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Preface

Here you find some lecture notes prepared for the course in Statistical Mechanics at SISSA. Many
very nice books and lecture notes exist, and I do not pretend to add anything to what has been
published: These are only my notes on the subject. The main references I will follow are the very
nice Lecture Notes by Arovas [1], and the books by Peliti [2], Callen [3], Sethna [4], Pathria [5], and
MacKay [6].

The notes are divided into two main parts: 1) Basic material and 2) Selected topics.

The basic material contains standard topics. Starting with a review of thermodynamics, the sta-
tistical ensembles are introduced, and standard applications (systems of free bosons and fermions)
are illustrated. Next, after an interlude on transfer matrix and path-integral representation, the stan-
dard Weiss mean-field theory approach is presented, ending with a derivation of the Ginzburg-Landau
action.

The selected topics include this year: the XY model in two-dimensions and the Kosterlitz-Thouless
transition, and an introduction to (mostly) Ising lattice gauge theories.
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1. Introduction to Entropy and Statistical
Mechanics

I will illustrate here, through elementary examples, some useful concepts that hopefully will provide
a small guided tour into some of the ideas of Statistical Mechanics.

During the tour, we will encounter some useful mathematics — large-N (saddle-point) techniques,
Fourier/Laplace transforms, Legendre transforms — and some of the important actors in the game —
entropy, energy, free-energy — together with the first bricks of the construction of the more general
theory.

The discussion on Shannon’s entropy follows quite closely the excellent book by MacKay [6].

1.1. The exponential dominance: Stirling

I start by illustrating an idea that keeps coming repeatedly when you discuss “entropy”: the idea of
exponential dominance, which can be simply understood with the following elementary considerations.
Suppose you have a sum of the form

Ω =
∑
i

eNεi .

where εi ≥ 0. Call εmax the largest of such εi. Then, for very large N you generally have:

1

N
log Ω ' εmax . (1.1)

To understand the issue, suppose you have only one further term with εi = εmax − ∆ in the sum.
Then:

1

N
log eNεmax

(
1 + e−N∆

)
= εmax +

1

N
log
(
1 + e−N∆

)
→ εmax .

A bit more generally, suppose that a number ∼ Nα of terms with εi < εmax contribute to the sum.
Then you can write:

eNεmax < Ω < NαeNεmax .

Hence, taking the logarithms and dividing by N you get:

εmax <
1

N
log Ω < εmax + α

logN

N
,

i.e., once again, Eq. (1.1) holds for large enough N .

An interesting application of the principle of exponential dominance is the method of Laplace for
calculating integrals of functions of the form eNφ(x). Let us exemplify this with an application that
leads to the famous Stirling approximation for the factorial N !:

log(N !) = N logN −N + log
√

2πN +O(1/N) . (1.2)

One possible way to derive the Stirling approximation starts from the integral representation

Γ(N + 1)
def
=

∫ ∞
0

dx xNe−x = N ! ,
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Figure 1.1.: On the left, the function gN (x) = eN log x−x, whose integral gives the factorial N !, for N = 100.
On the right, in blue, the approximation by a Gaussian obtained by expanding the exponent near the maximum
at xmax = N .

which you can very easily prove by induction. This is the Euler’s Γ-function at integer values of the
argument. Next, we analyze the integrand gN (x) = eN log x−x = eN(log x−x/N), and discover that it
has a maximum at xmax = N and two inflection points at x± = N ±

√
N . The value at the maximum

is already very suggestive:

gN (x = xmax = N) = eN logN−N .

To calculate the integral, let us start being brutal. We approximate it with the area of the rectangle
of height equal to the maximum, gN (N), and basis equal to the distance between the two inflexion
points, 2

√
N . Our brutal estimate would than give:

Ibrutal =
√

4NeN logN−N .

If you take the logarithm, you get the following estimate:

logN ! ≈ N logN −N + log
√

4N .

Not that bad, for a rather swift calculation. Even more brutal is the approach of not even calculating
the inflexion points, and approximate the area with a rectangle of basis b = 1, which would give only
the first two terms of the Stirling formula, incidentally, the two terms that are more often used.

To get a much better result for the third term, log
√

2πN , we resort to a gaussian approximation.
Essentially, we expand the logarithm appearing in gN (x) close to its maximum at x = N by retaining
only the quadratic terms in the exponent. You get:

gN (x) ≈ ggau
N = eN logN−Ne−

(x−N)2

2N . (1.3)

The integral, using the gaussian, is rather simple:∫ ∞
0

dx eN logN−N e−
(x−N)2

2N ≈ eN logN−N
∫ ∞
−∞

dy e−
y2

2N = eN logN−N
√

2πN .

Taking the logarithm, you get the Stirling formula including the (third term) sub-leading logarithmic
correction. Figure 1.1 shows the comparison between the exact gN and the gaussian approximation
ggau
N .
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1.2. Repeated flips of coins and frequency of letters

Flipping a coin is a standard starting point for probability. It is associated with a process, called
the Bernoulli process, which can be formalised as follows:

X =

(
0 1

p0 p1

)
, (1.4)

where p0 + p1 = 1, and p1 is the probability of getting Head (which we call “1”), while p0 is that of
getting Tail (which we call “0”). A more general process X, which Khinchin calls a “finite scheme” and
MacKay an “ensemble”, is build on a more general alphabet A = {x1, x2, · · · , x|A|} of symbols/objects
xj , called “outcomes” of X, with j = 1 · · · |A|, where |A| denotes the number of possible outcomes
in the set A. For instance, A could be the English alphabet of 26 letters, including the space, as
exemplified in Fig. 1.2 below.

Figure 1.2.: (Left) The frequency of letters in English. (Right) The joint probability P (x, y) of two consecutive
letters x and y in a typical English text. Pictorially, larger probability is represented by a larger white square.
Notice the presence of correlations, such that P (x, y) 6= P (x)P (y). Figure taken from MacKey.

To fully specify X you have to assign the probability P (xj) = pj of the occurrence of each outcome
xj , listing them for instance as:

X =

(
x1 x2 · · · xj · · · x|A|
p1 p2 · · · pj · · · p|A|

)
, (1.5)

Random variable. When the alphabet A is mapped into real or integer numbers (as in the
Tail/Head case for the coin), X is often referred to as a random variable.

i
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For a random variable X you can easily calculate the average and the variance of X with the usual
definitions: 

E[X] =

|A|∑
j=1

xjP (xj)

Var[X] = E[X2]− E2[X] =

|A|∑
j=1

(xj − E[X])2P (xj)

, (1.6)

where we have defined the ensemble X2 to be given by:

X2 =

(
x2

1 x2
2 · · · x2

j · · · x2
|A|

p1 p2 · · · pj · · · p|A|

)
. (1.7)

In the case of a Bernoulli process these are simple to calculate, E[X] = p1, E[X2] = p1, hence
Var[X] = p1(1− p1).

