S,I(t)Û

†
0S

(t, 0) ,

and the free time evolution operator Û0S(t, 0) = e−
i
~ Ĥ

St, which however does not bring any extra
phase-factors, due to the energy conservation constraints intrinsic in the RWA.

Bloch-Redfield RWA-QME. The final form of the Bloch-RedfieldRWA-QME in Schrödinger
representation is therefore:

d

dt
ρ̂S(t) =

1

i~

[
ĤS + ĤLS, ρ̂S(t)

]
+
∑
ab,a′b′

γba,a′b′

(
L̂a′b′ ρ̂S(t) L̂†ba −

1

2

{
L̂†ba L̂a′b′ , ρ̂S(t)

})
. (D.44)

Such QME can be brought to a standard form — the so-called Lindblad form — by diagonalizing
the positive Hermitean matrix of γba,a′b′ .

i

12Indeed:

∑
ba,a′b′

x∗ba γba,a′b′ xa′b′ =
g2

~2

∑
νν′

∑
ω

x∗ν(ω)︷ ︸︸ ︷(∑
ba

δωab,ωx
∗
baA
∗
ν,ba

)
γνν′ (ω)

xν′ (ω)︷ ︸︸ ︷(∑
a′b′

δωb′a′ ,ωxa′b′Aν′,a′b′
)

=
g2

~2

∑
ω

∑
νν′

x∗ν(ω) γνν′ (ω)xν′ (ω) ≥ 0 , (D.41)

where we have used the fact that γνν′ is positive for any ω.

270

(Lecture Notes by G.E. Santoro) D.3 The secular approximation and the Libdblad form

D.3.2. The Lindblad form

The matrix γba,a′b′ is a positive Hermitean d2
S×d2

S matrix, where dS = dim(HS). We can therefore
diagonalize it with a unitary transformation U:

U†γU = diag(γµ) ,

where γµ > 0 are the eigenvalues. One can show that:∑
ab,a′b′

L̂†baγba,a′b′L̂a′b′ =
∑
µ

L̂†µL̂µ , (D.45)

where
L̂ab =

∑
µ

Uab,µL̂µ (D.46)

and the inverse is simple.

Lindblad form of the Bloch-Redfield RWA-QME. One can show that the full QME can
be put in the form:

d

dt
ρ̂S(t) =

1

i~

[
ĤS + ĤLS, ρ̂S(t)

]
+
∑
µ

γµ

(
L̂µ ρ̂S(t) L̂†µ −

1

2

{
L̂†µ L̂µ, ρ̂S(t)

})
. (D.47)

which is the Lindblad form of the Bloch-Redfield QME obtained after the RWA is performed.

i

D.3.3. Non-degenerate spectrum and population dynamics

The final possible twist of the story is when the system ĤS has a non-degenerate spectrum, which
implies:

δωb′a′ ,ωab =⇒ δa,bδa′,b′ + δa,b′δa′,b(1− δa,b) , (D.48)

where the second term with (1− δa,b) prevents the double counting of the case where a = b = a′ = b′.
As a consequence, the RWA-QME for non-degenerate spectrum in Schrödinger representation is:

d

dt
ρ̂S(t) =

1

i~

[
ĤS + ĤLS, ρ̂S(t)

]
+

a 6=b∑
ab

γba,ba

(
L̂ba ρ̂S(t) L̂†ba −

1

2

{
L̂†ba L̂ba, ρ̂S(t)

})
+

+
∑
ab

γaa,bb

(
L̂bb ρ̂S(t) L̂†aa −

1

2

{
L̂†aa L̂bb, ρ̂S(t)

})
.

(D.49)

and the Lamb-shift term reads:

ĤLS =
g2

~
∑
a

(∑
νν′

∑
b′

A∗ν,b′aAν′,b′aσνν′(ωab′)
)
L̂aa . (D.50)

Notice that the first term, involving γba,ba, is responsible for transitions between energy levels, since we
have a 6= b. The second term, involving γaa,bb, is a sum of terms proportional to γνν′(ω = 0): it does
not involve transitions (indeed L̂†aa = L̂aa) and is only responsible for the so-called pure dephasing.

Furthermore, it can be shown that Eq. (D.49) brings to a decoupling of the dynamics of populations
and coherences of the density matrix [57], in the form of classical rate equations for the populations.

271

Quantum master equations (Lecture Notes by G.E. Santoro)

Indeed, one can show that the equation for the diagonal elements (ρ̂S)aa(t) = Pa(t) — known as
populations — has the following form:

d

dt
Pa(t) =

6=a∑
a′

γa←a′Pa′ −
(6=a∑

a′

γa′←a

)
Pa

=
∑
a′

γa←a′Pa′ −
(∑

a′

γa′←a

)
Pa (D.51)

where

γa←a′
def
= γaa′,aa′ (D.52)

and the second expression uses the fact that the diagonal a′ = a term cancels from the two contribu-
tions. Notice that this equation looks precisely as a classical master equation would look like, i.e., the
diagonal matrix elements of the density matrix are totally independent of the off-diagonal elements
(ρ̂S)ab(t), the so-called coherences, and obey a classical master equation, with rates γa←a′ calculated
quantum-mechanically.

D.4. Application to a two-level system

Suppose we have a generic two-level system. Its Hamiltonian, neglecting a constant energy shift
proportional to the identity, can always be written in terms of Pauli matrices as

ĤS = h · σ̂ , (D.53)

where h is a real three-component vector h and σ̂ is the vector of Pauli matrices. The two energies
are ±E with E = |h|, hence we can define the energy splitting ~ω0 = ∆E = 2|h|.

We consider a coupling to an environment, with interaction ĤSB = Â⊗ B̂ and the operator acting
on the system Hilbert space is in a generic direction in spin space

Â = λ · σ̂ , (D.54)

with |λ| = 1.

For this system, we are now going to write the Bloch-Redfield RWA-QME. We will proceed with
two techniques. The first is computationally convenient, and amounts to writing the QME in a Bloch
vector representation. The second is physically more transparent, and identifies the relevant Lindblad
operators appearing in the problem.

We start from Eq. (D.49) which we can recast in the equivalent form:

d

dt
ρ̂S =

1

i~

[
ĤS, ρ̂S

]
+
∑
ab

γba,ba 〈a|ρ̂S|a〉 |b〉〈b| +

b6=a∑
a,b

γaa,bb |b〉〈b| ρ̂S |a〉〈a|

− 1

2

∑
a

(∑
b

γba,ba

)(
|a〉〈a| ρ̂S + H.c.

)
,

(D.55)

where we recall that |a〉 is an eigenstate of ĤS and the second (off-diagonal) term, for a two-level
system, restricts b = ā, where |ā〉 is the opposite eigenstate.

In order to go on with the calculation, it is very convenient to write all the operators in Bloch

272

(Lecture Notes by G.E. Santoro) D.4 Application to a two-level system

notation. 13 We will write the time-evolved system state as

ρ̂S(t) =
1

2
(1 + p(t) · σ̂) (D.56)

and the system’s eigenstate projectors as

|a〉〈a| = 1

2
(1 + pa · σ̂) . (D.57)

This will be particularly convenient because the ground and excited states of the two-level system in
Eq. (D.53) are simply represented by

pg = − h
|h|

pe = +
h
|h|

.

(D.58)

There are some quantities we need to compute. Let us start with

|a〉〈a| ρ̂S =
1

4
(1 + pa · σ̂) (1 + p · σ̂) =

=
1

4

[(
1 + pa · p

)
1 +

(
p + pa + i(pa × p)

)
· σ̂
]

and, consequently,

〈a|ρ̂S|a〉 = Tr (|a〉〈a| ρ̂S) =
1

2

(
1 + p · pa

)
.

The last term in Eq. (D.55) shows factors like

|b〉〈b| ρ̂S |a〉〈a| =
1

8

[(
1 + (pb + pa) · p + pb · pa + i(pb × p) · pa

)
1 +

+
(

(1 + pa · p)pb + (1 + pb · p)pa + (1− pb · pa)p +

+ i (pb × p + p× pa + pb × pa)
)
· σ̂
]
,

which simplify considerably if we take b = ā, since this implies pā = −pa, leading to

|ā〉〈ā| ρ̂S |a〉〈a| =
1

4

(
p− (pa · p)pa − ipa × p

)
· σ̂ .

Finally, the rate terms to be computed are

γba,ba =
g2

~2
γ(ωab) 〈a| (λ · σ̂) |b〉 〈b| (λ · σ̂) |a〉 =

=
g2

~2
γ(ωab) Tr

(
|a〉 〈a| (λ · σ̂) |b〉 〈b| (λ · σ̂)

)
=

=
g2

~2
γ(ωab)

1

2

(
1− pa · pb + 2 (λ · pa)(λ · pb)

)
,

γaa,bb =
g2

~2
γ(0) 〈a| (λ · σ̂) |a〉 〈b| (λ · σ̂) |b〉 =

=
g2

~2
γ(0) Tr

(
(λ · σ̂) |a〉 〈a|

)
Tr
(

(λ · σ̂) |b〉 〈b|
)

=

=
g2

~2
γ(0) (λ · pa)(λ · pb) .

13The following identity will be extremely useful to carry out the calculations:

(a · σ̂) (b · σ̂) = (a · b) 1 + i (a× b) · σ̂

273

Quantum master equations (Lecture Notes by G.E. Santoro)

With all these ingredients, one can now compute all the terms appearing in Eq. (D.55). Putting all
the pieces together, we get

ṗ =
2

~
h× p− γR

h(h · p)

|h|2
− γD

(
p− h(h · p)

|h|2

)
− γR

h
|h|

tanh(β|h|) . (D.59)

Here, the first term describes the coherent evolution free precession of p around h, the second the
relaxation of its longitudinal component p‖ = h(h ·p)/|h|2, the third the decoherence of the transverse
component p⊥ = p− p‖, and last its steady-state thermal equilibrium value.

The relaxation and decoherence rates γR and γD, calculated within the usual weak-coupling assump-
tion [45,60,63], are given by:

γR =

(
1− (λ · h)2

|h|2

)
γ(ω0) + γ(−ω0)

~2
(D.60a)

γϕ =
(λ · h)2

|h|2
2γ(0)

~2
(D.60b)

γD =
(γR

2
+ γϕ

)
(D.60c)

where ω0 = 2|h|/~ is the free precession frequency and γ(ω) is the Fourier transform of the free
thermal bath correlation function 14

γ(ω) =

∫ +∞

−∞
dt eiωt〈B̂(t)B̂(0)〉B , (D.61)

for which one can show [60] that:

γ(0) =
2π

~
kBT lim

ω→0

J(ω)

ω
(D.62)

and
γ(ω0) + γ(−ω0) = 2πJ(ω0) coth(β|h|) . (D.63)

Notice that the direction λ of the coupling in spin space influences γR and γϕ. In particular, for λ
in the direction of h, relaxation would be absent. Notice also that the so-called pure-dephasing γϕ
constant depends crucially on the choice of the spectral function J(ω) of the bath: it is not well-defined
(formally divergent) for a sub-Ohmic bath J(ω) ∝ ων with ν ∈ [0, 1), it is finite and non-zero for the
Ohmic case ν = 1, while it vanishes in the super-Ohmic case ν > 1.

D.4.1. Lindblad form for the two-level system

It is instructive to redo the same calculation by looking for the explicitly diagonal Lindblad form.
We observe that the rate constants are (recall that ω0 = ωeg = −ωge):

γee,ee =
γ(0)

~2
(λ · pe)2 =

γ(0)

~2
(λ · pg)2 = γgg,gg ≡

γϕ
2

γee,gg =
γ(0)

~2
(λ · pe)(λ · pg) = γgg,ee = −γϕ

2

γeg,eg =
γ(−ω0)

~2
(1− (λ · pg)2) ≡ γe←g

γge,ge =
γ(+ω0)

~2
(1− (λ · pg)2) ≡ γg←e

(D.64)

14Observe that in both terms we have the Fourier transform of the symmetrised correlation function, SB(ω) = γ(ω) +

γ(−ω). γϕ is known as pure-dephasing rate.

274

(Lecture Notes by G.E. Santoro) D.4 Application to a two-level system

If we assume the ordering 1 = eg, 2 = ge, 3 = ee, 4 = gg we can write the 4× 4 matrix γ as:

γ =

γe←g 0 0 0

0 γg←e 0 0

0 0 +
γϕ
2 −γϕ2

0 0 −γϕ2 +
γϕ
2

 . (D.65)

Evidently, the only 2 × 2 block that needs to be diagonalised is that on the bottom block, which is
γϕ
2 (1− σ̂x), with eigenvalues γϕ and 0. Evidently the full 4×4 matrix U that diagonalises the problem
is:

U =

1 0 0 0

0 1 0 0

0 0 + 1√
2

+ 1√
2

0 0 − 1√
2

+ 1√
2

 =⇒ U†γU =

γe←g 0 0 0

0 γg←e 0 0

0 0 γϕ 0

0 0 0 0

 . (D.66)

The 4 associated Lindblad operators are:

γ1 = γe←g → L̂1 = L̂eg = σ̂+

γ2 = γg←e → L̂2 = L̂ge = σ̂−

γ3 = γϕ → L̂3 = 1√
2
(L̂ee − L̂gg) = 1√

2
σ̂z

γ4 = 0 → L̂4 = 1√
2
(L̂ee + L̂gg) = 1√

2
1

(D.67)

D.4.2. Decoherence and relaxation towards equilibrium

Let us visualise the numerical results obtained for convenience with a very specific choice of Hamil-
tonian and coupling:

Ĥtot =
~ω0

2
σ̂z + (sin θ σ̂x + cos θ σ̂z)⊗ B̂ + ĤB , (D.68)

where ~ω0 is the gap between the two system’s eigenstates, while θ tunes the coupling direction with
respect to the system energy basis.

We are interested in the dynamics of the system starting from a generic initial state ρ̂S(0). We
will now see the role of the two different time-scales which govern the system’s time-evolution [63].
On the one hand, we have the so-called dephasing or decoherence, i.e. the off-diagonal elements of
the density matrix in the system energy eigenbasis tend to zero after a characteristic time-scale τdecoh.
This means that the system tends to become a mixed state, losing the quantum superposition between
the energy eigenstates. On the other hand, the populations of the density matrix, again in the system
energy eigenbasis, tend to acquire a Boltzmann distribution depending on the bath temperature. This
phenomenon is called relaxation and it also takes place within a proper relaxation time-scale τR. The
interplay of relaxation and dephasing leads the system to reach a thermal steady state after a transient,

ρ̂S(t→∞) =
e−βĤ

S

Tr(e−βĤS)
, (D.69)

where β is the bath inverse temperature. Notice that ρ̂S(t → ∞), written in the system energy
eigenbasis, is diagonal.