Now consider generating a sequence of N independent similar ensembles, which we denote by
Xi=1···N , with identical distribution of probability of the outcomes P (xj). Any outcome of this
experiment is a sequence of N outcomes x = (x1, · · · , xi, · · ·xN ). Notice that we have used here a
“short notation”, where xi indicates the outcome of Xi, which is taken from the common alphabet A.
A more proper notation would be xji , to denote the j-th outcome obtained at the i-th trial.

In the Bernoulli case an outcome-sequence would be x = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0), for instance, for
N = 10. What is the probability of each individual sequence? Simple enough, since the repeated
trials are all independent, hence the probabilities multiply:

P (x) = pN0
0 pN1

1 , (1.8)

where N0 is the number of 0s, and N1 the number of 1s, obviously with N0 +N1 = N . Suppose now
that the coin is not “fair” (or the process generating the 0s and the 1s is not a coin, after all), and
that p1 < p0, for instance p1 = 0.1 and p0 = 0.9. Then by far the most probable string is that with all
0s:

P (x = (0, 0, · · · , 0)) = pN0 = (0.9)N = 2−N log2(0.9) ≈ 2−15.2 ,

where the last estimate is for N = 100. 1 The least probable string is also obviously that with all 1s:

P (x = (1, 1, · · · , 1)) = pN1 = (0.1)N = 2−N log2(0.1) ≈ 2−332.2 .

But if you do the experiment, and N = 100, you know that you almost never get the most probably
string with N = 100 0s. How comes? You know very well that you typically obtain strings with
N1 ≈ p1N = 10 and N0 ≈ p0N = 90. Indeed, as you know very well, the expected frequency
n1 = N1/N is given by

n1 =
N1

N
≈ p1 .

Figure 1.3 shows the possible outcome of such an experiment. Notice that the probability of a “typical
string” is:

P (xtyp) ≈ pNp0

0 pNp1

1 = 2N(p0log2p0+p1log2p1) = 2−N(−p0log2p0−p1log2p1) ≡ 2−NH(X) , (1.9)

where we have defined the Shannon entropy of X as:

H(X) = −p0log2p0 − p1log2p1 = p0log2

1

p0
+ p1log2

1

p1
. (1.10)

The reason why we introduce the second way of writing will be clear in a while.

1Beware of applying blindly the principle of exponential dominance. Recall that we have exponentially many states
here, and entropy effects do play a crucial role in getting the typical strings.
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Figure 1.3.: Strings of bits generated by N = 100 independent Bernoulli trials with p1 = 0.1.

Notation. Here we adopt the standard notation H(X) for Shannon’s entropy associated with
the random variable X. Later on, we will denote the Shannon entropy as SShannon(P), where P
denotes the probability distribution of the variable X.

!

There are a total of Ωtot = 2N = 2100 ≈ 1030 strings x for N = 100. Can we estimate the number
of “typical strings” we would get? The number of strings with a number of 1s precisely equal to N1 is
given by the binomial coefficient

(
N
N1

)
, so the number Ωtyp of typical strings can be estimated as:

log Ωtyp ≈ log

(
N

Np1

)
= logN !− log(Np1)!− log(Np0)!

≈ N(−p0 log p0 − p1 log p1) = N log(2)H(X) . (1.11)

Hence, log2Ωtyp ≈ NH(X), or:

Ωtyp ≈ 2NH(X) ≈ 247 ≈ 1014 , (1.12)

where the last estimate applies to N = 100 and H(X) ≈ 0.47 when p1 = 0.1. I remark that

P (xtyp)× Ωtyp ≈ 2−NH(X)2NH(X) ≈ 1 . (1.13)

So, in essence, the typical strings, whose number and probability was estimated above, seems to
exhaust the whole probability! All the other non-typical strings — the vast majority, since Ωtyp ≈
2NH(X) � Ωtot = 2N , including the most probable one x = (0, 0, · · · , 0) — seems to count nothing in
the total probability. We will soon “formalize” the previous argument through the use of a theorem,
the weak law of large numbers.

11
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Binomial distribution and strong law of large numbers. You know very well that the
ingredients given above give rise to the Binomial distribution for the repeated Bernoulli trials.
The probability of getting N1 times a “1” in a sequence of N independent trials is:

Prob(N1, N) =

(
N

N1

)
pN−N1

0 pN1
1 .

One can show, see App. A for more details and exercises, that the Binomial distribution ap-
proaches a Gaussian in the limit of a large number of trials N . This is one manifestation of the
strong law of large numbers.

i

Before proceeding, let us generalise the previous concepts to a more general X. The expected
number of times xj is obtained in N trials is pjN , hence we would estimate:

P (xtyp) ≈ pNp1

1 pNp2

2 · · · pNp|A||A| ≡ 2−NH(X) , (1.14)

where the Shannon entropy is now:

H(X) = −
|A|∑
j=1

P (xj) log2P (xj) =

|A|∑
j=1

P (xj) log2

1

P (xj)
. (1.15)

Notice that, if for some reason you do not want to use the log2, for instance, if you plan to take
derivatives where the standard natural log is much more comfortable to use, you can write Shannon’s
entropy as:

H(X) = −kS
|A|∑
j=1

P (xj) logP (xj) = kS

|A|∑
j=1

P (xj) log
1

P (xj)
, (1.16)

where kS = 1/ log 2. Next, the number of typical N -strings with the expected occurrence Nj = pjN

is given by the multinomial coefficient:

Ωtyp =
N !

(p1N)! · · · (p|A|N)!
≈ 2NH(X) , (1.17)

where we used once again the Stirling approximation for the factorials. Once again, observe that the
typical strings essentially exhaust the total probability:

P (xtyp)× Ωtyp ≈ 2−NH(X)2NH(X) ≈ 1 . (1.18)

Observe also that the total number of N -strings is

Ωtot = |A|N = 2N log2|A| . (1.19)

Notice that if all events were equally probable, pj = 1/|A|, then

H(X) =

|A|∑
j=1

P (xj) log2

1

P (xj)
=

|A|∑
j=1

1

|A|
log2|A| = log2|A|

hence Ωtyp ≈ Ωtot is all events are equally probable. For a general distribution of {pj}, however, you
can show that:

H(X) = H({pj}) ≤ log2|A| , (1.20)

i.e., the Shannon entropy ismaximum when pj = 1/|A|. There are several ways to prove this statement.
2

2One is based on the standard approach of Lagrange multipliers: maximising H(X) in the domain 0 ≤ pj ≤ 1 with
the constraint

∑
j pj = 1. The actual proof that such extreme is a maximum is a bit more intricate and based upon

induction.