It is instructive to visualize the processes of dephasing and relaxation on the Bloch sphere. We
express the system density matrix in the energy eigenbasis as

ρ̂eig
S (t) =

1

2
(1 + p(t) · σ̂) , (D.70)

275

Quantum master equations (Lecture Notes by G.E. Santoro)

rx ry

rz

(a)

rx ry

rz

(b)

rx ry

rz

(c)

Figure D.1.: Dynamics of a spin-1/2 under the spin-boson Hamiltonian for (a) no dissipation, (b) pure-
dephasing and (c) relaxation plus decoherence. In (a), the spin oscillates coherently. In (b), the coherences of
the density matrix go to zero, but the populations do not change. Plots realized using the Qutip package [64,65].

where p(t) = (px(t), py(t), pz(t)) and σ̂ = (σ̂x, σ̂y, σ̂z). By using λ = (sin θ, 0, cos θ) and h = ~ω0

2 ẑ, we
find that:

ṗ = ω0 ẑ× p−

 γR

2 + γϕ 0 0

0 γR

2 + γϕ 0

0 0 γR

 · p− γRp
eq
z ẑ . (D.71)

The equation for pz(t) is evidently decoupled and has solution

pz(t) = pz(0) e−t/τR + peq
z , (D.72)

where peq
z = tanh(β~ω0/2) characterises the thermal equilibrium for the populations. The other two

components, px and py, are coupled by the coherent dynamics and have solution:

p±(t) = px(t)± ipy(t) = p±(0) e±iω0t−t/τdecoh . (D.73)

Here τdecoh and τR are respectively the decoherence and relaxation time-scales, associated to the
following corresponding rates [63]

γR =
1

τR

=
γ(ω0) + γ(−ω0)

~2
sin2 θ , (D.74)

γdecoh =
1

τdecoh

=
1

2
γR + γϕ =

1

2
γR +

2γ(0)

~2
cos2 θ . (D.75)

These results are illustrated in Fig. D.1, where we show the dissipative dynamics of the Bloch vector
p(t), starting from a generic initial pure state, indicated by the red arrows. Recall that pure states
correspond to vectors that point at the surface of the Bloch sphere while, if the state becomes mixed,
the associated vector points inside the sphere. Panel (a) shows non-dissipative dynamics: the state is
always pure and thus the Bloch vector always points at the surface of the sphere, precessing at fixed
frequency ω0 = ∆E/~. Panel (b) illustrates the peculiar pure-dephasing case, obtained for θ = 0:
the coherent oscillations of the previous case are damped in time, as the Bloch vector goes deeper
and deeper inside the sphere. However, the value of pz(0) never changes, because populations cannot
be modified by the interaction with the bath. Panel (c) eventually displays a generic relaxation plus
decoherence process (θ > 0), where now pz(t) relaxes to the equilibrium value peq

z .

Whenever the system Hamiltonian is time-dependent, the phenomena of dephasing and relaxation
still occur, but in general it is more difficult to disentangle them. On the one hand, their time-scales
are no more constant and the dynamics is more complicated than a pure exponential; on the other
hand, the energy eigenbasis also depends on time.

276

E. Classical and Quantum Error Correction

Here I present some more advanced material on classical and quantum error correction. The main
references are Ref. [50] for classical error correction, and Nielsen-Chuang [3] and Preskill’s lecture
notes, for quantum error correction.

E.1. Linear codes in classical error correction

Here I follow, with minor modifications, a standard reference for classical coding and error correc-
tion: the book by MacWilliams and Sloane [50].

Example 1: A parity check code. I start considering the encoding of k = 3 bits u = (u1, u2, u3)T ∈
B3, by adding reduntant information, into n = 6 bits (codewords) x = (x1, · · · , x6)T ∈ B6 provided
we enforce 6 − 3 = 3 independent constraints, here in the form of parity checks. More precisely, we
take the first 3 bits of the codeword x to coincide with the 3 message bits: xj = uj for j = 1, 2, 3. The
remaining 3 bits of x (i.e., x4, x5, x6) perform/enforce the following parity checks (in integer arithmetic
modulo-2) for the message bits:

x2 + x3 + x4 = 0

x1 + x3 + x5 = 0

x1 + x2 + x6 = 0

(mod 2) . (E.1)

These 3 equations can be written more compactly in terms of a 3× 6 matrix H as follows:

Hx =

 0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

x =
[
A|I3

]
x = 0 (mod 2) , (E.2)

where we have highlighted a (here 3 × 3) matrix A which will play a role in the following. It takes
little algebra to show that the 23 = 8 possible messages u generates the corresponding 8 codewords 1

u x
000 000 000

001 001 110

010 010 101

011 011 011

100 100 011

101 101 101

110 110 110

111 111 000

(E.3)

Clearly, transmitting a codeword of length n = 6 to convey the information of a k = 3 bit message,
means that the rate of transfer of information is R = k/n = 0.5 here.

1For a more compact notation, rather then writing, say, x = (0, 0, 1, 1, 1, 0)T, I will denote such an x as (001 110). The
same condensed notation is applied to the message vectors u. I also add a small space, for visibility purposes, to
separate the message bits from the parity check bits in the codewords x.

277

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

The linear code [n,k]. Let u ∈ Bk be k-bit messages. For n ≥ k, we consider codewords
x ∈ Bn such that xj = uj for j = 1 · · · k, while the remaining n−k bits xk+1 · · ·xn enforce parity
checks through the following linear n− k linear equations

Hx =
[
A|In−k

]
x = 0 (mod 2) , (E.4)

where H = [A|In−k] is an (n− k)× n check matrix, with n− k linearly independent rows, A is an
(n− k)× k fixed matrix and In−k the identity (n− k)-dimensional matrix. We define the code C

to be the set of x satisfying these linear equations:

C = {x ∈ Bn | Hx = 0 (mod 2)} . (E.5)

Equivalently, the code is defined to be the kernel of H, C = ker(H). a n is the length of the code,
k its dimension (there are 2k codewords), and R = k/n is the transmission rate or efficiency. The
check matrix H in the form given above is known as the standard form: we will see that there
are equivalent ways of expressing the parity check equations.
aA code encoding k bits has 2k possible codewords: hence the kernel of H must be k-dimensional. By the

rank-nullity theorem of linear algebra:

rank(H) + dim(Ker(H)) = n ,

and therefore we require that r = rank(H) is r = n− k. Hence H must have r = n− k independent rows.

i

Example 2: Repetition code with k = 1 and n = 3. Consider the following 2 × 3 check matrix H
with associated linear equations:

Hx =

[
1 1 0

1 0 1

]
x =

[
A|I2

]
x = 0 (mod ()2) . (E.6)

Here the message has a single bit u1 = 0, 1. As usual x1 = u1 and bits x2, x3 require

x1 + x2 = 0 & x1 + x3 = 0 (mod ()2) ,

i.e., u1 = x1 = x2 = x3. 2 Hence the two codewords are u1 = 0 → x1 = (000) and u1 = 1 → x2 =

(111). This is nothing but a repetition code with n = 3, with a transmission rate R = 1/3.

Example 3: Repetition code with k = 1 and n = 5. Consider the following (n− k, n) = 4× 5 check
matrix H with associated linear equations:

Hx =

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

x =
[
A|I4

]
x = 0 (mod ()2) . (E.7)

Here the message has a single bit u1 = 0, 1. As usual x1 = u1 and bits x2, x3, x4, x5 require

x1 + x2 = 0 x1 + x3 = 0 x1 + x4 = 0 x1 + x5 = 0 (mod 2) ,

i.e., u1 = x1 = x2 = x3 = x4 = x5. Hence the two codewords are u1 = 0 → x1 = (00000) and
u1 = 1 → x2 = (11111). This is nothing but a repetition code with n = 5, with a transmission rate
R = 1/5.

2Recall that in arithmetic modulo 2, xj = −xj .

278

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

Example 4: A [4, 3] linear code with a single check. Consider the check matrix with k = 3, n = 4

given by
H =

[
1 1 1 1

]
The check equations imply that x4 = x1 + x2 + x3 (mod 2). The transmission rate is R = 3/4. The
23 = 8 codewords are all strings with an even number of 1s: 0000, 1001, 0101, 1100, 0011, 1010, 1100,
1111.

General procedure to generate the codewords. We now show that there is a straightforward pro-
cedure to generate the 2k codewords of an [n, k] code. Let us assume that the check matrix is in the
standard form H = [A|In−k]. We know that the first k components of x are simply the messages u.
The (n− k) check equations read therefore:

0 = [A|In−k]

x1

...

xk
xk+1

...

xn

= A

 x1

...

xk

+

 xk+1

...

xn

 =⇒

 xk+1

...

xn

 = −A

 x1

...

xk

 . (E.8)

This shows that we can generate the codewords as follows.

Generator matrix G. The codewords x can be generated from the messages u via the matrix
equation:

x = Gu =

[
Ik
−A

]
u (E.9)

The matrix G is an (n × k) matrix constructed from H — more properly, from A —, and is
known as the generator matrix of the code. The equation x = Gu immediately implies that the
codewords x are all possible linear combinations with the coefficients given by u = (u1, · · · , uk)T

of the (linearly independent) k columns of G. In particular, the k columns of G are codewords.
Notice that for binary codes −A = A. Since Hx = 0, it is simple to show that:

H G = [0](n−k)×k . (E.10)

i

The generator matrix of the [6, 3] code in our Example 1 is given by:

G =

1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

(E.11)

Notice that the 3 columns of G are the codewords associated to, respectively, u1 = (1, 0, 0)T, u2 =

(0, 1, 0)T and u3 = (0, 0, 1)T, see Eq. (E.3).

Exercise E.1. Show that by taking all possible messages u, you obtain from the previous G all
codewords in Eq. (E.3).

279

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Exercise E.2. Construct the generator matrix G for the repetition code with k = 1 and n = 3, and
k = 1 and n = 5 (Examples 2 and 3, above).

Equivalent, non-standard forms of H and G. Interestingly, any maximal set of k linearly independent
codewords can be used as columns of the generator matrix, although this in general does not lead to
the standard form of G described above. Symmetrically, if h denotes a parity check vector such that
h · x = 0 (i.e., one of the rows of the matrix H), then you can argue that any maximal set of n − k
parity check vectors can be used to write the rows of a totally equivalent matrix H. See Sec. E.1.3 for
an illustration of this for the case of the Hamming code.

Linearity. If x1 and x2 denote codewords, than x1 + x2 is a codeword, since:

H (x1 + x2) = Hx1 + Hx2 = 0 .

The construction we gave for binary codes, actually holds also for codes defined over other finite fields,
for instance F = {0, 1, 2}, which gives the ternary code. In that case, if c is an element of the field, cx
is also a codework. For the ternary codes, for instance, 2x = −x is also a codework.

The codeword space C. The space of codewords x, or simply the code, is therefore an additive
group, and a vector space over the field, which we will denote by C.

i

E.1.1. Errors induced by the communication channel.

Suppose that, because of channel noise, the transmitted codeword x is received as y = (y1, · · · , yn)T,
with y = x + e, where e = (e1, · · · , en)T is the error vector. The receiver must decide, based on
y, which codeword x was actually transmitted, i.e., which error e was introduced by the channel.
The strategy is to chose the most likely error vector e. To describe that, we need two important
definitions.

Hamming distance and weight. The (Hamming) distance dist(x,y) between two vectors x
and y, is the number of places where they differ. For instance, dist(10111, 00101) = 2. This defini-
tion also works also for non-binary vectors, e.g., dist(0122, 1220) = 3. a The (Hamming) weight
wt(x) of a vector x is the number of its non-zero components xj . For instance, wt(10111) = 4

and wt(0122102) = 5. Obviously, distance and weight are related:

dist(x,y) = wt(y− x) , (E.12)

because both express the number of places where x and y differ.
aNotice, however, that for a field with elements {0, 1, 2, 3, 4}, dist(0144, 0142) = 1.

i

The decoding problem. Let us consider again the binary case. Assume that errors can occur inde-
pendently on the different bit, and that p < 1

2 is the probability that an error occurs. If we have n = 5,
for instance, Prob(e = 00000) = (1−p)5, Prob(e = 01000) = p(1−p)4, Prob(e = 10100) = p2(1−p)3,
etc. In general, if v is a vector of weight m, then Prob(e = v) = pm(1 − p)n−m. Obviously, the
probabilities of errors are ordered as:

(1− p)n > p(1− p)n−1 > p2(1− p)n−2 > · · · ,

280

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

which implies that errors with least weight have larger probability. The obvious strategy for decoding,
known as nearest-neighbor decoding, is then to pick up e which has least weight:

Given y =⇒ Find x such that: min
x

(dist(x,y)) = min
x

(wt(y− x)) = min
x

(wt(e)) . (E.13)

A brute-force approach, however, is impossible for large k. Given a received y, I should calculate the
possible 2k error vectors e by calculating e = y− x with respect to all possible codewords x, to pick
up the error with least weight.

Fast decoding is needed. One of the goals of coding theory is to find decoding methods
which are faster than the brute-force approach of checking which of the 2k possible codewords x
is the nearest-neighbor of the received y.

!

Minimum distance of a code. There is a third important parameter of a code, beyond its length n
and its dimension k: the minumum distance d between its codewords.

Distance d of a code C. The distance d of a code is the minimum distance between its
codewords:

d = min
(
dist(x1,x2)

)
with x1,x2 ∈ C, x1 6= x2 . (E.14)

To find the minimum distance, it is not necessary to compare all pairs of different codewords.
Indeed, since x1 − x2 = w is also a codeword, we can calculate d as the minimum weight of any
non-zero codeword:

d = min
w∈C

(
wt(w)

)
with w 6= 0 . (E.15)

From now on, we denote by [n, k, d] a code of lenght n, dimension k, distance d.

i

The [6, 3] code in our Example 1 has d = 3. It is a [6, 3, 3] linear code.

How many errors can be corrected? Here comes an important result.

Errors that can be corrected/detected. A code with minimum distance d can correct⌊
d−1

2

⌋
errors. If d is even, it can correct d

2 − 1 errors, but it can detect d
2 errors.

The proof of this result is not difficult. Suppose first that d is odd. Let r = (d − 1)/2 be the
radius of a sphere around each codeword. a Spheres around different codewords do not overlap,
because the minimum distance between codewords is d = 2r + 1. Then, if x is transmitted and
y = x+e is received, with wt(e) ≤ r, then y belongs to the sphere of x and the nearest-neighbor
decoding will correct y → x. Now suppose that d is even, so that

⌊
d−1

2

⌋
= d−2

2 = d
2 − 1. Take

r = d
2 − 1 and draw non-overlapping (since d = 2r + 2) spheres around each codeword: once

again, up to r = d
2 − 1 errors are corrected by the nearest-neighbor decoding. What happens

if d is even and there are d
2 error is peculiar: the received message y is precisely in between

two neighboring spheres, and you will be unable to say which x I should associate to y.
Nevertheless, we are sure that there was an error: hence, we say we can detect if d2 errors occur.
If more than d

2 errors occur, the received vector y might be closer to some other codeword than
the correct x, and the decoder might be fooled.
aA sphere of radius r around x consists of all w ∈ C such that dist(w,x) ≤ r.

i

281

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Error detection vs error correction. Sometimes, we might adopt the extreme approach of
simply detecting if an error occurred, which can be done with simple techniques — based on
the concept of syndrome, which we are going to explain —, and, if so, ask for re-transmission of
the message, rather than embarking in a more costly error-correction procedure.

!

The [6, 3] code in our Example 1 has d = 3. It is a [6, 3, 3] linear code, which can correct 1 error.

E.1.2. More about decoding: cosets and syndromes.

The coset. Let C be a linear code [n, k]. For any vector a ∈ Bn, the set

a + C = {a + x : x ∈ C} (E.16)

is the coset (or translate) of C. It contains 2k elements. Every vector a ∈ Bn is in some coset, for
instance a+C. a a and b are in the same coset if a−b ∈ C. As for groups, it is simple to prove
that cosets are disjoints, and all together — there are nc = 2(n−k) different cosets — exhaust
all possible vectors in Bn:

Bn = C ∪ (a1 + C) ∪ · · · ∪ (anc−1 + C) . (E.17)

Everything we said applies also to finite fields F = {1, 2, · · · , q} with simple modifications. Each
coset has qk elements and there are nc = qn−k different cosets.
aIf a ∈ C, the coset coincides with C.

i

The standard array. Let us consider, for simplicity, binary codes. Let c = 2k be the number of
codewords. We can in principle lists all the codewords and cosets as follows:

x(1) = 0 x(2) · · · x(c) ← C

a1 + x(1) a1 + x(2) · · · a1 + x(c) ← a1 + C
...

... · · ·
...

anc−1 + x(1) anc−1 + x(2) · · · anc−1 + x(c) ← anc−1 + C

(E.18)

The coset leaders aj. The elements a1 · · ·anc−1 appearing in the standard array shown above
can be chosen in an arbitrary manner among the 2k elements of the coset. Nevertheless, it is
convenient to eliminate this arbitrariness, by choosing aj as the vector with minimum weight
in the coset aj + C. This choice defines aj as the coset leader of aj + C.

i

Suppose you now receive y while x was transmitted. y must belong to C or to some coset in the
standand array, say y = aj + w with w ∈ C, and a0 = 0 in case y ∈ C. The error is e = y − x =

aj + w − x ∈ (aj + C), i.e., the possible error vectors are exactly the vectors in the coset (aj + C)

containing y. Then the decoder strategy is to take ê as the minimum weight vector in the coset
(aj + C) containing y, which is, by definition, the coset leader aj , and decode y → x̂ = y − ê. How
do we do that in practice?

282

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

The syndrome. Suppose we transmit x and y = x + e is received. Then by checking

S = Hy = H (x + e) = H e , (E.19)

we calculate the syndrome vector S (of dimension n− k). If S 6= 0 then there was an error: a

this already gives us an effective way of doing error detection. For binary codes, if e has a 1

at position, say, j1, j2, · · · , then the relation S = H e tells us that

S = Hj1 + Hj2 + · · · (E.20)

where Hj denotes the j-th column vector in H. To determine the error e given the syndrome S,
we should be able to “invert” the relationship S = H e, finding the coset leader e of the coset to
which y belongs. A brute force approach to determining e is, once again, possible only for small
n.
aThe converse is not guaranteed.

i

Let us illustrate this procedure with a simple example. Consider the [6, 3, 3] code with parity check
matrix (in standard form):

H =

 0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1

 =
[
A|I3

]
. (E.21)

The associated generator matrix is:

G =

1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

. (E.22)

Here is the standard array you would set up, 3 with the syndrome vectors shown to the right:

u→ 000 001 010 011 100 101 110 111 S
C→ 000 000 001 110 010 101 011 011 100 011 101 101 110 110 111 000 (0, 0, 0)T

a1 + C→ 000 001 001 111 010 100 011 010 100 010 101 100 110 111 111 001 (0, 0, 1)T

a2 + C→ 000 010 001 100 010 111 011 001 100 001 101 111 110 100 111 010 (0, 1, 0)T

a3 + C→ 000 100 001 010 010 001 011 111 100 111 101 001 110 010 111 100 (1, 0, 0)T

a4 + C→ 001 000 000 110 011 101 010 011 101 011 100 101 111 110 110 000 (1, 1, 0)T

a5 + C→ 010 000 011 110 000 101 001 011 110 011 111 101 100 110 101 000 (1, 0, 1)T

a6 + C→ 100 000 101 110 110 101 111 011 000 011 001 101 010 110 011 000 (0, 1, 1)T

a7 + C→ 100 100 101 010 110 001 111 111 000 111 001 001 010 010 011 100 (1, 1, 1)T

All the 26 = 64 vectors of B6 are listed, with 24 = 8 elements in each of the 8 cosets: the code,
a trivial coset with a0 = (0, 0, 0, 0, 0, 0)T, and 7 non-trivial cosets, 6 with weight 1, a1, · · · ,a6, and
1, a7, with weight 2. In red I show a possible received message y = (0, 1, 1, 0, 0, 1)T, for which you
immediately calculate a non-zero syndrome S = Hy = (0, 1, 0)T, which coincides with the 5th column
of H. Now, nothing forbids in principle that y is a corruption, for instance, of x(3) = (0, 1, 0, 1, 0, 1)T,
with e = (0, 0, 1, 1, 0, 0)T, i.e., a flip of bits 3 and 4. But the least number of bit flips that might have
occurred — hence the most likely situation when the bit flip error p is small — it that the error is
e = a2 = (0, 0, 0, 0, 1, 0)T, which is indeed a coset leader of the coset a2 + C to which y belongs, and
therefore that the original codeword is x(4) = (0, 1, 1, 0, 1, 1)T = y− a2.
3For simplicity of notation, we write, say 001110 instead of (0, 0, 1, 1, 1, 0)T.

283

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

The last row of the standard array, a7 + C, deserves a comment. Here the coset leader has weight
w = wt(a7) = 2, but you immediately notice that there are two other possible coset leaders I might
have used, both in blue and with weight 2. Now suppose you receive y = (1, 1, 1, 1, 1, 1)T: you check
the syndrome, and you calculate S = Hy = (1, 1, 1)T, hence you would associate with the error with
coset leader a7 = (1, 0, 0, 1, 0, 0)T, and predict that y is a corruption of x(4) = (0, 1, 1, 0, 1, 1)T. But
in principle y might be a corruption, still with two bit flips, of x(7) = (1, 1, 0, 1, 1, 0)T with error
e = (0, 0, 1, 0, 0, 1)T, one of the two other possible coset leaders. Hence, you detect that there was an
error, but even assuming the maximum likelyhood of only two bit flip errors, you would not be able to
uniquely reconstruct the original codeword. Needless to say, even less likely, y might be a corruption
of x(8) = (1, 1, 1, 0, 0, 0)T with error e = (0, 0, 0, 1, 1, 1)T, which is not a coset leader.

Exercise E.3. Construct yourself from scratch a standard array for the [6, 3, 3] code of our Example
1, without looking at the result given above. Use it to decode vectors y = (1, 1, 0, 1, 1, 1)T and
y = (0, 0, 0, 1, 0, 1,)T.

Cosets and syndromes. There is a one-to-one correspondence between cosets and syndromes.
Indeed, two vectors y1 and y2 are in the same coset of C if and only if they have the same
syndrome. To see this, notice that two vectors in the same coset are such that y1−y2 ∈ C, hence
H(y1 − y2) = 0, which is equivalent to saying that S1 = Hy1 = Hy2 = S2.

i

E.1.3. The binary Hamming code

The binary Hamming code is an important family of single-error-correction codes which are very
easy to decode. They were introduced by Richard W. Hamming in 1950 for punched card readers.

Suppose we want to construct a code that corrects single errors, i.e., t = 1. Let us denote by Hj

the j-th column of H. The columns of H should all be different from 0, otherwise an error occurring
at position j, where Hj = 0 would never contribute to the syndrome, and would go undetected. Also,
no two columns should coincide, because if Hj1 = Hj2 with j1 6= j2, then errors in positions j1 and j2
would be indistinguishable. Suppose that H has r = n− k ≥ 2 rows, then all possible 2r − 1 distinct
and non-vanishing binary strings vectors of r bits are candidate column vectors for H. If we use them
all, we have a check matrix which is r × (2r − 1), i.e., n = 2r − 1 is the length of the code, and
k = n− r = 2r − 1− r its dimension.

As an example, suppose we take r = 3, hence n = 23 − 1 = 7 and k = n − r = 4, and we write H
as the 3× 7 matrix with all 3-bit non-zero binary strings as columns:

H =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 , (E.23)

where you should observe that we have written the columns as the binary string in increasing order,
with Hj being the binary string for integer j = 1, · · · , 7 (least significant bits at the bottom).

284

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

Standard form. Observe that the check matrix so written is not in standard form, but it is
easy to permute the columns — amounting to permuting the labels of the bits of the codewords
x — to put it in standard form:

Hstandard =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 =
[
A|I3

]
. (E.24)

The permutation, as already stressed, does not change the code, but simply the labelling of the
variables.

!

The generator G is easy to write from the standard form of Eq. (E.9):

Gstandard =

[
I4
−A

]
=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

. (E.25)

As the columns of G are codewords (as well as their linear combinations) you immediately see that
there are codewords with weight 3, hence d = 3. Alternatively, from the original form, the codeword
x = (1, 1, 1, 0, 0, 0, 0)T satisfies Hx = 0.

This is not the only meaningful permutation of labels we can think of. With a further permutation
of columns (1234567) → (4523167), hence of labels of the codeword bits, we could put the matrix in
a cyclic form, where the 3 rows are obtained one from the other with a cyclic end-around shift:

Hcyclic =

 1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

 , (E.26)

which leads to the fact that a cyclic shift of any codeword is again a codeword. Clearly, the correspond-
ing generator matrix Gcyclic is obtained from Gstandard in Eq. (E.25) by applying the same permutation
to the rows.

Binary Hamming code with general r. For general r, we can think, similarly, of a Hamming
code with n = 2r − 1, k = n− r, i.e., a code [n = 2r − 1, k = 2r − 1− r, d = 3]. The next case has
r = 4, corresponding to a [15, 11, 3] code.

i

Why is decoding simple for a Hamming code. A general binary Hamming code has a (non-standard)
matrix H whose j-th column is the r-bit binary representation of the number j = 1, · · · , n = 2r−1. If
a single error occurs in bit j, ej = (00 · · · 010 · · · 0) (with a single 1 in position j), then the syndrome
measured will be:

S = Hy = Hej = Hj . (E.27)

Decoding from the syndrome. By transforming the binary string syndrome vector S into
an integer, I would immediately read off the index j where the single error was made.

i

285

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Exercise E.4. Construct a standard array for the [7, 4, 3] Hamming code, calculating all cosets and
associated syndromes.

E.1.4. The probability of error

If the decoding is done using the standard array — which, recall, is the most likely possibility —
the probability of error is simply given by:

Perr = Prob(e 6= coset leader) . (E.28)

Let us examine more closely the coset leader, which, recall, are chosen as minimum weight represen-
tatives of the coset. There is a trivial coset leader a0 = 0, the coset leader of C, whose weight is
wt(a0) = 0. The remaining nc − 1 = 2n−k − 1 coset leaders (we are considering here binary codes for
simplicity) have weights ≥ 1 and, at most, n. Let us call αw the number of coset leaders with weight
equal to w, where w = 1 · · ·n. Since the probability of a coset leader with weight w is obviously
Prob(aj |wt(aj) = w) = pw(1− p)n−w, then, you predict that:

Perr = Prob(e 6= coset leader) = 1−
n∑

w=0

αwp
w(1− p)n−w . (E.29)

For instance, for the [6, 4, 3] parity check code analysed previously, we have a coset C (the code)
with weight 0, 6 cosets with weight 1, a1 + C · · ·a6 + C, and a coset with weight 2, a7 + C. Hence
α0 = 1, α1 = 6, α2 = 1. Hence, the error probability would be:

Perr = 1−
n∑

w=0

αwp
w(1− p)n−w = 1− (1− p)6 − 6p(1− p)5 − p2(1− p)4 . (E.30)

Numerically, if p = 0.01, then Perr ≈ 0.00136.

Suppose that a code can correct t errors, i.e., the distance between the codewords is d = 2t+ 1 or
(if even) d = 2t+ 2. Then every codeword with a weight w ≤ t is a coset leader. Their number is easy
to get using simple combinatorics:

αw =

(
n

w

)
w = 0, · · · , t . (E.31)

Unfortunately, the αw for other coset leader with weights w > t are not simple to calculate. With
this, we could write an upper bound for the error probability as:

Perr = 1−
n∑

w=0

αwp
w(1− p)n−w ≤ 1−

t∑
w=0

(
n

w

)
pw(1− p)n−w . (E.32)

Exercise E.5. Evaluate numerically the probability of error Perr for the [6, 4, 3] code previously
discussed, for p = 0.01.

Perfect codes. If αw = 0 for all w > t, then the previous bound is exact, and the code is
called exact. This means that the code can correct all errors of weight w ≤ t, and no errors
with weight w > t. Equivalently, the spheres of radius t around each codeword are disjoint and
together contain all vectors in Bn.

i

286

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

Exercise E.6. Given the standard array for the [7, 4, 3] Hamming code, find out all the αw for the
code. Is it a perfect code? Calculate the probability of error Perr. Evaluate it numerically for p = 0.01.

The Hamming codes are perfect codes. There is a much simpler way to prove that Hamming codes
are perfect codes without writing explicitly the standard array, a very boring exercise in general. Let
us argue as follows. Since the Hamming codes can correct single errors, t = 1, sphere of radius 1 from
each codeword must be disjoint. There are 2k spheres, and n+ 1 = 2r vectors in each sphere, hence a
total of 2k+r = 22r−1 = 2n vectors, i.e., the disjoint spheres exhaust all vectors in Bn, hence the code
is perfect.

Sphere packing or Hamming bound. For an [n, k, d] binary code, with d = 2t+ 1 or 2t+ 2,
the following inequality holds:

2k
(

1 +

(
n

1

)
+ · · ·+

(
n

t

))
≤ 2n . (E.33)

The proof is quite simple. Since errors up to weight t can be corrected, the sphere of radius
w = 0 · · · t around each codewords are all disjoint. The number of elements in a sphere of radius
w around a codeword is evidently

(
n
w

)
. The inequality then follows.

i

The symbol probability error. So far we were concerned with the probability of error of the entire
codeword. You might be willing to estimate what is the (average) probability of error of each single
bit in a codeword. Let Ej be the event where the j-th bit of the codeword is wrong, and E the event
where the codeword is wrong. Then, evidently:

E = E1 ∪ E2 ∪ · · · ∪ Ek .

The events Ej are neither independent nor disjoint nor equiprobable. Nevertheless:

Perr = Prob(E) ≤
k∑
j=1

Prob(Ej) .

The symbol probability error is defined as the arithmetic mean of the various Prob(Ej).

The symbol probability error.

Psymb
def
=

1

k

k∑
j=1

Prob(Ej) ≥
1

k
Perr . (E.34)

Evidently, there is also an inequality Psymb ≤ Perr, because the probability that the codeword
is wrong is certainly larger that the probability that any single bit is wrong. All in all, we can
write:

1

k
Perr ≤ Psymb ≤ Perr . (E.35)

It is generally difficult to calculate Psymb for a code, see Ref. [50][Chap. 1.5] for details, but these
inequalities helps estimating it.

i

287

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

E.1.5. Shannon’s theorem: the existence of good codes

We saw examples of codes that reduce the error probability form the bare channel value p. For
instance, for the [6, 4, 3] parity check code one can show that Perr = 0.00136 and Psymb = 0.00072

when p = 0.01. The code transmits n = 6 bits instead of k = 4, hence it has a transmission rate
of R = k/n = 2/3 = 0.666. As a second example, the [7, 4, 3] Hamming code can be shown to have
Perr = 0.002 and Psymb = 0.001 when p = 0.01, with a transmission rate of R = k/n = 4/7 = 0.571.

In general, by increasing n, for given k, one can decrease the error probability further, at the cost,
however, of decreasing also the transmission rate R = k/n. We would like to know how small we can
make Perr — and Psymb — for a given rate R with an [n, k, d] code. A remarkable theorem, due to
Shannon, provides the answer. But first we need to define the capacity of the binary channel.