12
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A clean and instructive proof is based on Jensen’s inequality for convex functions which we now
quickly review. Consider a function F (y) — with y possibly multi-dimensional, as long as the domain
D of y is itself convex, i.e., λy1 + (1 − λ)y2 ∈ D for all λ ∈ [0, 1] if y1, y2 ∈ D. We say that F (y) is
convex in its domain D — more clearly, ^-convex — if:

F (λy1 + (1− λ)y2) ≤ λF (y1) + (1− λ)F (y2) . (1.21)

By induction, starting from the previous definition, you can easily prove that if F (y) is ^-convex
then

F (
∑
j

pjyj) ≤
∑
j

pjF (yj) if
∑
j

pj = 1 . (1.22)

which is a discrete form of the Jensen’s inequality. 3 The proof that H(X) is maximum when all
pj = 1/|A|, applies Jensen’s inequality to the ^-convex function F (y) = log2(1/y) = −log2(y). Take
in the Jensen’s inequality yj = 1/pj . Then

|A|∑
j=1

pjyj =

|A|∑
j=1

pj
1

pj
= |A| .

Moreover:
|A|∑
j=1

pjF (yj) =

|A|∑
j=1

pj

(
−log2

1

pj

)
= −H({pj}) = −H(X) .

Then, by Jensen’s inequality:

− log2|A| = F (
∑
j

pjyj) ≤
∑
j

pjF (yj) = −H(X) =⇒ H(X) ≤ log2|A| . (1.23)

Summarising, when the pj of the various outcomes xj are not equally likely, then:

Ωtyp

Ωtot
≈ 2NH(X)

2N log2|A|
= 2−N [log2|A|−H(X)] N→∞−→ 0 . (1.24)

A tiny fraction 2NH(X) of the whole number of strings Ωtot exhausts the probability!

1.3. Shannon’s information content and entropy

Let us discuss the issue of the information content of the process X:

X =

(
x1 x2 · · · xj · · · x|A|

P (x1) P (x2) · · · P (xj) · · · P (x|A|)

)
, (1.25)

Consider the quantity:

h(x) ≡ log2

1

P (x)
(1.26)

This is a random variable, whose value depends on the outcome x = xj one gets. h(x) is known as
Shannon’s information content of the outcome x. Below, we will try to justify why h(x) is a meaningful
way of quantifying the “information content” of an outcome x.

Property 1) Shannon’s entropy as the average information. From the definitions given,
Shannon’s entropy H(X) is the average of the information content h(x) over all possible outcomes:

H(X) =

|A|∑
j=1

P (xj) log2

1

P (xj)
=

|A|∑
j=1

P (xj)h(xj) ≡ E[h] , (1.27)

3More generally, you could write it as:
F (E[Y ]) ≤ E[F (Y )] .

13



Introduction to Entropy and Statistical Mechanics (Lecture Notes by G.E. Santoro)

Property 2) The information of independent events. Consider another sequence Y indepen-
dent from X:

Y =

(
y1 y2 · · · yj · · · y|B|

P (y1) P (y2) · · · P (yj) · · · P (y|B|)

)
. (1.28)

Then, you can define a sequence XY with alphabet A⊗B having |A||B| elements as follows:

XY =

(
x1y1 · · · x|A|y1 x1y2 · · · x|A|y|B|

P (x1)P (y1) · · · P (x|A|)P (y1) P (x1)P (y2) · · · P (x|A|)P (y|B|)

)
, (1.29)

where we used the fact that the two processes are independent by writing P (xi, yj) = P (xi)P (yj).
If you want a simple case in which two events are not independent, let X be the first letter, and
Y the second letter in a pair of letters in an English text: obviously, P (xi, yj) 6= P (xi)P (yj), as
subsequent letters in a text are somewhat correlated. But, if the two processes are independent, then
the information content

h(xiyj) = log2

1

P (xi)P (yj)
= h(xi) + h(yj) . (1.30)

In words: the information content of the outcomes of two independent processes is simply the sum
of the individual information content. By the way, you might easily show that Shannon’s entropy of
XY is also the sum of the two:

H(XY ) = H(X) +H(Y ) . (1.31)

Hence, the actual importance of h(xj) is still not immediately evident: other objects based on the
logarithm might do the job as well.

Property 3) Rare events give a large information. This property of h(xj), that will soon
appear “very reasonable” through our game-examples, is the following: The smaller is P (xj), the
larger is its information content h(xj) of the outcome xj.

Why? Here is a simple example, based on the game that you have certainly played: the hangman.
Suppose that I think of an Italian word with 9 letters, and you try the letter ‘O’. You are lucky: the
letter is in the word I had in mind. Here is the situation after your lucky try:

O O

The outcome of the letter ‘O’ has certainly increased your “information” on the word, but not in a
very large way, as ‘O’ is quite common in Italian words. But suppose that, instead of ‘O’, you had
boldly tried ‘Q’, and that your guess was right. I write:

Q Q .

Your information on the word is enormously higher, as ‘Q’ is considerably less common than ‘O’: in
the present case, the occurrence of two consecutive ‘Q’ immediately suggests that I was thinking of
SOQQUADRO, the only italian word with a double-Q.

Let us play another game of guessing: you think of an integer number n ∈ {0, 1, 2, · · · 63}. I can
tell you the number you thought by asking you exactly 6 questions, each question being independent
of the answer you give to the previous one. 4 Here are the 6 questions, with the corresponding answer

4This is a simplified version of the game of the 20 questions (recall: Q1 = is it alive?, Q2 = is it a human?, etc.), which
allows to pin-down, with carefully chosen questions, an object that you might have thought. Recall that

220 = 1, 048, 576

so that with 20 carefully chosen questions I should be able to discriminate into a “world” of more than a million
possible “things”.