The capacity of a binary channel. If p is the probability that a single transmitted symbol is
erroneously flipped, you define the capacity C(p) of the channel in terms of the Shannon entropy
H(p) as:

C(p) = 1−H(p) = 1− p log2

1

p
− (1− p) log2

1

1− p
. (E.36)

The capacity tends to 1 for p→ 0+ (and for p→ 1−, as there is a symmetry p↔ (1− p)), while
C(p = 1

2) = 0.

i

Shannon’s coding theorem. For any ε > 0, and for any transmission rate R < C(p), if n is
sufficiently large, then an [n, k] binary code with error probability Perr < ε exists.

i

Unfortunately, the proof of this theorem (which we omit) is probabilistic, and does not tell how
to construct such good codes.

In practice, it is rather difficult to rely on Perr, and even more so on Psymb, but the minimum
distance d of the code can be used to gauge how good the code is, recalling that d = 2t + 1 or
d = 2t+ 2, where t is the number of errors that can be corrected.

So, the goal in classical error correction can be reformulated as follows: find codes with as large
as possible R < C(p) (for an efficient transmission rate), and with large d (to correct many
errors). Of course, these are conflicting goals. The sphere-packing bound already tells us something
about the size n of the code, since:

2n−k ≥
(

1 +

(
n

1

)
+ · · ·+

(
n

t

))
. (E.37)

In general, we know that good linear codes exists, but, at present, we do not know how to find such
codes. Moreover, recall that another important requisite for a good code is that decoding is easy,
without having to resort to a time-consuming standard array.

E.1.6. Dual codes

Given two binary vectors v,w ∈ Bn, you can define a scalar product between them by a bitwise
modulo-two sum as follows:

v ·w def
= v1w1 ⊕ v2w2 ⊕ · · · ⊕ vnwn . (E.38)

288

(Lecture Notes by G.E. Santoro) E.1 Linear codes in classical error correction

For instance: v = 1101 and w = 1110, then v · w = 1 + 1 + 0 + 0 (mod 2) = 0. By definition, two
vectors are orthogonal if v ·w = 0. You might also define the bitwise product of two vectors as:

v ∗w def
= (v1w1, v2w2, · · · , vnwn) . (E.39)

Then evidently, v · w = 0 if and only if wt(v ∗ w) is even. Also notice that v · v = 0 if and only if
wt(v) is even. This is quite different, therefore, from ordinary scalar product with vectors.

The dual code. Now consider a linear code C, and all the codewords x ∈ C. Next consider the
linear subspace of Bn made by all vectors which are orthogonal to a codeword in C:

C⊥ = {w | w · x = 0 for all x ∈ C} . (E.40)

C⊥ is known as the dual code of C.

i

Evidently, the elements w ∈ C⊥ are nothing but the parity checks on C. But recall that if H is the
parity check matrix of C, the rows of H are the parity check vectors. Hence the generator matrix of C⊥

is precisely given by the transpose of H, so that the vectors are given as columns, i.e., an n× (n− k)

matrix of the form:
[G⊥]n×(n−k) = HT (E.41)

Moreover, recall that for the code C we have, see Eq. (E.10):

H G = [0](n−k)×k =⇒ GTHT = [0]k×(n−k) . (E.42)

Check and generator matrices of the dual code. Hence you conclude that the check and
generator matrix of the dual code are simply given by:

H⊥ = GT G⊥ = HT . (E.43)

The dual code C⊥ is an [n, n− k] code, if C is an [n, k] code, i.e., k⊥ = n− k. It is very easy to
show that (C⊥)⊥ = C.

i

Self-dual codes. A code C is called weakly self-dual if C ⊆ C⊥. A necessary condition for this to
happen is that k⊥ = n − k ≥ k, hence 2k ≤ n. The code is called strictly self-dual if C = C⊥. A
necessary condition for this to happen is that n is even and k = n/2 = k⊥.

Info: We will see that the dual construction arises very naturally in the context of quantum error
correction: it is at the heart of the construction of an important class of QEC codes known as
Calderbank–Shor–Steane (CSS) codes.

i

Exercise E.7. Recall that G is an n×k matrix. Show that a code with generator matrix G is weakly
self-dual if and only if GTG = [0](k×k).

Exercise E.8. Let C be a linear code. Show that:
w ∈ C⊥ =⇒

∑
x∈C

(−1)w·x = |C|

w /∈ C⊥ =⇒
∑
x∈C

(−1)w·x = 0
.

289

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Exercise E.8 will be very important later, as we will use in the CSS construction. I invite you to
do it.

Hint at the solution of Exercise E.8 The first part is trivial. Suppose w /∈ C⊥. Then at least an x′1 ∈ C

exists for which w · x′1 = 1. But, for sure, for x1 = 0, we have w · x1 = 0. Now argue as follows. If |C| > 2,
at least another element of C must exist. Two cases are possible: 1) ∃x2 6= x1 such that w · x2 = 0, but then
x′2 = x′1 +x2 6= x′1 is such that w ·x′2 = 1; 2) viceversa if ∃x′2 6= x′1 such that w ·x′2 = 1, then x2 = x′1−x′2 6= x1

is such that w · x2 = 0. Proceeding in this way you can show that C is split into equal parts: 2k−1 vectors x′j
such that w · x′j = 1, and 2k−1 vectors xj such that w · xj = 0.

E.1.7. Construction of new codes from old ones

There are several tecniques to obtain new codes starting from old ones. I will not enter into details
here. If interested, read Ref. [50][Chap. 1.9] for details. I simply list the various possibilities, being
very sketchy.

Extending a code by adding an overall parity check. Suppose your [n, k, d] code C has codewords of
even and odd weights. Consider a new code Ĉ living in Bn+1 with an extra coordinate xn+1,
hence x̂ = (x, xn+1) are the new codewords, where xn+1 = 1 if the weight of x is odd, and 0

viceversa. Then:
x1 + x2 + · · ·xn + xn+1 = 0 (mod 2) .

Therefore, the new check matrix is of dimension (n+ 1− k)× (n+ 1):

Ĥ =

1 1 · · · 1

0

H 0

0

The new code is an [n + 1, k] code, but, interestingly, if d was odd for C, then Ĉ has distance
d+ 1.

Puncturing a code by deleting coordinates. This is a bit the opposite of the process of extending
the code. Here you simply eliminate some coordinates, reducing n and (usually) d, but keeping
k the same.

Expurgating by throwing away codewords. For instance, if C contains codewords of even and odd
weight, you can throw away all codewords of odd weight, which you can show are exactly half
of the total. The new code is [n, k − 1, d′], and often d′ > d (for instance, if d is odd).

Augmenting a code by adding new codewords. See Ref. [50].

Lenghtening. See Ref. [50].

Shortening by taking cross sections. For instance, consider only the codewords that begin with x1 =

0, and then delete the first coordinate, obtaining a code of length n− 1.

E.1.8. General properties of linear codes

I mention here some general properties of linear codes, based on linear algebra theorems.

290

(Lecture Notes by G.E. Santoro) E.2 Quantum codes

Theorem on the dimension k. If H is the parity check matrix of a code of length n, then the
code has dimension k = n− r, if and only if some r columns are linearly independent, while no
r + 1 columns are.

i

Proof. Recall indeed that the check matrix H has r = n− k linearly independent rows, hence r is the rank
of H, which applies guarantees the linear independence of r columns as well. �

Theorem on the distance d. If H is the parity check matrix of a code of length n, then the
code has distance d if and only if every d− 1 columns of H are linearly independent, and some
d columns are linearly dependent. a

aNotice that this simply says that r = rank(H) ≥ d− 1.

i

Proof. Recall that d = minx 6=0(wt(x)). For such codewords we must have:

H x = 0 ,

which implies that d columns of H sum to 0, hence they are not linearly independent. �

The Singleton bound. If C is an [n, k, d] code, then:

n− k ≥ d− 1 .

i

Proof. Recall that r = n− k is the rank of H, and that r ≥ d− 1, because every set of d− 1 columns is for
sure linearly independent, by the theorem on the distance d. �

Other more interesting bounds can be derived from these theorems, but I refer you to Ref. [50] for
details.

E.2. Quantum codes

E.2.1. Calderbank–Shor–Steane (CSS) quantum codes

Consider two classical codes, C1 = [n, k1] and C = [n, k2] such that C2 ⊂ C1, which implies that
k2 < k1. We can easily define a coset structure C1/C2. Define the cosets as follows:

x + C2 = {x + y | y ∈ C2} ∀x ∈ C1 . (E.44)

Evidently if x′ is such that x− x′ ∈ C2, then x+ C2 = x′ + C2, which means that you can trade x for
any other representative in the coset. As usual, cosets are disjoint. Indeed, given two cosets x + C2

and x′ + C2, if an element in common exists, then you can find y,y′ ∈ C2 such that x + y = x′ + y′,
which implies that x−x′ = y′−y ∈ C2, which in turn implies, see above, that x+C2 = x′+C2. Since
the number of elements of C1 and C2 is |C1| = 2k1 and |C2| = 2k2 , the number of cosets is evidently:

Number of cosets =
|C1|
|C2|

= 2k1−k2 . (E.45)

If |x〉 denotes as usual computational states in the n-Qbit Hilbert space, we can consider the following
coset-superposition:

|ψx+C2
〉 = |x + C2〉 =

1√
|C2|

∑
y∈C2

|x + y〉 . (E.46)

291

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

It is easy to prove that these 2k1−k2 states — as many as the cosets — are normalized: 〈x+C2|x+C2〉 =

1. Also, since the cosets have disjoint vectors, you can easily show that

〈x′ + C2|x + C2〉 = 0 if x + C2 6= x′ + C2 .

Hence, this is an orthonormal basis of 2k1−k2 elements, which spans a subspace of the full n-Qbit
Hilbert space. We denote it temporarily as:

HC1/C2
= span

(
|x + C2〉

)
.

In order to become a useful code, we need some more hypothesis.

The CSS code of C1 over C2. Consider C1 = [n, k1] and C2 = [n, k2] such that C2 ⊂ C1, as
before. Assume further that:

C1 and C⊥2 are classical codes that can both correct up to t errors .

Then CSS(C1,C2) = HC1/C2
is a quantum code [n, k1 − k2] that can correct up to t bit-flip (X)

and phase-flip (Z) errors.

i

Suppose an error e1 with wt(e1) ≤ t of the bit-flip type occurs, affecting all computational states
in the same waw. Then the corrupted state would be:

|ψbit−flips

x+C2
〉 =

1√
|C2|

∑
y∈C2

|x + y + e1〉 .

If e2, still with wt(e2) ≤ t, denotes an error of the phase-flip type, then you would end up with a
corrupted state of the form:

|ψerr

x+C2
〉 =

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y + e1〉 . (E.47)

Let us see how to correct both types of errors. We start with the bit-flip errors.

Correcting bit-flip errors. We use the check-matrix of C1 to get the syndrome. More precisely, we
add n − k1 ancillary Qbits, all initially in |0〉n−k1 and consider applying the (function) H1 with the
usual reversible computation trick. For every computational state we would have:

|x+ y+ e1〉n ⊗ |0〉n−k1

apply H1−−−−−−→ |x+ y+ e1〉n ⊗ |H1(x+ y+ e1)〉n−k1 = |x+ y+ e1〉n ⊗ |H1e1〉n−k1 ,

where the last step follows because x + y ∈ C1, hence H1(x + y) = 0.

CNOT are enough. Quite interestingly, the transformation |x〉⊗|0〉 → |x〉|Hx〉 can be realized
with a circuit composed only of CNOTs. Try to prove this.

i

After this application, the state is transformed into:
1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y + e1〉 ⊗ |H1e1〉n−k1

Hence, the ancillary bits contain the error syndrome S = He1. If C1 is a good easy-to-decode classical
code — for instance a Hamming code —, you can uniquely reconstruct the error that occurs with
highest probability, very likely e1. To correct the state, you have to apply X operators on all the
bits where e1 has a bit 1 (at most t of them), so that, disregarding the ancillas, you revert to a state
containing now only phase-flip errors:

|ψphase−flips

x+C2
〉 =

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2 |x + y〉 .

292

(Lecture Notes by G.E. Santoro) E.2 Quantum codes

Correcting phase-flip errors.

The crucial idea. The key to the story is that by applying Hadamards H⊗n to the state, a
phase-flip error is transormed into a bit-flip error, which is then corrected as explained above.
The only thing to do is to reapply a final set of Hadamards H⊗n, to get the final corrected state.

i

To correct phase-flip errors, we apply Hadamards to all n Qbits:

H⊗n|ψphase−flips

x+C2
〉 =

1√
|C2|

∑
y∈C2

(−1)(x+y)·e2
1√
2n

∑
z

(−1)(x+y)·z|z〉 ,

where z runs over all possible n-Qbit computational states. By setting z′ = z + e2 (which still runs
over all computational states, since e2 is fixed), and re-labelling z′ → z we can finally write:

H⊗n|ψphase−flips

x+C2
〉 =

1√
2n|C2|

∑
z

∑
y∈C2

(−1)(x+y)·z|z + e2〉 .

Now we recall Exercise E.8, which I report here with a slightly adapted notation:
z ∈ C⊥2 =⇒

∑
y∈C2

(−1)z·y = |C2|

z /∈ C⊥2 =⇒
∑
y∈C2

(−1)z·y = 0
.

By using this we arrive at:

H⊗n|ψphase−flips

x+C2
〉 =

|C2|√
2n|C2|

∑
z∈C⊥2

(−1)x·z|z + e2〉 .

Notice how the error e2 now appears as a bit-flip error. Hence, we now use the same strategy applied
before for the bit-flip errors, using this time the parity check matrix H⊥2 = GT

2 . For each component
of the state we use k2 ancillas:

|z + e2〉n ⊗ |0〉k2

apply H⊥2−−−−−−→ |z + ee〉n ⊗ |H⊥2 (z + e2)〉k2
= |z + e2〉n ⊗ |H⊥2 e2〉k2

,

where the last step follows because z ∈ C⊥2 , hence H⊥2 z = 0. The total state then becomes:

H⊗n|ψphase−flips

x+C2
〉 ⊗ |0〉k2

apply H⊥2−−−−−−→ |C2|√
2n|C2|

∑
z∈C⊥2

(−1)x·z|z + e2〉 ⊗ |H⊥2 e2〉k2 .

Once again, we can measure a syndrome S = H⊥2 e2, which, by maximum likelyhood decoding would
give us the error e2. We apply the appropriate bit-flips (X) to the state, and, disregarding the ancillas,
finally arrive at the state:

correct e2−−−−−−→ |C2|√
2n|C2|

∑
z∈C⊥2

(−1)x·z|z〉 .

Now we apply again H⊗n to the state:

apply H⊗n−−−−−−−→ |ψcorr〉 =
1√
2n

|C2|√
2n|C2|

∑
w

∑
z∈C⊥2

(−1)(x+w)·z|w〉 .

By repeating the same steps we did before, changing the variable over which we sum to w′ = x + w
including a further application of Exercise E.8, we finally realize that the state obtained is precisely
the correct one:

|ψcorr〉 =
1√
2n
|C2||C⊥2 |√

2n|C2|

∑
y∈C2

|x + y〉 =
1√
|C2|

∑
y∈C2

|x + y〉 ≡ |x + C2〉 ,

where we used that k⊥2 = n− k2, hence |C2||C⊥2 | = 2n, cancelling the factor 2n in the denominator.

293

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Warning: You might be puzzled that we proved error correction only for X and Z errors acting
on pure states, certainly not the most general errors. However, once we will show that the CSS
codes are stabilizer codes, then the full theory of error correction can be unleashed.