14
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you would give me if your number was n = 17:

Q1 : Is n ≥ 32? NO

Q2 : Is nmod 32 ≥ 16? YES

Q3 : Is nmod 16 ≥ 8? NO

Q4 : Is nmod 8 ≥ 4? NO

Q5 : Is nmod 4 ≥ 2? NO

Q6 : Is nmod 2 ≥ 1? YES

(1.32)

Now I collect your answers, associating YES→ 1, NO→ 0:

0 1 0 0 0 1→ 24 + 20 = 17 ,

in other words the binary string with your answers univocally reconstructs the number n = 17.
Observe that:

1) You can think of any n, hence the answer/digit to each question is equally likely: a 1 or a 0 with
probability 1/2;

2) the answers to the questions Q1 · · ·Q6 are independent,

hence the information content you get is the sum of that for each answer. More formally, the elementary
process of answering any question has two outcomes:

X =

(
x0 = 0 = NO x1 = 1 = YES

P (x0) = 1
2 P (x1) = 1

2

)
.

So, each question, independently of the answer, adds an information content h(xi) = log2

(
1

P (xi)

)
=

log22 = 1. The total information content after 6 questions, modelled by 6 independent but identical
processes X1 · · ·X6, is:

h1(xi1) + h2(xi2) + · · ·+ h6(xi6) = 6 bits . (1.33)

Let us now play one more game, connected to the previous one but more sophisticated, because
the different answers will no longer independent. It is a simplified version of the game of “battleship”,
played with a single “submarine” that you put in a 8× 8 checkerboard, for instance in H3. Here the

Figure 1.4.: The game of “battleship” played with a single “submarine” in G3. In the illustration, the
submarine is hit at move 49. Move 1 is G3, move 2 is B1, etc. Figure taken from the book by MacKey.

outcomes are always two: missed ≡ 0, and hit ≡ 1. In the first realisation you have a process:

X1 =

(
0 1

P (0) = 63
64 P (1) = 1

64

)
.

15
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If you are very lucky, and your first move is a “hit”, H3, outcome x1 = 1 of probability P (1) = 1
64 ,

then
h1(x1 = 1) = log2

(
1

P (1)

)
= log2(64) = 6 .

You got 6 bits of information with the first lucky hit. Most likely your first move will be a “missed”,
for instance G3, outcome x1 = 0 of probability P (0) = 63/64, then

h1(x1 = 0) = log2

(
1

P (0)

)
= log2

(
64

63

)
= 0.0027 .

You got very little information with the first unlucky hit. In such a case, you proceed with a second
move, described by the following conditional process:

X2

∣∣
x1=0

=

(
0 1

P (0) = 62
63 P (1) = 1

63

)
.

Observe that now the probabilities that appear are conditional probabilities: P (0) = P (x2 = 0|x1 = 0),
and P (1) = P (x2 = 1|x1 = 0). If you are lucky at your second move, h2(x2 = 1|x1 = 0) = log2(63)

hence you have:

h1(x1 = 0) + h2(x2 = 1|x1 = 0) = log2

(
64

63

)
+ log2(63) = log2

(
64

63
· 63

)
= log2(64) = 6 .

Again, upon hitting the submarine, you got 6 bit of information. More realistically, if you miss it, you
get h2(x2 = 0|x1 = 0) = log2( 63

62 ) = 0.0230, hence a total information:

h1(x1 = 0) + h2(x2 = 0|x1 = 0) = log2

(
64

63

)
+ log2

(
63

62

)
= log2

(
64 · 63

63 · 62

)
= log2

(
64

62

)
= 0.0458 .

Let us proceed with the third move, represented by:

X3

∣∣
x2=0,x1=0

=

(
0 1

P (0) = 61
62 P (1) = 1

62

)
,

and suppose that you miss again, and you continue to miss up to move 32, represented by:

X32

∣∣
x31=0···x1=0

=

(
0 1

P (0) = 32
33 P (1) = 1

33

)
.

The total information you acquired with these 32 failures is:

htot,32 = h1(x1 = 0) + h2(x2 = 0|x1 = 0) + · · ·+ h32(x32 = 0|x31 = 0 · · ·x1 = 0)

= log2

(
64

63

)
+ log2

(
63

62

)
+ · · ·+ log2

(
33

32

)
= log2

(
64

32

)
= log22 = 1 . (1.34)

So, 32 unlucky moves give you 1 bit of information: a moment thought will tell you that you have
eliminated half of the possibilities, exactly like after the first question Q1 in the game of guessing a
number in {0 · · · 63}. If you persist being unlucky all the way to move 48 = 32 + 16, then your total
information acquired will be:

htot,48 = h1(x1 = 0) + h2(x2 = 0|x1 = 0) + · · ·+ h48(x48 = 0|x47 = 0 · · ·x1 = 0)

= log2

(
64

63

)
+ log2

(
63

62

)
+ · · ·+ log2

(
17

16

)
= log2

(
64

16

)
= log24 = 2 . (1.35)

Two bits of information are acquired after 48 unlucky strikes because you eliminated another half of
the remaining half, pretty much like after the second question Q2 in the game of guessing a number
in {0 · · · 63}. Now suppose that you move 49 is a hit. Since

X49

∣∣
x48=0···x1=0

=

(
0 1

P (0) = 15
16 P (1) = 1

16

)
,
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then

h49(x49 = 1|x48 = 0 · · ·x1 = 0) = log2

(
1

P (1)

)
= log2(16) = 4 .

So, the hit at move 49 gives you the remaining 4 bits of information: you now know precisely the
location of the submarine, which is totally equivalent to knowing a number in {0 · · · 63}, since there
are 64 possible locations.

Notice that in this game I typically ask many more than 6 questions, but the total counting of
Shannon’s information content is, very reasonably, always 6 bits upon hitting the submarine.

1.4. Typicality and the (weak) law of large numbers.

Let X be, as before, a process

X =

(
x1 x2 · · · xj · · · x|A|

P (x1) P (x2) · · · P (xj) · · · P (x|A|)

)
, (1.36)

with Shannon entropy H(X). The information content h(xj) = log2(1/P (xj)) of outcome xj will have
a variance Var[h] in the elementary process X, which we can easily calculate:

Var[h] = E[h2]− (E[h])2 =

|A|∑
j=1

P (xj)h
2(xj)−H2(X) . (1.37)

Suppose that you generate sequences x = (xj1 , · · · , xjN ) ∈ ANX by repeating N times the process
X — i.e., constructing the joint process X1X2 · · ·XN — assuming the various repetitions Xj are
independent and identical to the elementary process X. You often read that the “N events are
independent and identically distributed”.

Typical strings. To define a “typical” string, we stipulate that their probability P (x) should
be

2−N(H+ε) ≤ P (x) ≤ 2−N(H−ε) ⇐⇒
∣∣∣∣ 1

N
log2

1

P (x)
−H

∣∣∣∣ < ε , (1.38)

with some arbitrarily small ε > 0. In words: typical strings are those whose “average information
content” 1

N log2
1

P (x) is “within ε” of the Shannon entropy H. More formally, we define:

TN,ε ≡
{
x ∈ ANX :

∣∣∣∣ 1

N
log2

1

P (x)
−H

∣∣∣∣ < ε

}
(1.39)

to be the set of ε-typical sequences of N independent outcomes. The goal of the remaining
derivation is to show that

Prob (x ∈ TN,ε) ≥ 1− Var[h]

ε2N
(1.40)

which tells us, in words, that the probability of a “typical” sequence goes to 1 when N →∞, for
any value of ε > 0.

i

To proceed, we review here the weak law of large numbers. Let us start from a simple inequality,
known as Markov inequality. Consider a positive random variable Y with probability (density) P (y)

and finite expectation E[Y ] <∞. Take an arbitrary positive α and consider the probability P(y > α).

17
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Then you can show that: 5

Markov inequality: P(y > α) ≤ E[Y ]

α
. (1.41)

Consider now a random variable Z with a finite variance. Then you can show that:

Chebyshev inequality: P(|z − E[Z]| > ε) ≤ Var[Z]

ε2
. (1.42)

The proof is once again rather elementary: for instance, take Y = |Z − E[Z]|2, which is a positive
random variable, with E[Y ] = E[(Z − E[Z])2] = Var[Z] < ∞, and apply to Y Markov’s inequality
taking α = ε2. You get:

P(|z − E[Z]| > ε) = P(|z − E[Z]|2 > ε2) = P(y > α = ε2) ≤ E[Y ]

α
=

Var[Z]

ε2
.

We are now ready to prove that weak law of large numbers. Consider the N repetitions X1X2 · · ·XN

of a process X with a finite variance, and the random variable

Z =
1

N

N∑
i=1

Xi , (1.43)

whose outcome are, in words, the average of the N independent outcomes (measurements) of the X.
For instance, if Xi are Bernoulli trials with binary outcomes 0 and 1, then Z = N1/N represents the
number of times a 1 occurs, normalised to N . In general:

E[Z] =
1

N

N∑
i=1

E[Xi] = E[X] , (1.44)

since all E[Xi] = E[X] are identical. The surprise is in the variance of Z. A simple calculation 6 shows
that:

Var[Z] =
1

N
Var[X] , (1.46)

a remarkable result which you know “well” by experience: the average of N measurements has a
sharper distribution than the original quantity X, with a variance that scales to 0 as 1/N : this is the
reason why you accumulate statistics, after all!

5The proof is elementary:

P(y > α) =

∫ ∞
α

dt P (t) ≤
∫ ∞
α

dt

(
t

α

)
P (t) =

1

α

∫ ∞
α

dt t P (t) ≤
1

α

∫ ∞
0

dt t P (t) =
E[Y ]

α
.

6By definition:

Var[Z] =
1

N2

∑
i,j

E[XiXj ]− (E[Z])2 =
1

N2

∑
i

E[X2
i ] +

∑
i 6=j

E[Xi]E[Xj ]

− (E[Z])2

=
1

N2

∑
i

E[X2
i ] +

∑
i 6=j

E[Xi]E[Xj ] +

add and subtract︷ ︸︸ ︷∑
i

E[Xi]E[Xi]−
∑
i

(E[Xi])
2

− (E[Z])2

=
1

N2

(∑
i

E[X2
i ]−

∑
i

(E[Xi])
2

)
+
���

���
���1

N2

∑
i,j

E[Xi]E[Xj ]

 −���(E[Z])2

=
1

N

(
E[X2]− (E[X])2

)
=

1

N
Var[X] . (1.45)
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The weak law of large numbers. The random variable

Z =
1

N

N∑
i=1

Xi , (1.47)

whose outcome are the average of the N independent outcomes (measurements) of the X, has a
probability distribution such that, by Chebyshev’s inequality:

P(|z − E[Z]| > ε) ≤ Var[Z]

ε2
=

Var[X]

Nε2
, (1.48)

or, equivalently:

P(|z − E[Z]| < ε) ≥ 1− Var[X]

Nε2
. (1.49)

So, in words: the probability that an outcome for Z is “within ε” of its average E[Z] tends to 1

as N →∞.

i

Having established the weak law of large numbers, let us return to our typicality story. The
probability P (x) of a string x = (x1, · · ·xN ) ∈ ANX , since the events are independent, is

P (x) = P (x1) · · ·P (xj) · · ·P (xN ) ,

where we have condensed our notation by indicating simply as xi the more proper but ugly xji , for
the outcome you get at the ith repetition. Hence, we have immediately that

1

N
log2

1

P (x)
=

1

N

N∑
i=1

log2

1

P (xi)
=

1

N

N∑
i=1

h(xi)

If you recall that H = E[h], and you apply the weak law of large numbers to the random variable Z
defined from the average (over repetitions) of the information content:

Z =
1

N

N∑
i=1

h(xi) , (1.50)

observing also that E[Z] = E[h] = H(X), we can immediately deduce that:

Prob (x ∈ TN,ε) ≡ Prob

(∣∣∣∣ 1

N

N∑
i=1

h(xi)− E[h]

∣∣∣∣ < ε

)
≥ 1− Var[h]

ε2N
(1.51)

In the literature, the result expressed in Eq. (1.51) is known as asymptotic equipartition principle. 7

With the words of MacKay [6]:

Asymptotic equipartition principle: For an ensemble of N identically distributed
independent random processes (X1, X2, · · ·XN ), with N sufficiently large, the outcome
x = (x1, x2, · · · , xN ) is almost certain to belong to a subset of ANX of only 2NH(X) members,
each having probability P (x) “close to” 2−NH(X).

In general, for H(X) < log2|A|, the subset of typical sequences Ωtyp ∼ 2NH(X) is a negligible
fraction of the total number of sequences Ωtot = |A|N :

Ωtyp

Ωtot
∼ 2NH(X)

2N log2|A|
∼ 2−N(log2|A|−H(X)) N→∞−→ 0 . (1.52)

7Not to be confused with the “equipartition of energy” in the kinetic theory of gases and statistical mechanics.
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1.5. Shannon’s source coding theorem

What goes under the name of Shannon’s source coding theorem is a result that builds on the
asymptotic equipartition principle, but goes a bit forward. I will briefly mention this for completeness:
more about data compression, both lossless and lossy, in the book of MacKay.