!

The Steane [7, 1, 3] code

As an application of the CSS construction, let us consider C1 to be the Hamming [7, 4, 3] code. For
C2 we take C⊥1 , for which k2 = n − k1 = 3, hence a [7, 3] code, for which we should first check that
C2 = C⊥1 ⊂ C1. To do that, we write H1 for the Hamming code in its standard form, see Eq. (E.24),
which we report here:

H1 =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 =
[
A|I3

]
, (E.48)

with a corresponding generator matrix:

G1 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

.

Recall that C1 = Ker(H1). Now consider C2 = C⊥1 whose check matrix is:

H2 = GT

1 =

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

→

0 1 1 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

 ,

where the second, standard, form is obtained by permutation of the columns. Again, C2 = Ker(H2).
To check that C⊥1 ⊂ C1, you need to apply the criterion of Exercise E.7, i.e., check that (G⊥1)TG⊥1 = [0].
But recall that G⊥1 = HT

1 . Hence you need to check that:

(HT

1)THT

1 = H1HT

1 = [0] .

This is easily checked by using the H1 of the Hamming code. Next, we need to check that C⊥2 also
corrects t = 1 errors, as C1 does. But for any code (C⊥)⊥ = C, hence

C⊥2 = (C⊥1)⊥ = C1 ,

which certainly corrects t = 1 errors, because the Hamming code C1 does so.

The requirements of the CSS construction are all satisfied. Hence CSS(C1,C
⊥
1) is a [7, (k1 − k2) =

1, 3] quantum code, since k1 = 4 and k2 = 3. This code can correct all t = 1 bit-flip and phase-flip
errors. It is known as the [7, 1, 3] Steane code.

E.2.2. The CSS codes seen as stabilizers codes

In the context of error correction for classical codes, we introduced syndromes, for instance S =

H1e1, to check for bit flip errors. In the context of stabilizers codes we also had syndromes: the

294

(Lecture Notes by G.E. Santoro) E.2 Quantum codes

collection of the ±1 eigenvalues of the generators of the stabilizer group. Can we find stabilizers
generators for the CSS code such that these two concepts actually coincide? Yes, indeed.

To begin, we will show that bit-flip errors associated to check matrix syndromes are simply related
to stabilizers that are product of Z operators in precisely the same position suggested by the check
matrix H.

The simplest illustration is the [3, 1] repetition code which is capable of correcting only 1 bit-flip
error. The check matrix is:

H =

[
1 1 0

1 0 1

]
(123)→(321)−−−−−−−−→

[
0 1 1

1 0 1

]
, (E.49)

where the second form is obtained by a permutation of the columns, which we do here simply because
we want to adhere to the bit-ordering we have used in the rest of the course. 4 The two codewords
are C = {(000), (111)}. If e = y− x is an error vector, you reveal it by using the syndrome vector:

S = He =

[
0 1 1

1 0 1

] e2

e1

e0

 =

(
e0 + e1

e0 + e2

)
.

In the stabilizer’s formalism, the two logical states are |0L〉 = |000〉 and |1L〉 = |111〉. Errors are
revealed by the stabilizers: 5

S = 〈Ŝ1 = Z0Z1 , Ŝ2 = Z0Z2〉 .

It is immediate to verify that the correspondence is:

Eigenvalues of
1− Ŝ1,2

2

correspond to−−−−−−−−−−→ (S)1,2 ,

where (S)j denotes the j = 1, 2 component of the syndrome vector S. The correspondence for the
states is quite obvious: for instance, the corrupted state |100〉, having stabilizer eigenvalues (+1,-1),
corresponds to the error e = 100, with syndrome (0, 1).

Let us consider now how to construct stabilizers for the simplest example of CSS code, the Steane
[7, 1, 3] code. We need 6 = n − k stabilizers, since n = 7 and k = 1. From now on, we will be more
relaxed with our bit ordering, and assume the one suggested by the linear-algebra way of writing
row-vectors — with bits 0 to n − 1 from left to right —, so that it is simpler to read out the
stabilizers. The bit-flip errors are signaled by the Hamming [7, 4, 3] code check matrix. In the cyclic
form we have:

Hcyclic

1 =

 1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

 stabilizers−−−−−−−−→
Ŝ4 = Z0Z1Z2Z4

Ŝ5 = Z1Z2Z3Z5

Ŝ6 = Z2Z3Z4Z6

, (E.50)

where we convene that Z-based stabilizers come after the X-based stabilizers Ŝ1, Ŝ2, Ŝ3, which we now
construct. The phase-flip errors are precisely converted into bit flip errors, with the code C⊥2 = C1,
the very same Hamming code, upon sandwiching the state with Hadamards. But HZH = X, hence
we can immediately write the full list of stabilizers.

4In linear algebra, you would write a binary (row) vector of 5 bits, for instance, as (x1, x2, x3, x4, x5) = (1, 1, 0, 1, 0).
If you pretend that the bits are ordered in the standard binary way, starting from the least significant (bit 0) to the
right, and proceeding towards the most significant (bit 4) to the left, then you would write the same vector reversed,
as (0, 1, 0, 1, 1) = 01011→ binary expression for integer 11.

5Notice that we are here using hats, Ŝ, to indicate a stabilizer, which is an operator, to avoid confusion with the
syndrome vector S. Notice also that in the main text we used Z1Z2 = Ŝ1Ŝ2 as a second generator of the stabilizer
group.

295

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

The stabilizers of the Steane code.

S = 〈 X0X1X2X4 , X1X2X3X5 , X2X3X4X6 ,

Z0Z1Z2Z4 , Z1Z2Z3Z5 , Z2Z3Z5Z6 〉 .
(E.51)

i

With a similar technique, by employing the appropriate H1 and H⊥2 , you can write the ns =

n− (k1 − k2) stabilizer generators for the general CSS(C1,C2).

E.3. Pauli group and stabilizers reloaded

The Pauli group. Recall that the Pauli group of n-Qbits is given by

Pn = {wmσ̂(µ1)
1 σ̂

(µ2)
2 · · · σ̂(µn)

n } with µj = 0, 1, 2, 3 , (E.52)

i.e., is made up by all possible Pauli strings with an overall factor wm = eimπ/2 with m = 0, 1, 2, 3,
hence with 4n+1 elements. Elements g ∈ Pn of the Pauli group have the following properties:

1) Each g ∈ Pn is unitary, g−1 = g†.

2) Each g ∈ Pn is such that g2 = ±1. More precisely, g2 = 1 if wm = ±1, while g2 = −1 if wm = ±i.
Indeed, recall that Pauli matrices on different sites commute, and that X2 = Y2 = Z2 = 1.

3) If g2 = 1, then g is unitary and Hermitean, g−1 = g† = g, while if g2 = −1, then g is unitary
and anti-Hermitean, g−1 = g† = −g.

4) Two different elements of the Pauli group g and g′, either commute or anti-commute, gg′ =

±g′g. Observe that the overall factor wm in front of each of them is totally irrelevant. Com-
mutation or anti-commutation depends on the parity of the number of exchanges of anti-
commuting Pauli matrices on each site, since XjZj = −ZjXj , and so for any other pair of
different Pauli matrices on the same site.

A useful representation. Recall that Yj = iXjZj , so that any element of the Pauli group, within
an overall factor wm, and with the convention that all the Z operators stay to the right of all the
X, can be uniquely represented in the following way:

g = wXx1
1 · · ·Xxn

n Zz11 · · ·Zznn
def
= w g(x,z) , (E.53)

where w = ±1,±i, while x = (x1, · · · , xn) and z = (z1, · · · , zn) are two Boolean row vectors
specifying if Xj is present (for xj = 1 and zj = 0), or Yj is present (for xj = 1 and zj = 1), or Zj
is present (for xj = 0 and zj = 1). Take now a second element g′ = w′g(x′,z′). It is very simple to
realize that

gg′ = ww′g(x,z)g(x′,z′) = ww′(−1)x
′·zg(x⊕x′,z⊕z′) , (E.54)

where x′ · z is the scalar product (mod 2) which counts how many X in g′ at positions specified by x′

have to be brought to the left of the Z at positions z in the expression for g, so that you can collect
all the X, at positions x ⊕ x′, to the left of all the Z, at positions z ⊕ z′. Try with an example, and
it will be clear. This already implies the following interesting conclusion:

g2
(x,z) = (−1)x·zg2x,2z = (−1)x·z1 , (E.55)

where we used that g2x,2z = 1. So, a pure (i.e., without prefactor w) X−Z Pauli string g(x,z) squares
to 1 if and only if x · z = 0; otherwise, it squares to −1. Notice that x · z counts the parity of the

296

(Lecture Notes by G.E. Santoro) E.3 Pauli group and stabilizers reloaded

number of XZ = −iY operators in the Pauli string. Now consider g′g. With a similar approach, you
find:

g′g = ww′g(x′,z′)g(x,z) = ww′(−1)x·z
′
g(x⊕x′,z⊕z′) . (E.56)

Commutation properties of Pauli string operators. From Eqs. (E.54)-(E.56) you deduce
that:

g(x′,z′) g(x,z) = (−1)x·z
′−x′·zg(x,z) g(x′,z′) . (E.57)

Hence gg′ = g′g, i.e., the two operators commute, if and only if x · z′ − x′ · z = 0.

i

A symplectic scalar product. The expression x ·z′−x′ ·z = 0 can be put in a very appealing matrix
form, related to a symplectic product. Define the 2n × 2n matrix 6 J and, given g = wgx,z, the 2n

row-vector rg = (x, z):

J
def
=

[
0n 1n
−1n 0n

]
and rg

def
= (x, z) . (E.58)

Then, if g = wgx,z and g′ = w′gx′,z′ , we have that:

gg′ = g′g ⇐⇒ rgJ r
T

g′ = x · z′ − x′ · z = 0 . (E.59)

Stabilizers. Recall that stabilizer groups S can be constructed as appropriate subgroups of the Pauli
group Pn: S ⊂ Pn. The idea is that a group of stabilizers S must define a stabilized subsector
HS of the Hilbert space Hn made up by all states |ψ〉 ∈ Hn which are common eigenstates with
eigenvalue +1 of all the stabilizers:

|ψ〉 ∈ HS ⇐⇒ Ŝ|ψ〉 = |ψ〉 ∀ Ŝ ∈ S . (E.60)

A few observations:

1) Every stabilizer must square to 1, Ŝ2 = 1, otherwise it would not have an eigenvalue +1: indeed,
if Ŝ2 = −1, then Ŝ would be anti-Hermitean. So, stabilizers must be Hermitean elements of
Pn that square to 1. All the stabilizers Ŝ ∈ S have eigenvalues ±1.

2) Different stabilizers must commute. Indeed if two stabilizers Ŝ and Ŝ′ were to anti-commute,
then:

|ψ〉 = ŜŜ′|ψ〉 = −Ŝ′Ŝ|ψ〉 = −|ψ〉 =⇒ |ψ〉 = 0 ,

which means that the stabilized space HS would be the trivial subspace with only the zero
vector.

3) No stabilizer can be equal to −1 (although −1 is Hermitean and squares to 1), again for a very
simple reason. If Ŝ = −1, then

Ŝ|ψ〉 = −1|ψ〉 = |ψ〉 =⇒ |ψ〉 = 0 ,

so again a trivial subspace with only the zero vector.

4) No stabilizer can be equal to ±i1, because it would not be Hermitean (it would square to −1).

5) S is an Abelian subgroup of Pn. Indeed: 1 ∈ S; If Ŝ, Ŝ′ ∈ S then ŜŜ′ ∈ S (simple to show); Since
Ŝ2 = 1 then Ŝ−1 = Ŝ ∈ S.

6As usual, in the Boolean case it does not matter if you use −1n or rather 1n in the bottom left block of J.

297

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

The generators of the stabilizer group. There exist a minimal set of ns independent stabilizers
(more about this below) which generate the group S by taking products of the generators. We will
denote the generators as follows:

S = 〈Ŝ1, · · · , Ŝs−1, Ŝs, Ŝs+1, · · · , Ŝns
〉 , (E.61)

S has 2ns elements, and any element Ŝ ∈ S can be written as:

Ŝ = Ŝa1
1 · · · Ŝass · · · Ŝ

ans
ns with as = 0, 1 . (E.62)

The fact that stabilizers commute and square to 1 means that the order of the generators in this
expression is irrelevant. Obviously, you take non-trivial generators, such that Ŝs 6= 1.

Independence of the generators. The fact that generators are independent means that by eliminat-
ing one one of them, say Ŝs, you generate a proper (smaller) subgroup of S:

〈Ŝ1, · · · , Ŝs−1, Ŝs+1, · · · , Ŝns
〉 ⊂ S .

Given a set of putative generators of S, how can we actually prove that they are indepen-
dent? We use the powerful tools of linear algebra with the canonical representation g = wgx,z.

Question: How to check independence?

The check matrix of the generators. Let 〈Ŝ1, · · · , Ŝs, · · · , Ŝns
〉 be the set of putative generators.

To each generator Ŝs = gs = wgxs,zs we associate the 2n row-vector rgs = (xs, zs) (disregarding
multiplicative factors) and we collect all these row-vectors into an ns × (2n) dimensional stabilizer
generators check matrix

Hgen =

rg1

rg2

· · ·
rgns

 =

x1 z1

x2 z2

· · · · · ·
xns zns

 . (E.63)

Warning: Observe that rg = (x, z) does not keep track of possible multiplicative factors in the
stabilizer.

!

Nevertheless, the fact that
g(x,z) g(x′,z′) = (−1)x

′·zg(x⊕x′,z⊕z′) ,

implies that, given two generator row-vectors, say rg1
and rg2

, then:

rg1g2 = rg1 ⊕ rg2 . (E.64)

This is a very important relationship for the row-vector representatives of Pauli string operators,
which we will use later on.

298

(Lecture Notes by G.E. Santoro) E.3 Pauli group and stabilizers reloaded

Rank of check matrix and independence of generators. We will now show that if
rank(Hgen) < ns, then the generators are not independent.

i

Proof. Suppose rank(Hgen) < ns. Then the ns rows of Hgen are linearly dependent, which means that

ns∑
s=1

asrgs = 0 (mod 2) with two or more of the as = 1 .

Applying Eq. (E.64) repeatedly you deduce that:

g =

ns∏
s=1

gass =⇒ rg = 0 .

But, if g has a row-vector representative which is 0, it means that g must be a multiple of the identity. Since
g ∈ S, then g = 1. Suppose now, without loss of generality, that a1 = 1 in the previous expression, hence:

g = 1 = g1

ns∏
s=2

gass =⇒ g1 =

ns∏
s=2

gass ,

where we used that g−1
s = gs. Hence the generator g1 is expressed as a product of the other generators: g1

is not independent. You can actually show that the rank is maximum if and only if the generators are
independent. �

Examples. To illustrate the generator check matrix, consider the [7,1,3] Steane code, one of the
simplest CSS quantum codes. It is immediate to write down the check matrix of its stabilizers. In
block form, it is given by the following 6× 14 matrix:

Hgen

Steane =

[
H1 0

0 H1

]
, (E.65)

where H1 = Hcyclic

1 = H⊥2 is the 3×7 parity check matrix of the [7, 4, 3] Hamming code, see Eq. (E.50),
or any other column-permuted variant of it, associated to a different bit-ordering. For a general CSS
quantum code, you would have an ns × (2n), with ns = n− (k1 − k2), matrix:

Hgen

CSS =

[
H⊥2 0

0 H1

]
, (E.66)

where H1 and H⊥2 are the parity check matrices of C1 and C⊥2 . The fact that the classical parity check
matrices have maximum rank guarantees that the generator check matrix has also maximum rank,
hence the generators are independent.