Figure 1.5.: Sketch of the probability of sequences of N bits in ascending order. The box highlight the typical
set, with Ωtyp ∼ 2NH(X) members. To the far right the string with the highest probabilities are shown. When
N = 100, since H ≈ 0.47 for p0 = 0.9 and p1 = 0.1, you have 2−47 to be the probability of typical strings.
On the contrary, the most and the least probable strings have probabilities 2−15.2 and 2−232.1, respectively.
Figure taken from the book by MacKay.

But before we dive into some technical aspects of this story, try to do the following exercise.

Exercise 1.1. A horse race has 8 horses competing of different ability: their probability of winning
a race is not uniform, but rather represented by the following process:

X =

(
0 1 2 3 4 5 6 7

p0 = 1
2 p1 = 1

4 p2 = 1
8 p3 = 1

16 p4 = 1
64 p5 = 1

64 p6 = 1
64 p7 = 1

64

)
where we numbered the horses from 0 to 7.

(a) Calculate the Shannon entropy H(X) of X. [Clearly, use base-2 logarithms.]

(b) Imagine now that you want to communicate the result of the winner of N identically repeated
races. To do that, you use a telephone line where you can transmit bits, 0 or 1. You have
to establish a unique code to indicate the horse which won each race. Clearly, a binary code
C0 = 000, C1 = 001, C2 = 010, C3 = 011, C4 = 100, C5 = 101, C6 = 110, C7 = 111, would do:
this is a very democratic code, which uses 3 bits for every race; the length of the string will
need to be 3N bits if you want to transmit the result of N races. Consider now the following
alternative code: 0 1 2 3 4 5 6 7

p0 = 1
2 p1 = 1

4 p2 = 1
8 p3 = 1

16 p4 = 1
64 p5 = 1

64 p6 = 1
64 p7 = 1

64

C0 = 0 C1 = 10 C2 = 110 C3 = 1110 C4 = 111100 C5 = 111101 C6 = 111110 C7 = 111111


Observe that we used codewords of increasing length to code horses that have a smaller prob-
ability of winning a race. In particular, we assigned the shortest possible codeword (1 bit),
C0 = 0, to the horse with the highest probability of victory. Would you be able to uniquely
decode the following string?

00101100010

To how many races does it refer to? Which horse won the 4th race? Which the 5th?
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(c) Suppose you want to communicate with a string of bits the result of a large number N of races:
what is the average length L, in bits, of the string you would need?

(d) What is the relationship between the average length L of the string and the Shannon entropy
H(X)?

(e) If all the horses where equally good, p0 = p1 = · · · = p7 = 1
8 , what would be the Shannon

entropy H(X)? What would be the average length L for N races if you use the code proposed
above? Would you use it? Or would you rather prefer the binary code instead?

The simple example contained in the previous exercise shows the basic idea of a lossless variable-
length encoding: the best code you can invent to transmit a message will have an average length related
to the Shannon entropy of the process generating it.

In the following, we will discuss fixed length encoding but with a probability of loss of information:
we will, therefore, “count” how many strings you should try to “give a codeword to” if you renounce
to some very improbable strings, which will have no codeword associated with it.

Returning for concreteness to our Bernoulli binary string example, suppose that you list all strings
of N bits in order of increasing probability log2P (x), as sketched in Fig. 1.5. The strings can be
divided into three classes:

1) the “typical” ones, with the usual assignment of ε to define typicality;

2) “atypical” strings but with high probability P (x) > 2−N(H(X)−ε);

3) “atypical” strings but with a very small probability P (x) < 2−N(H(X)+ε).

Let us now define a new set SN,δ as follows. Start from the string with highest probability xhighest,
and include it in SN,δ. Then continue down the list of sequences and keep adding them to SN,δ until

Prob(x ∈ SN,δ) ≥ 1− δ , (1.53)

where δ is a small number of your choice. Notice that SN,δ contains, by construction, “atypical”
sequences with large probability, class 2) above, as well as “typical” sequences, class 1). A moment
reflection should convince you that SN,δ can also be defined as being the smallest subset of strings
such that Prob(x ∈ SN,δ) ≥ 1− δ. Define now the essential bit content of SN,δ from the number of its
members |SN,δ|, with the usual logarithm:

Hδ(X
N ) = log2|SN,δ| . (1.54)

Obviously, if δ = 0 you include all sequences, SN,0 ≡ ANX , hence H0(XN ) = N log2|A|. You realise
that Hδ(X

N ) is the number of bits which you need to uniquely describe all elements of the set SN,δ.
Notice that if δ > 0 some very improbable atypical strings are omitted from this set: if they occur,
you would not be able to describe them. And now comes the statement of the theorem:

Shannon’s source coding theorem: Let X be a process with entropy H(X). Consider
the ensemble of N independent identically distributed random processes (X1, X2, · · ·XN ).
Then, for any arbitrarily small ε > 0 and any δ, with 0 < δ < 1, there exists a sufficiently
large N0 such that for N > N0: ∣∣∣∣ 1

N
Hδ(X

N )−H(X)

∣∣∣∣ < ε (1.55)

Hence, in other words, if you allow for some losses, δ > 0, you can describe with “essentially”
NH(X) bits all remaining strings. Concerning the proof: The fact that Hδ(X

N ) < N(H(X) + ε) is
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not difficult at all. Consider the typical set TN,ε. We know that

Prob(x ∈ TN,ε) ≥ 1− Var[h]

ε2N
≥ 1− δ ,

by taking N ≥ N0 such that Var[h]
ε2N0

≤ δ. But SN,δ is the smallest subset that verifies that inequality.
Hence |SN,δ| ≤ |TN,ε|. Let us put a bound on |TN,ε| by arguing as follows. The smallest probability
that a typical string in TN,ε can have is P (x) = 2−N(H(X)+ε). Hence, the largest size that TN,ε can
have can be bound by assuming that all strings have probability 2−N(H(X)+ε), which leads to:

2−N(H(X)+ε)|TN,ε|largest ≤ 1 =⇒ |TN,ε|largest ≤ 2N(H(X)+ε) .

This immediately leads us to the conclusion:

Hδ(X
N ) = log2|SN,δ| ≤ log2|TN,ε| ≤ N(H(X) + ε) (1.56)

The fact that Hδ(X
N ) > N(H(X)− ε) is slightly more elaborate: see MacKay, Sec. 4.5 for details.

1.6. The ideal gas: Newton’s approach

We now switchgear to physics, by considering one of the building problems of statistical mechanics:
the ideal gas. I illustrate the concept of chaos by showing you some billiard animations, in particular
the stadium billiard. The result is that it is quite reasonable to expect that the system visits in an
essentially uniform way all the available phase space. The volume of the available phase space is hence
the crucial quantity we need to consider. 8 More about these issues when we will discuss in more
detail the ergodic hypothesis.

Consider N classical particles in three-dimensional space. The 6N dimensional phase space will be
discretised by subdividing it into small cubes of volume h3N , where h has the dimension of an action
— indeed, we will see that the correct choice is just Planck’s constant. The number of (discretised)
states the system can visit when its energy is in the interval [E −∆E , E] is given by

Nstates(E −∆E , E) =
1

N !

∫
d3Nqd3Np

h3N
I[E−∆E ,E](H(q,p))

=

∫ E

E−∆E

dE′
1

N !

∫
d3Nqd3Np

h3N
δ(E′ −H(q,p))︸ ︷︷ ︸

Ω(E′)

. (1.57)

Here

I[a,b](x) = θ(x− a) θ(b− x) =

∫ b

a

dx′ δ(x′ − x) =

 1 for x ∈ [a, b]

0 otherwise
,

is the characteristic (or indicator) function of the interval [a, b], while θ(·) is the Heaviside θ-function,
and the second form follows from the properties of the Dirac’s delta function. Notice also the extra
factor 1/N !, which accounts for the so-called “correct Boltzmann counting” (introduced by Gibbs),
which I ask you to accept with an act of faith for the time being. 9 Let us consider the quantity
appearing inside the integral, which is a density of states:

Ω(E) =
1

N !

∫
d3Nqd3Np

h3N
δ(E −H(q,p)) . (1.58)

8You are essentially maximising the entropy, by a limiting distribution that weights in a uniform way the available
phase space.

9It was introduced to make the entropy properly extensive and is related to the indistinguishability of particles proper
of a quantum approach. Both the N ! and the h3N will appear when taking the appropriate classical limit of the
quantum ideal gas.
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Figure 1.6.: The stadium mixing. (Top) The initial conditions, with configurations on the left and velocities
on the right. (Bottom) A snapshot at a sufficiently large time. Figures due to Simone Ziraldo.

Since Ω(E) is usually a monotonic function of E we have that:

Nstates(E −∆E , E) < ∆E Ω(E) ≤ E Ω(E) . (1.59)

We will soon argue that, in the limit of a large number of particles, these quantities are all exponentially
dominated by what happens at E: they are completely insensitive to the value of ∆E , and we can
even take ∆E = E. More precisely we will see — with the explicit example of the ideal gas — that
one expects: 10

lim
N→∞

logNstates(E −∆E , E)

N
= lim
N→∞

log ∆EΩ(E)

N
= lim
N→∞

logEΩ(E)

N
= s(E) . (1.60)

With a more relaxed notation, we will re-express the previous equality as:

Nstates(E −∆E , E) ' ∆E Ω(E) ' E Ω(E) ' eN s(E) def
= eS(E) , (1.61)

where we have introduced the extensive entropy S(E)
def
= N s(E). Here ' means that we neglect, in

the exponential, anything that is not extensive in N , for instance, terms proportional to log(N) or
constants.

Let us proceed with the study of Ω(E). To cope with the Dirac’s delta function, we use the standard
trick of taking the Laplace transform:

Z(β)
def
=

∫ ∞
0

dE Ω(E) e−βE =
1

N !

∫
d3Nqd3Np

h3N
e−βH(q,p) def

= e−F(β) , (1.62)

10It should be stressed that the limit N →∞ is always taken together with an infinite volume limit, by taking the ratio
V/N (the volume per particle) or N/V (the density) constant. We omit to indicate the volume in all our formulas,
for the time being.
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where β is the Laplace variable and should be regarded as complex, in general, and with dimensions
of inverse energy, while F is a useful dimensionless quantity which we have introduced by taking the
logarithm of Z. 11 Notice that in general, all these quantities depend on V and N , a dependence that
we omit for the time being. The information on Ω(E) will be retrieved, if I know how to calculate
Z(β), by performing an inverse Laplace transform: 12

Ω(E) =

∫ β0+i∞

β0−i∞

dβ

2πi
eβEZ(β) =

∫ β0+i∞

β0−i∞

dβ

2πi
eβE−F(β) . (1.63)

The path of integration in the complex-β plane which you need to calculate the inverse Laplace
transform we are free to choose, as long as it stays to the right of any singularities of Z(β): we assume
that we start our path at some β0 − i∞ and end it at β0 + i∞, but the value of β0 and the shape of
the path is at our disposal. 13 Notice that, so far, we have not used the fact that our system is an
ideal gas of non-interacting particles. If we assume that, the calculation of Z(β) is simple: 14

Zideal(β) =
1

N !

[
V

h3

∫
d3p e−β

p2

2m

]N
=

1

N !

[
V

h3

(
2πm

β

) 3
2

]N

≈ eN log eV
N

(
2πm
h2β

) 3
2

, (1.64)

wherein the last expression we have made use of the Stirling approximation, setting N ! ' (N/e)N .
We can now proceed in two ways: we can calculate Ωideal(E) either exactly, using the fact that
Zideal(β) has a very simple dependence on β, a multiple pole Z(β) ∝ β−3N/2 when 3N is even and a
simple branch cut when 3N is odd, 15 or rely on the second approximate form which suggests using
a saddle-point technique in calculating the inverse Laplace transform.

We proceed with the saddle point technique because it illustrates a very general idea related to
the equivalence of the so-called statistical ensembles in the thermodynamics limit: specifically, the
micro-canonical ensemble, where Ω(E) is the actor, and the canonical (or Gibbs) ensemble, where one
deals with Z(β). We start by rewriting:

Ωideal(E) =

∫ β0+i∞

β0−i∞

dβ

2πi
eβE−Fideal(β) , (1.67)

11Note that Z(β) is dimensionless because Ω(E) has dimensions of inverse energy. If this is not your first statistical
mechanics’ course, you will recognize that Z(β) is the canonical partition function, and F = βF where F is the free
energy, while β will be related to temperature by β = 1/(kBT ) where kB is the Boltzmann constant.

12At variance with Fourier transforms, which are very symmetrical, the inverse Laplace transform involves an integral
along a contour in the complex plane, known as Mellin’s inverse formula or Bromwich integral (see Wikipedia).

13By the Cauchy residue theorem we can freely change the path of integration as long as you do not cross any singularity
of the function.

14Simply use the Gaussian integral: ∫
dp
√

2π
e−β

p2

2m =

√
m

β
.