Exercise E.9. Write down Hgen

[5,1,3] — with a bit ordering of your choice — for the five-Qbit code
[5, 1, 3] examined in the main text, see Sec. 11.5, with stabilizers given in Eq. (11.30). Observe that,
since this is not a CSS quantum code, the generator check matrix is not in block form.

Conjugation with Pauli group operators. An important result which is rather easy to prove with
the generator check matrix is the following. Let S = 〈Ŝ1, · · · , Ŝs, · · · , Ŝns〉 be a set of independent
generators of S. Denote, as before, Ŝs = gs = wg(xs,zz) the generators with their row-vector represen-
tative rgs = (xs, zz). Fix a given s ∈ {1, · · · ,ns} in the list of the generator indices. Then, we can
show that:

∃g ∈ Pn such that ggs = −gsg while ggs′ = gs′g ∀s′ 6= s . (E.67)

299

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Proof. The independence of the generators guarantees that the rank(Hgen) = ns. This implies that Hgen

also possesses ns linearly independent columns, hence you can represent any vector in Bns as Hgenw, with an
appropriate 2n-dimensional column vector w. Consider therefore the w such that:

(
0 · · · 0 1 0 · · · 0

)T

= Hgenw ,

where a single 1 is at position s in the left ns-dimensional column vector. By considering a row vector rg such
that w = JrT

g (i.e., rT
g = −Jw = Jw, since J2 = −1 and we are considering Boolean variables) you deduce

that:

(
0 · · · 0 1 0 · · · 0

)T

= HgenJ rT
g ⇐⇒

rgsJ rT

g = 1

rgs′ J rT
g = 0 ∀s′ 6= s

,

which implies the thesis, due to Eq. (E.59). �

Exercise E.10. Using the same ideas of the previous proof, show that if a = (a1, · · · , as, · · · , ans)
T ∈

Bns is a Boolean vector denoting the positions (where as = 1) of the generators you want to anti-
commute with a g ∈ Pn, with all the other generators (where as = 0) commuting, then such a ga ∈ Pn

can always be found:

∃ga ∈ Pn such that gaŜs = −Ŝsga (if as = 1) and gaŜs = Ŝsga (if as = 0) . (E.68)

The dimension of the stabilized space. Given a set of independent generators S = 〈Ŝ1, · · · , Ŝns
〉

acting in the full Hilbert space Hn, we argued several times that the dimension of the stabilized
subspace HS is given by k = n − ns, essentially because every independent constraint Ŝs|ψ〉 = |ψ〉
imposed on the states reduces the dimension of the Hilbert space by a factor 2. This is very reasonable.
We will now prove it more formally by using the techniques we have developed.

Indeed, consider an a = (a1, · · · , as, · · · , ans
)T ∈ Bns . Define now the following projectors:

Π̂
(a)
S =

1

2ns

ns∏
s=1

(
1 + (−1)as Ŝs

)
. (E.69)

It is easy to see that these are orthogonal projectors, with Π̂
(a)
S projecting onto the subsector with

an eigenvalues syndrome λ = (−1)a for the generators. In particular Π̂
(0)
S is the projector on the

stabilized subsector HS . Moreover, they give us a resolution of the identity:

1 =
∑

a∈Bns

Π̂
(a)
S . (E.70)

Now, by applying the result of Exercise E.10, you see that for any a, a Pauli operator ga ∈ Pn exists
such that ga anti-commutes with all the generators in which as = 1, and commutes with the others
in which as = 0. With this trick you can effectively cancel the factor (−1)as in the projectors, arriving
at:

gaΠ̂
(0)
S = Π̂

(a)
S ga =⇒ gaΠ̂

(0)
S g†a = Π̂

(a)
S . (E.71)

Since ga is unitary, this shows that all the projectors have the same dimensionality 2k of the space
they project on. Hence, using Eq. (E.70):

2n = 2ns2k =⇒ k = n− ns . (E.72)

300

(Lecture Notes by G.E. Santoro) E.3 Pauli group and stabilizers reloaded

E.3.1. Measurements in the Stabilizer formalism

We now show how measurements of Pauli string operators can be described in the Stabilizer for-
malism. Suppose you have a Pauli operator g ∈ Pn which you want to measure on a state |ψ〉 ∈ HS

belonging to the stabilized subsector. Clearly, g must be Hermitean, since we pretend to be an ob-
servable. Then g = g† and g2 = 1, so that g has eigenvalues ±1. Let S = 〈Ŝ1, Ŝ2, · · · , Ŝns

〉 be the
stabilizers of HS . Two situations are possible:

Case 1) g commutes with all the generators: g Ŝs = Ŝsg, for s = 1, · · · ,ns.

Case 2) g anti-commutes with one of the generators, say Ŝ1, g Ŝ1 = −Ŝ1g, and commutes with
all the others. If you suspect that this is not general enough, argue as follows. If also
g Ŝ2 = −Ŝ2g, then g commutes with Ŝ1Ŝ2, and you can always substitute Ŝ2 → Ŝ1Ŝ2, returning
to the stated case. In the same way you can proceed if g anti-commutes with more then two
generators.

Case 1): Since for all generators Ŝsg|ψ〉 = g Ŝs|ψ〉 = g|ψ〉 we deduce that g|ψ〉 = λ|ψ〉. But g2 = 1,
hence λ = ±1. But g|ψ〉 = ±|ψ〉 means that either g or −g is in S. If g ∈ S, then g|ψ〉 = |ψ〉 and
a measurement of g on |ψ〉 gives the result +1 with probability 1, Probg(+1|ψ) = 1, and the state
is not modified by the measurement. If −g ∈ S, then g|ψ〉 = −|ψ〉 and a measurement of g on
|ψ〉 gives the result −1 with probability 1, Probg(−1|ψ) = 1: again the state is not modified by the
measurement.

Case 2): The probability of measuring each of the eigenvalues, ±1, is expressed in terms of
projectors as follows:

Probg(±1|ψ) = Tr
(
Π̂g
±|ψ〉〈ψ|

)
with Π̂g

± =
1

2
(1± g) . (E.73)

Now, by exploiting the anti-commutation with Ŝ1 and the fact that Ŝ1|ψ〉 = |ψ〉, we deduce that:

Probg(+1|ψ) = Tr
(

1
2 (1 + g)Ŝ1|ψ〉〈ψ|

)
= Tr

(
Ŝ1

1
2 (1− g)|ψ〉〈ψ|

)
= Tr

(
1
2 (1− g)|ψ〉〈ψ|

)
= Probg(−1|ψ) , (E.74)

where we also used the cyclic property of the trace to reabsorb Ŝ1 in the bra 〈ψ|. Since the two
probabilities are identical, we conclude that:

Probg(+1|ψ) = Probg(−1|ψ) =
1

2
. (E.75)

Concerning the collapse of the state after the measurement, in each of the two possible outcomes, the
post-measurement state is:

|ψ±〉 =
1√
2

(1± g)|ψ〉 (E.76)

with the two states connected by the former stabilizer Ŝ1:

Ŝ1|ψ−〉 = Ŝ1
1√
2

(1− g)|ψ〉 =
1√
2

(1 + g)Ŝ1|ψ〉 = |ψ+〉 . (E.77)

The post-measurement stabilized subspace. A moment reflection shows that the post-
measurement state |ψ±〉 is stabilized by S± = 〈±g, Ŝ2, · · · , Ŝns

〉.

i

301

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

E.3.2. The construction of logical X and Z for stabilizer codes

Generally speaking, the generator check matrix is an ns × 2n matrix of the form:

Hgen =
[

Hx Hz
]
, (E.78)

where Hx and Hz are ns × n and take care of the X and Z positions, respectively. While Hgen has
maximum rank ns, in general r = rank(Hx) ≤ ns. There are a number of transformations that you
can do to your bit-ordering and generators that modify the form of the matrix:

Swap rows) This corresponds to relabelling the generators.

Swap columns) If you swap columns in the same way in both Hx and Hz, this corresponds to a
different bit-ordering.

Sum rows) According to Eq. (E.64), we have that rg1g2
= rg1

⊕rg2
, which means that you can replace

the pair Ŝ1, Ŝ2 → Ŝ1, Ŝ1Ŝ2 by simply substituting rg2
→ rg1

⊕ rg2
in the check matrix. And this

can be done for any pairs of rows.

The standard form of the generator check matrix. It is a rather boring but not difficult exercise
of Gaussian elimination with Boolean variables, see [3][Sec. 10.5.7] for details, to show that you can
always transform the generator check matrix to the following canonical form:

Hgen → Hgen

canonical =

1 Bx Ax B1z 0 A1z

0 0 0 B2z 1 A2z

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
r ns−r k r ns−r k

,

r

ns−r

(E.79)

with appropriate block matrices. Particularly relevant to the following discussion are the blocks A1z

and A2z, entering in the expression for the logical X operator, and the block Ax entering in the logical
Z operator.

The goal is to define logical ZjL and XjL operators (with j = 1, · · · , k) — picking them from the
Pauli group Pn and representing them with the usual 2n-dimensional row-vectors — in such a way
that:

1) ZjL commute with each other and with all the generators Ŝs, and are such that

〈Ŝ1, · · · , Ŝns ,Z1L, · · · ,ZkL〉 (E.80)

is a subgroup generated by ns + s = n commuting independent operators. This guarantees
that they uniquely identify a common eigenstate |0L〉 ∈ HS with eigenvalue +1 for all of them.

2) XjL commute with each other and with all the generators Ŝs, and are such that

〈Ŝ1, · · · , Ŝns
,X1L, · · · ,XkL〉 (E.81)

is a subgroup generated by ns + s = n commuting independent operators.

3) Z and X anti-commute for the same index, XjLZjL = −ZjLXjL, while XjLZj′L = Zj′LXjL if
j′ 6= j.

302

(Lecture Notes by G.E. Santoro) E.3 Pauli group and stabilizers reloaded

To check commutation with the generators, we recall the symplectic product trick in Eq. (E.59):
we should check that rgsJ r

T
g = 0, where rgs is the row-vector representative of Ŝs, and rg that of

g = ZjL or XjL. Hence, we prepare the expression for Hgen
canonical J, which is given by:

Hgen

canonical J =

B1z 0 A1z 1 Bx Ax

B2z 1 A2z 0 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
r ns−r k r ns−r k

,

r

ns−r

(E.82)

It takes little work to show that, if we construct all the ZjL only out of physical Z, without X, a
representation of the k logical ZjL given by the following matrix of rank k would work:

HZ =

 0 AT
x 0 1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
n r ns−r k

 .k (E.83)

The commutation with the generators follows from: 7

Hgen

canonical J (HZ)T = 0 . (E.84)

Moreover, the independence of the operators in Eq. (E.80) is checked by verifying that the rank of
the representative matrix — whose first ns rows are given by Hgen

canonical (which has maximum rank ns),
and the last k rows by HZ —, is also maximum and equal to ns + k = n.

Next we move to the XjL. You can verify that the following choice for the (rank k) representative
matrix works:

HX =

 0 AT
2z 1 AT

1z 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
r ns−r k r ns−r k

 .k (E.85)

The independence of the system in Eq. (E.81) is guaranteed by the usual maximum rank argument.
The commutator with the stabilizers is easy to check: 8

Hgen

canonical J (HX)T = 0 . (E.86)

It remains to verify that XjL and ZjL anti-commute for the same j and commute otherwise. We
use the symplectic product trick, by calculating:

HZ J (HX)T =
[

AT
z 0 1 0 0 0

]

0

A2z

1

A1z

0

0

= [1]k×k . (E.87)

7You observe that the commutation with the last ns − r generators is trivial, while that with the first r generators
follows from 1(AT

x)T + Ax1 = 0.
8For the first r generators, you end up with A1z1 + 1(AT

1z)T = 0. For the remaining ns − r generators, you write
1(AT

2z)T + A2z1 = 0.

303

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Indeed, recall that gg′ = −g′g if and only if rgJ rT

g′ = 1, and the diagonal elements equal to 1 in the
RHS of Eq. (E.87) guarantee that XjLZjL = −ZjLXjL.

E.4. The Gottesman-Knill theorem

The techniques employed so far allow to establish a rather remarkable theorem concerning the fact
that quantum circuits composed only by Clifford gates — recall that they are composed exclusively
by the Hadamard Hj , the phase-gate Sj , and the cNOT Cjj′ — are classically simple to simulate,
although the relevant states are arbitrarily entangled.

Recall that, for a general a unitary transformation U in the Hilbert space and a state |ψ〉 ∈ Hn

which is eigenstate with eigenvalue +1 of a given stabilizer Ŝ, an Hermitean Pauli string such that
Ŝ2 = 1:

Ŝ|ψ〉 = |ψ〉 =⇒ U|ψ〉 = UŜ|ψ〉 =
(
UŜU†

)
U|ψ〉 . (E.88)

Hence UŜU† has eigenvalue +1 on U|ψ〉. The transformation Ŝ → UŜU† is known as conjugation
by U.

Stabilized states. There are states in the Hilbert space Hn that are uniquely associated (within
an overall phase) to a stabilizer group S ⊂ Pn which has ns = n independent generators, hence
k = n− ns = 0. 9 For instance |0〉⊗n is stabilized by 10

Stab(|0〉⊗n) = S = 〈Z1,Z2, · · · ,Zn〉 .

More generally, if |ψ〉 is stabilized by by S = 〈Ŝ1, · · · , Ŝn〉, then U|ψ〉 is stabilized by:

USU† = 〈UŜ1U†, · · · ,UŜnU†〉 , (E.89)

in a way that should reminds you of the Heisenberg representation of operators in QM. Moreover,
knowing as the generators transform under conjugation is enough to deduce how a general product of
generators transforms, since:

Ŝ1Ŝ2 → UŜ1Ŝ2U† = (UŜ1U†)(UŜ2U†) . (E.90)

Unfortunately, for a general unitary U the transformation Ŝ→ UŜU† might bring out of the Pauli
group. The particular unitaries U composed only by Clifford gates are such that the conjugation of
a Pauli string is still a Pauli string.

The Clifford gates. Indeed, recall that, for the Hadamard H = 1√
2
(X + Z), which is unitary,

Hermitean, and H2 = 1 (but H /∈ P1):

Hj

 Xj

Yj

Zj

H†j =

 Zj
−Yj

Xj

 while Hj

 Xj′

Yj′

Zj′

H†j =

 Xj′

Yj′

Zj′

 (j′ 6= j) . (E.91)

For the S-gate, S = diag(1, i), which is unitary, non-Hermitean and such that S2 = Z (but S /∈ P1):

Sj

 Xj

Yj

Zj

S†j =

 Yj

−Xj

Zj

 while Sj

 Xj′

Yj′

Zj′

S†j =

 Xj′

Yj′

Zj′

 (j′ 6= j) . (E.92)

9See Theorem 1 in Ref. [7].
10In this section we will number the bits from 1 to n for a simpler notation. Also, the ordering is assumed to be that

of linear algebra, with bits ordered from left to right in writing row-vectors.

304

(Lecture Notes by G.E. Santoro) E.4 The Gottesman-Knill theorem

Finally, for the cNOT-gate Cjj′ (with bit j as control and j′ as target), which is unitary, Hermitean,
and C2

jj′ = 1 (but Cjj′ /∈ P2): 11

Cjj′

 Xj

Yj

Zj

C†jj′ =

 XjXj′

YjXj′

Zj

 and Cjj′

 Xj′

Yj′

Zj′

C†jj′ =

 Xj′

ZjYj′

ZjZj′

 . (E.93)

In all the previous expressions, the transformation for the Y derives from Y = iXZ, and from the
fact that UYU† = i(UXU†)(UZU†).

The Heisenberg representation: follow the operators. Suppose, to illustrate the ideas, that we
have n = 2 Qbits, and we consider the Clifford group unitary transformation 12

U = C12H2C12S2H1 . (E.94)

Suppose we start from the state |ψ〉 = |00〉, which is stabilized by:

Stab(|00〉) = S = 〈Z1,Z2〉 .

Since some of the gates generate X and Y, starting from Z, it is mandatory that we study how
{X1,X2,Z1,Z2} transform upon conjugation by each gate. From that, you would know how to
transform Y, and indeed any Pauli string in P2.

Exercise E.11. Show that for U = C12H2C12S2H1:
X1

X2

Z1

Z2

→ U

X1

X2

Z1

Z2

U† =

Z1

−Y2

−Y1Y2

Z1X2

 . (E.95)

Having followed the operators in their Heisenberg transformation through the gates, we now know
that:

UStab(|00〉)U† = 〈−Y1Y2,Z1X2〉 .

The state U|00〉 stabilized by these two transformed operators (conjugate to Z1 and Z2) can be
calculated (or verified) to be:

U|00〉 =
1

2

(
|0〉1 ⊗

(
|0〉2 + |1〉2

)
− |1〉1 ⊗

(
|0〉2 − |1〉2

))
.

Similarly, since |ψ〉 = |01〉 = X2|00〉, then

U|01〉 = UX2U†U|00〉 = (−Y2)U|00〉 =
i

2

(
− |0〉1 ⊗

(
|0〉2 − |1〉2

)
+ |1〉1 ⊗

(
|0〉2 + |1〉2

))
.

In a similar way we can calculate U|10〉 and U|11〉, giving full access to the effect of U on the
computational basis.

States vs operators. It should be clear how much more cumbersome is working with states,
with respect to working with a set of rather simple rules to transform the operators.

!

11Recall that HjHj′Cjj′HjHj′ = Cj′j , and:

Cjj′ =
1

2
(1 + Z)j +

1

2
(1− Z)jXj′ .

12This is example 3 from Gottesman paper arXiv:9807006.

305

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

Entanglement and Clifford gates. The previous example already shows that entanglement is created
by applying Clifford gates. As a further illustration of the stabilizer formalism, consider the Bell state
construction for n = 2-Qbits. Recall that:

C12H1|0〉1 ⊗ |0〉2 =
1

2

(
|0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2

)
.

Exercise E.12. Show that for U = C12H1:
X1

X2

Z1

Z2

→ U

X1

X2

Z1

Z2

U† =

Z1

X2

X1X2

Z1Z2

 . (E.96)

The initial state of the computation |ψ〉 = |00〉 is stabilized by S = 〈Z1,Z2〉. By following the
stabilizer generators through the Heisenberg transformation, we discover that:

U 〈Z1,Z2〉U† = 〈X1X2,Z1Z2〉 .

The final Bell (maximally entangled) state is the stabilized state of 〈X1X2,Z1Z2〉, after the application
of the two Clifford gates.

A general approach. In order to perform the Heisenberg transformations more efficiently — after
all, the rules are very simple, see Eqs. (E.91)-(E.93) —, we get equipped with a tool very similar to
that used for generator matrices of stabilizer groups, except that now we want a notation that keeps
track of the phase factor in front of a Pauli string. Once again, we use the convention that:

±Xj ↔
(

0 · · · 0 1j 0 · · · 0 0 · · · 0 0j 0 · · · 0 ±1
)

±Zj ↔
(

0 · · · 0 0j 0 · · · 0 0 · · · 0 1j 0 · · · 0 ±1
)

±Yj ↔
(

0 · · · 0 1j 0 · · · 0 0 · · · 0 1j 0 · · · 0 ±1
) . (E.97)

Notice that we do not trade here Y for iXZ, disregarding the i.

Row-vector associated to an Hermitean Pauli string. To represent an Hermitean Pauli
string that squares to 1, including the overall ± sign, we need 2n+ 1 bits. For instance, for n = 4

Qbits:
−Y1X3Z4 ↔

(
1 0 1 0 1 0 0 1 −1

)
. (E.98)

i

It is obvious that all you need is to follow how the operators {X1, · · · ,Xn,Z1, · · · ,Zn} “evolve”,
as the various gates are applied. The relevant information is therefore contained in a table which is
2n× (2n+ 1), which is updated with simple rules each time a Clifford gate is applied.

To illustrate the idea, consider just the first transformation H1S2 in theU considered in Eq. (E.94).
Then:

X1

X2

Z1

Z2

↔

1 0 0 0 +1

0 1 0 0 +1

0 0 1 0 +1

0 0 0 1 +1

 H1S2−−−→

Z1

Y2

X1

Z2

↔

0 0 1 0 +1

0 1 0 1 +1

1 0 0 0 +1

0 0 0 1 +1

 .

306

(Lecture Notes by G.E. Santoro) E.4 The Gottesman-Knill theorem

And we might proceed in a similar way, by applying then C12 and so forth, obtaining in the end:

X1

X2

Z1

Z2

↔

1 0 0 0 +1

0 1 0 0 +1

0 0 1 0 +1

0 0 0 1 +1

 U−→

Z1

−Y2

−Y1Y2

Z1X2

↔

0 0 1 0 +1

0 1 0 1 −1

1 1 1 1 −1

0 1 1 0 +1

 .

Measurements As an example of measurement, let us assume that we have a state |ψin〉 = |ψ〉1⊗|0〉2,
with |ψ〉1 = z0|0〉1 + z1|1〉1: indeed a k = 1 stabilized subsector HS , whose stabilizer is S = 〈Z2〉. Let
us now apply U = C12 to |ψin〉:

U|ψin〉 = C12|ψin〉 = |ψfin〉 = z0|0〉1 ⊗ |0〉2 + z1|1〉1 ⊗ |1〉2 ,

which is stabilized by USU† = 〈Z1Z2〉, as seen from Eq. (E.93). Now suppose we measure g = Y2 on
this state. Y2 anti-commutes with the Heisenberg transformed stabilizer Ŝ1 = Z1Z2, hence we are
in Case 2) of the general discussion of Sec. E.3.1. If you revisit that discussion, you realize that the
outcome is random, with Probg(+1) = Probg(−1) = 1

2 . If the outcome is +1, then the state collapses
to

|ψ+〉 =
1√
2

(1 + Y2)|ψfin〉 =
(
z0|0〉1 − iz1|1〉1

)
⊗ 1√

2

(
|0〉2 + i|1〉2

)
,

which is stabilized by 〈Y2〉. If the outcome is −1, then the state collapses to

|ψ−〉 =
1√
2

(1−Y2)|ψfin〉 =
(
z0|0〉1 + iz1|1〉1

)
⊗ 1√

2

(
|0〉2 − i|1〉2

)
,

which is stabilized by 〈−Y2〉. The two states are connected by the old stabilizer:

Z1Z2|ψ−〉 = |ψ+〉 .

This can be rephrased as follows: Although the act of measuring involves a collapse and a projector,
hence not an operator in the Pauli group, still, conditioned on the result of the measurement of Y2,
if we get +1, we do nothing and obtain |ψ+〉, if we get −1, we apply the old stabilizer Z1Z2 and we
obtain again |ψ+〉.

Setting up a table for the computation. Let us see how we can actually compute with a classical
algorithm the Heisenberg transformations induced by a given circuit. To simplify our treatment, let us
assume that we start from the standard computational state |ψin〉 = |0⊗n〉. This is a stabilized state
with stabilizer Stab(|0〉⊗n) = 〈Z1,Z2, · · · ,Zn〉. In order to be able to follow the evolution of any Pauli
string operator, we need also to invoke the X1, · · · ,Xn, which are not stabilizers, but together with
the stabilizer they generate any Hermitean Pauli string. The initial value of our table is therefore:

X1

X2

...

Xn

Z1

Z2

...

Zn

↔

1 0 · · · 0 0 0 · · · 0 +1

0 1 · · · 0 0 0 · · · 0 +1
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 +1

0 0 · · · 0 1 0 · · · 0 +1

0 0 · · · 0 0 1 · · · 0 +1
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 +1

. (E.99)

307

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

As the computation proceeds, by applying the different Clifford gates in U, the operators are trans-
formed into more complex Pauli strings, represented by a matrix of the form:

UX1U†

UX2U†
...

UXnU†

UZ1U†

UZ2U†
...

UZnU†

↔

XD11 ZD12 · · · XD1n ZD11 ZD12 · · · ZD1n PD1
XD21 XD22 · · · XD2n ZD21 ZD22 · · · ZD2n PD2
...

...
. . .

...
...

...
. . .

...
...

XDn1 XDn2 · · · XDnn ZDn1 ZDn2 · · · ZDnn PDn
XS11 ZS12 · · · XS1n ZS11 ZS12 · · · ZS1n PS1
XS21 XS22 · · · XS2n ZS21 ZS22 · · · ZS2n PS2
...

...
. . .

...
...

...
. . .

...
...

XSn1 XSn2 · · · XSnn ZSn1 ZSn2 · · · ZSnn PSn

=

(
XD ZD PD

XS ZS PS

)
.

(E.100)
The state being given by |ψ〉 = U|ψin〉, you recognize that the lower part of the matrix has to do with
the stabilizer of |ψ〉:

Stab(|ψ〉) = 〈UZ1U†,UZ2U†, · · · ,UZnU†〉

associated to the binary matrices XS , ZS , and the binary vector PS encoding the ±1 phase factor. 13

The upper part of the matrix is related to what might be called the destabilizers, i.e., Pauli strings
that help in generating the Pauli group, with a characteristic anti-commutation of UXjU† with
the corresponding stabilizer UZjU†. The corresponding matrices and phase factors are given by XD,
ZD, and PD. As you apply any Clifford gate, the table

Htab =

(
XD ZD PD

XS ZS PS

)
, (E.101)

should be updated following Eqs. (E.91)-(E.93), and you can easily verify that:

Action of Hj) For all i = 1, · · · , n you set: 14
XD/Sij ←→ ZD/Sij

P
D/S
i ←− P

D/S
i ⊕ XD/Sij ZD/Sij

. (E.102)

Action of Sj) For all i = 1, · · · , n you set:
ZD/Sij ←− ZD/Sij ⊕ XD/Sij

P
D/S
i ←− P

D/S
i ⊕ XD/Sij ZD/Sij

. (E.103)

Action of Cjj′) For all i = 1, · · · , n you set:

XD/Sij′ ←− XD/Sij′ ⊕ XD/Sij

ZD/Sij ←− ZD/Sij ⊕ ZD/Sij′

P
D/S
i ←− P

D/S
i ⊕ XD/Sij ZD/Sij′ (XD/Sij′ ⊕ ZD/Sij ⊕ 1)

. (E.104)

Exercise E.13. Verify that thes rules in Eqs. (E.102)-(E.104) encode precisely the content of Eqs. (E.91)-
(E.93), with the table convention on how the various Pauli operators are represented.

13It might be convenient to switch from the binary sign ±1, to the more standard bit encoding of sign P→ (1− P)/2.
14Notice the phase flip associated to Y.

308

(Lecture Notes by G.E. Santoro) E.4 The Gottesman-Knill theorem

Clifford gate rules for updating the table. It is clear that the rules behind the action
of the Clifford gates on Pauli strings are very simple, see Eqs. (E.102)-(E.104), and they can be
implemented in a classical digital algorithm which works on the (2n) × (2n + 1) representative
table Htab. The algorithm scales polynomially with the number of Qbits n and with the number
of elementary Clifford gates composing the unitary U.

i

How to deal with measurements using the computational table. It remains to see what happens
as we measure some Pauli operators — for simplicity, think of measuring in the computational basis,
i.e., operators g ∈ Pn which are composed only of Zj terms, or, even simpler, by a single term, g = Zj .
The general theory was already presented in Sec. (E.3.1), but we now want to understand how these
rules are encoded in Htab. We have to understand if:

Case 1) g = Zj commutes with the stabilizer group, in which case the outcome is determinate,
either λ = +1 or λ = −1 is obtained with probability 1, and the state is unchanged.

Case 2) g = Zj anti-commutes with one (or more) generator of the stabilizer group, call it Ŝi1 =

UZi1U
†, in which case the outcome is random, λ = ±1 with probability 1/2, the state is

collapsed

|ψ〉 → |ψ±〉 =
1√
2

(1± g)|ψ〉 ,

and the operator ±g takes the place of the anti-commuting Pauli string in the new stabilizer
group. Even simpler, you can always reduce yourself to the case where +g is installed in the
stabilizer, by observing that:

Ŝi1 |ψ−〉 = Ŝi1
1√
2

(1− g)|ψ〉 =
1√
2

(1 + g)|ψ〉 = |ψ+〉 .

The answer is very simple. Just check if Xj or Yj is present in one of the stabilizer generators,
i.e., check the value of XSij for all i = 1 · · ·n. If XSij = 0 for all i = 1 · · ·n, then Zj commutes
with the stabilizer, and we are in Case 1). If an i1 ∈ {1, · · · , n} exist (take the smallest) such
that XSi1j = 1, then Zj anti-commutes with the corresponding stabilizer generator, and we are in
Case 2).

Question: How do we understand from Htab if we are in Case 1) or 2)?

What to do in Case 2) Let i1 be the smallest index where XSi1j = 1, corresponding to the stabilizer

generator Ŝi1 = UZi1U
† which have a Xj or a Yj in their Pauli string. Then:

1. Multiply by Ŝi1 all the Pauli strings — except that of Ŝi1 —where either XSi,j = 1 or XDi,j = 1,
i.e., anti-commuting with g = Zj . For the anti-commuting stabilizers, this amounts to
setting Ŝi → Ŝi1 Ŝi, so that they now properly commute with g. The opposite effect is
obtained for the destabilizers gk = UXikU

† such that XDikj = 1: setting gk → Ŝi1gk effective
makes all these operators anti-commuting with g, but commuting among themselves. This
multiplication of operators is practically obtained by summing representative rows in
Htab, with a little extra care needed in determining the corresponding parity bits PSi , for
which I refer the reader to Ref. [7].

2. Move Ŝi1 to the destabilizers, by setting for all j = 1, · · · , n:

XDi1,j ← XSi1,j , ZDi1,j ← ZSi1,j , PDi1 ← PSi1 .

309

Classical and Quantum Error Correction (Lecture Notes by G.E. Santoro)

3. Put Zj in the list of stabilizer generators in place of Ŝi1 , by setting for all j:

XSi1,j = 0 , ZSi1,j = 0 , except for ZSi1,j = 1 .

The value of PSi1 is set to 0 or 1 with probability 1/2: it is the eigenvalue outcome of the
random measurement.

What to do in Case 1) The fact that g = Zj commutes with all the stabilizers UZiU† implies that
one must have, for an appropriate binary string a = (a1, · · · , an):

Zj = λ

n∏
i=1

(UZiU†)ai , (E.105)

where λ = ±1 is the determinate outcome of the measurement. The row representative of the
LHS is simply (0 · · · 0||0 · · · 0|0). The RHS operator (without overall) has a row-representative
(which should match with the LHS):

n∑
i=1

ai(X
S
i1 · · ·XSin||ZSi1 · · ·ZSin|PSi) .

Hence, evidently:

n∑
i=1

aiP
S
i = 0 =⇒ λ = +1

n∑
i=1

aiP
S
i = 1 =⇒ λ = −1

. (E.106)

All you need to do, to determine if λ = +1 or −1, is to find out the binary string a, by solving
the linear equations

(0 · · · 0||0 · · · 0) =

n∑
i=1

ai(X
S
i1 · · ·XSin||ZSi1 · · ·ZSin) .

In conclusion, we have given the bits and pieces of the mechanism behind the Gottesman-Knill
theorem.

Gottesman-Knill theorem. Any quantum computer performing only: 1) Clifford group gates
(Hj , Sj , and Cjj′), 2) measurements of Pauli string operators, and 3) Clifford group operations
conditioned on classical bits, which may be the results of earlier measurements, can be perfectly
simulated on a classical computer with polynomial efforts in the number of Qbits n and of
applied gates.

i

This implies that quantum computation is possibly more powerful than classical computation only
when it used gates outside of the Clifford group, for instance, T = diag(1, eiπ/4)-gates.

310

Bibliography

[1] N David Mermin. Quantum computer science: an introduction. Cambridge University Press,
2007.

[2] Giuliano Benenti, Giulio Casati, Davide Rossini, and Giuliano Strini. Principles of Quantum
Computation and Information: A Comprehensive Textbook. World Scientific, 2018.

[3] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[4] Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental Realization of Einstein-
Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev.
Lett., 49:91–94, Jul 1982.

[5] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger.
Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett., 81:5039–
5043, Dec 1998.

[6] Daniel Gottesman. The heisenberg representation of quantum computers. 1998.

[7] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A,
70:052328, Nov 2004.

[8] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, third edition,
2006.

[9] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26:1484–1509, 1997.

[10] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes
Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić,
and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature,
551(7682):579–584, 2017.

[11] Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Om-
ran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soonwon Choi, Subir
Sachdev, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Quantum phases of matter on
a 256-atom programmable quantum simulator. Nature, 595(7866):227–232, 2021.

[12] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A.
Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D.
Lukin. Controlling quantum many-body dynamics in driven rydberg atom arrays. Science,
371(6536):1355–1359, 2021.

[13] Pascal Scholl, Michael Schuler, Hannah J. Williams, Alexander A. Eberharter, Daniel Barredo,
Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry, Thomas C. Lang, Thierry Lahaye,
Andreas M. Läuchli, and Antoine Browaeys. Quantum simulation of 2d antiferromagnets with
hundreds of rydberg atoms. Nature, 595(7866):233–238, 2021.

311

Bibliography

[14] Vincent Jacques, E Wu, Frédéric Grosshans, Franccois Treussart, Philippe Grangier, Alain As-
pect, and Jean-Franccois Roch. Experimental realization of wheeler’s delayed-choice gedanken
experiment. Science, 315(5814):966–968, 2007.

[15] Yoon-Ho Kim, Rong Yu, Sergei P. Kulik, Yanhua Shih, and Marlan O. Scully. Delayed “choice”
quantum eraser. Phys. Rev. Lett., 84:1–5, Jan 2000.

[16] Tabish Qureshi. Demystifying the delayed-choice quantum eraser. European Journal of Physics,
41(5):055403, aug 2020.

[17] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum
engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2):021318, 2019.

[18] Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford University
Press, 2009.

[19] M. N. Vyalyi A. Yu. Kitaev, A. H. Shen. Classical and quantum computation. Graduate studies
in mathematics 47. American Mathematical Society, 2002.

[20] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 79:325–328, Jul 1997.

[21] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization
Algorithm. arXiv e-prints, page arXiv:1411.4028, 2014.

[22] Glen Bigan Mbeng, Rosario Fazio, and Giuseppe E Santoro. Quantum annealing: a journey
through digitalitalization, control, and hybrid quantum variational schemes. arXiv preprint
arXiv:1906.08948, 2019.

[23] Zhang Jiang, Eleanor G. Rieffel, and Zhihui Wang. Near-optimal quantum circuit for grover’s
unstructured search using a transverse field. Phys. Rev. A, 95:062317, Jun 2017.

[24] Matteo M. Wauters, Glen B. Mbeng, and Giuseppe E. Santoro. Polynomial scaling of the quantum
approximate optimization algorithm for ground-state preparation of the fully connected p-spin
ferromagnet in a transverse field. Phys. Rev. A, 102:062404, Dec 2020.

[25] Robert B. Griffiths and Chi-Sheng Niu. Semiclassical fourier transform for quantum computation.
Phys. Rev. Lett., 76:3228–3231, Apr 1996.

[26] César Miquel, Juan Pablo Paz, and Roberto Perazzo. Factoring in a dissipative quantum com-
puter. Phys. Rev. A, 54:2605–2613, Oct 1996.

[27] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
454(1969):339–354, 1998.

[28] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[29] Asher Peres. Quantum theory: concepts and methods, volume 57. Springer Science & Business
Media, 2006.

[30] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science, 560:7–11, 2014. Theoretical Aspects of Quantum
Cryptography — celebrating 30 years of BB84.

[31] David Elkouss, Jesús Martínez-Mateo, and Vicente Martin. Information reconciliation for QKD.
Quantum Inf. Comput., 11(3&4):226–238, 2011.

312

Bibliography

[32] Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661–663,
Aug 1991.

[33] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment
to test local hidden-variable theories. Phys. Rev. Lett., 23:880–884, Oct 1969.

[34] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit quantum elec-
trodynamics. Rev. Mod. Phys., 93:025005, May 2021.

[35] Uri Vool and Michel Devoret. Introduction to quantum electromagnetic circuits. International
Journal of Circuit Theory and Applications, 45(7):897–934, 2017.

[36] B.D. Josephson. Possible new effects in superconductive tunnelling. Physics Letters, 1(7):251–253,
1962.

[37] P. G. de Gennes. Superconductivity of Metals and Alloys. Benjamin, New York, 1966.

[38] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004.

[39] V Bouchiat, D Vion, P Joyez, D Esteve, and M H Devoret. Quantum coherence with a single
cooper pair. Physica Scripta, 1998(T76):165, jan 1998.

[40] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic quantum states
in a single-cooper-pair box. Nature, 398(6730):786–788, 1999.

[41] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from
the cooper pair box. Phys. Rev. A, 76:042319, Oct 2007.

[42] Fei Yan, Philip Krantz, Youngkyu Sung, Morten Kjaergaard, Daniel L. Campbell, Terry P.
Orlando, Simon Gustavsson, and William D. Oliver. Tunable coupling scheme for implementing
high-fidelity two-qubit gates. Phys. Rev. Appl., 10:054062, Nov 2018.

[43] Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen,
B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T. C. White, Michael R. Geller, A. N. Cleland, and John M.
Martinis. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett.,
113:220502, Nov 2014.

[44] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vacchini. Colloquium: Non-
markovian dynamics in open quantum systems. Rev. Mod. Phys., 88:021002, Apr 2016.

[45] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-Photon Interactions: Basic Pro-
cesses and Applications. John Wiley & Sons, 1992.

[46] G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys.,
48:119, 1976.

[47] Li, C.-F., Guo, G.-C., and Piilo, J. Non-markovian quantum dynamics: What does it mean?
EPL, 127(5):50001, 2019.

[48] Joschka Roffe. Quantum error correction: an introductory guide. Contemporary Physics,
60(3):226–245, 2019.

[49] Dave Bacon. Introduction to quantum error correction. In Daniel A Lidar and Todd A Brun, edi-
tors, Quantum error correction, chapter 2, pages 46–76. Cambridge University Press, Cambridge,
2013.

313

Bibliography

[50] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier Science,
1978.

[51] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A,
54:1098–1105, Aug 1996.

[52] David MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

[53] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30,
2003.

[54] John B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys.,
51:659–713, Oct 1979.

[55] P. Gaspard and M. Nagaoka. Slippage of initial conditions for the Redfield master equation. J.
Chem. Phys., 111:5668, 1999.

[56] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford
University Press, 2002.

[57] Gernot Schaller. Open Quantum Systems Far from Equilibrium, volume 881. 11 2013.

[58] A.O. Caldeira and A.J. Leggett. Path integral approach to quantum brownian motion. Physica
A: Statistical Mechanics and its Applications, 121(3):587 – 616, 1983.

[59] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system. Annals of Physics,
149(2):374 – 456, 1983.

[60] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi. Quantum adiabatic Markovian master equa-
tions. New J. Phys., 14:123016, 2012.

[61] M. Grifoni and P. Hänggi. Driven quantum tunneling. Physics Reports, 304:229–354, 1998.

[62] Angelo Russomanno, Stefano Pugnetti, Valentina Brosco, and Rosario Fazio. Floquet theory of
cooper pair pumping. Phys. Rev. B, 83:214508, Jun 2011.

[63] Alexander Shnirman, Yuriy Makhlin, and Gerd Schön. Noise and decoherence in quantum two-
level systems. Phys. Scr., T102:147–154, 2002.

[64] J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP: An open-source python framework for
the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772,
aug 2012.

[65] J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP 2: A python framework for the dynamics
of open quantum systems. Computer Physics Communications, 184(4):1234–1240, apr 2013.

314

	Introduction
	Turing machines and classical computation
	Computability and decidability

	Probability theory and Quantum Mechanics
	Interference in a Mach-Zehnder interferometer
	Wheeler's delayed-choice experiment
	Which-way experiments and the delayed-choice quantum eraser

	Concluding remarks
	Hands-on: EPR-type calculations with entangled particles

	Classical gates and elements of classical computation
	Classical bits, probability distributions and Stochastic Matrices
	More than one Cbit: tensor products
	More on Cbit operations: connection to digital computer operations
	Reversible extensions of Boolean functions
	Elementary logic gates
	A simple algorithm: adding numbers
	Universal classical gates
	Universality vs Efficiency: Tractable vs Intractable problems
	Boolean Satisfiability

	Quantum gates and elements of quantum computation
	Computational states and superpositions: the Hilbert space
	Unitary operators associated to function evaluation
	Pauli operators and associated single-Qbit unitary gates
	The Hadamard gate H
	Using only Hadamard and rotations around the z-axis

	Drawing quantum circuits
	Two-Qbit states and gates
	Bell measurements

	NMR-like Hamiltonian model for 1- and 2-Qbit gates
	A variety of 2-Qbit and multi-Qbit unitary gates.
	Multi-Qbit unitary gates

	Universal quantum gates
	Examples of function evaluation with a QC
	The quantum adder

	No-cloning theorem
	The Deutsch's problem
	An interesting ``variant'' of Deutsch's problem, and some general remarks on the role of additional Qbits.

	The Bernstein-Vazirani problem
	Teleportation
	Hands-on: state preparation, control-U and Toffoli gates
	Representing a general 2-Qbit state
	Constructing control-unitary operators
	Constructing the Toffoli gate out of cNOTs

	Grover searching with a quantum computer
	The Grover iteration
	How to construct the kinetic term K
	Generalisation to the case of several solutions
	Connection to p-spin models and to QAOA

	Quantum Fourier Transform
	The Quantum Fourier Transform circuit
	Period-finding
	Factoring and cryptography
	Modular arithmetics: some tools.
	RSA public-key cryptography
	Breaking RSA through period-finding
	Period-finding and factoring
	Implementing modular exponentials on a Quantum Computer

	Phase estimation protocol
	Finding eigenstates and eigenvalues of an Hamiltonian

	Quantum cryptography
	To be sure: the Vernam cypher
	Implementing Qbits with photon polarisation
	Exploiting the special nature of Quantum Randomness
	The BB84 protocol
	Important details

	Exploiting quantum correlations due to entanglement
	CHSH version of Bell's inequalities
	The E91 protocol

	Hardware implementations of Quantum Computers
	DiVincenzo criteria
	A few tools: LC circuits, Josephson's Junctions, SQUIDS
	From BCS to the Josephson junction

	The superconding Qbits platforms
	Charge Qbits: The Cooper pair box
	The transmon

	Variants of JJ Qbits
	Manipulating and coupling superconducting QBits
	Manipulating single Qbits

	What can go wrong: the sources of dissipation and decoherence
	Circuit QED

	Density matrices
	The density matrix for a pure state
	The density matrix for a mixed state
	Spectral properties of and ambiguity on the ensemble originating
	Density matrices after measurements
	Density matrices in statistical mechanics
	Density matrices by tracing out an environment
	Schmidt decomposition
	The singular value decomposition (SVD)

	Convex nature of density matrices
	The spin-1/2 case and the Bloch sphere

	Open Quantum Systems and Quantum Maps
	Kraus representation of the dynamics
	Quantum measurements and POVM
	von Neumann projective measurements
	Generalised quantum measurements
	Ambiguity in the preparation of a post-measurement state
	The von Neumann protocol
	POVM and summary of quantum measurement

	Inverting Kraus: how to ``invent'' unitaries
	Quantum maps
	Ambiguity of the Kraus representation and purification
	Composition laws of Quantum Maps
	Useful examples of single-Qbit maps
	Phase damping (or dephasing)
	Amplitude damping (or relaxation)
	Depolarising channel

	Open Quantum Systems and Lindblad Quantum Master Equation
	The Markovian condition
	The Lindblad construction

	Introduction to quantum error correction
	Classical error correction and Shannon's theorem
	Quantum error correction: the simple case of bit flips
	Measuring error syndromes: general idea
	More general errors: error digitisation
	The five-Qbit encoding
	General criteria for quantum error correction
	Content of the QEC criterion and the quantum Hamming bound
	Digitization of quantum noise: again

	The stabilizers and the Pauli group
	Unitary transformations and the Clifford group
	Stabilizer codes
	Error correction for stabilizer codes
	Syndrome detection for stabilizer codes

	The Toric code
	The toric code ground states

	Appendices
	Simple tools from arithmetics
	The Euclid algorithm for the greatest common divisor
	Finding the multiplicative inverse in modular arithmetics
	The probability of two random integers being co-prime

	Uniaxial birefringence
	The wave-plate geometry
	The double-refraction geometry
	Quantum optics single-Qbit gates with photon polarisation
	Hands-on: Peres' problems with calcite crystals

	Superconductivity
	The BCS problem
	The Josephson effect
	The Ginsburg-Landau description
	Quantum interference of two JJ: The dc-SQUID

	Quantum master equations
	A general framework: system plus environment
	The Bloch-Redfield quantum master equation
	The secular approximation and the Libdblad form
	Rotating-wave (or secular) approximation
	The Lindblad form
	Non-degenerate spectrum and population dynamics

	Application to a two-level system
	Lindblad form for the two-level system
	Decoherence and relaxation towards equilibrium

	Classical and Quantum Error Correction
	Linear codes in classical error correction
	Errors induced by the communication channel.
	More about decoding: cosets and syndromes.
	The binary Hamming code
	The probability of error
	Shannon's theorem: the existence of good codes
	Dual codes
	Construction of new codes from old ones
	General properties of linear codes

	Quantum codes
	Calderbank–Shor–Steane (CSS) quantum codes
	The CSS codes seen as stabilizers codes

	Pauli group and stabilizers reloaded
	Measurements in the Stabilizer formalism
	The construction of logical X and Z for stabilizer codes

	The Gottesman-Knill theorem