15Proceeding exactly, we notice that if 3N is an even number, then 3N/2 is an integer, and Z(β) has a pole of order 3N/2

in the origin β = 0: the residue of such a pole can be easily calculated by extracting the term (βE)
3N
2
−1/( 3N

2
− 1)!

coming from eβE , which leads to a simple pole 1/β. This simple calculation gives: 16

Ωideal(E) =
1

EΓ( 3N
2

)N !

[
V (2πmE)

3
2

h3

]N
. (1.65)

When 3N is odd the integrand has a branch cut along the negative real axis: the calculation is nevertheless quite
simple, and leads to the same result you see above when expressing everything in terms of the Euler Γ(z) function,
which now would be at half-integer arguments. By calculating logEΩ(E) we can easily extract the extensive
statistical entropy of the ideal gas as: 17

Sideal(E, V,N) = N log
eV
N

(
4πmeE
3h2N

) 3
2

. (1.66)
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Figure 1.7.: The entropy of the ideal gas. Figure quite in scale: the point (V/V0 = 1, E/E0 = 1) represents
one mole of Argon, assumed to be an ideal gas, at T0 = 273.15 K, p0 = 105 Pa, V0 = 22.711 dm3. Notice
concavity.

where

Fideal(β) ' −N log
eV
N

(
2πm

h2β

) 3
2

. (1.68)

So far, β0 is the (arbitrary) real part of the points where we start and finish our Mellin’s contour in the
complex plane. Now we calculate the stationary point of the quantity appearing in the exponential,
βE − Fideal(β). Hence, we calculate a value of β0 by solving ∂β(βE − F) = 0:

E − ∂Fideal

∂β

∣∣∣
β0

= 0 =⇒ E =
3N

2β0
=⇒ β0 =

3N

2E
. (1.69)

This result should ring a bell, if you remember the famous ideal gas law E = 3
2NkBT , where T is

the temperature and kB the Boltzmann constant: essentially, the saddle point β0 should be identified
with 1/(kBT ).

For the time being, let us proceed as if we knew nothing about T and kB . Notice, that we should in
general think of β0 as a function of the energy E we have set: β0(E). To expand βE − Fideal around
the stationary point β0 we calculate the second derivative:

∂2(βE − Fideal)

∂β2

∣∣∣
β0

=
3N

2β2
0

> 0 .

The third derivative gives:
∂3(βE − Fideal)

∂β3

∣∣∣
β0

= −3N

β3
0

.

Hence, around the stationary point we can write:

βE − Fideal(β) = β0E − Fideal(β0) +
3N

4β2
0

(β − β0)2 − N

2β3
0

(β − β0)3 · · ·
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Notice that this immediately tells us that the stationary point of βE − Fideal(β) is a minimum along
the real-β axis, but a maximum along the imaginary-β direction: it is a saddle point, as it should,
because analytic functions cannot have maxima or minima in the complex plane. Now we set our
Mellin’s contour in the complex-β plane, parameterising it as

β(t) = β0(1 + it) ,

with t going from −∞ to +∞. Since dβ = iβ0dt we rewrite:

Ωideal(E) ≈ eβ0E−Fideal(β0) β0

∫ +∞

−∞

dt

2π
e−

3Nt2

4 +iNt
3

2 ··· , (1.70)

One thing that should immediately catch your interest is that the correct extensive entropy is already
reproduced by the mere saddle-point value:

Sideal(E) = [β0E − Fideal(β0)]
∣∣
β0(E)

. (1.71)

The contribution due to the saddle-point “Gaussian” integral, and even the factor β0 appearing, give
negligible power-law corrections in front of the leading exponential. We can ignore them altogether.
18

Notice the very appealing extensive 19 form of this expression: it scales linearly with N with a
logarithmic factor that depends only on the volume per particle v = V/N (thanks to the Gibbs factor)
and on the energy per particle ε = E/N , S(E, V,N) = Ns (ε, v), where:

S(E, V,N) = Ns(ε, v) = N log e
5
2 v

(
4πmε

3h2

) 3
2

. (1.72)

Fig. 1.7 shows a plot of Sideal for fixed N , versus V and E.

This expression for the entropy, as written, will necessarily become negative — violating the third
law of thermodynamics — when the phase space volume per particle becomes of the order of, or
smaller than h3: in this regime quantum effects will turn out crucial. Notice also that S expression
is a concave function of its arguments, and a monotonic function of E. Hence you can invert it and
express E(S, V,N). Explicitly, for the ideal gas you would have:

Eideal(S, V,N) = N

(
3h2

4πme5/3

)
e

2S
3N

(
V

N

)− 2
3

.

Remark that E(S, V,N) is also extensive, monotonically increasing with S, and convex. These proper-
ties of S(E, V,N) and of E(S, V,N) — extensivity, monotonicity in the first variable (E or S, respec-
tively), and concavity (for S) or convexity (for E) — will be quite crucial in the whole construction
of thermodynamics. 20

18Try to do the quadratic Gaussian integral explicitly by rescaling variables to y =
√
Nt, and you will see what happens:

it give a power-law prefactor to the exponentially dominated entropy-related main term.
19To avoid misunderstandings, let us stress that “extensive” means that if you “double” your system, then N → 2N ,

V → 2V , E → 2E, S→ 2S, i.e., every extensive property “doubles”.
20We note here, in passing, that the derivatives of E do not contain the constant h and are ultra-simple:

∂E
∂S

∣∣∣
V,N

= 2E
3N

≡ kBT

∂E
∂V

∣∣∣
S,N

= − 2E
3V

≡ −p
(1.73)

Here we have anticipated things a bit and introduced the general relationship that these derivatives have with two
(intensive) variables well known to you: temperature T and pressure p. We will see how this comes about when
studying thermodynamics. By putting the two expressions together we get the famous equation of state of the ideal
gas:

pV = NkBT . (1.74)
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If you reconsider the previous saddle-point derivation, you will realise that it is much more general
then for the ideal case: the crucial ingredient is that E, S, F are all extensive, i.e., proportional to the
number of particle N , and the integral is exponentially dominated by the saddle-point. So, we expect
that in more general cases we will have:

S(E) = [βE − F(β)]
∣∣
β(E)

E =
∂F

∂β

∣∣∣
β(E)

. (1.75)

Notice also that
∂S

∂E
= β +

(
E − ∂F

∂β

)
∂β

∂E
≡ β(E) . (1.76)

We will see soon that the physical interpretation of β is that β = 1/(kBT ), where kB Boltzmann’s
constant and T is the temperature, the parameter that controls the thermal equilibrium between
bodies.

It is interesting that the relationships written above can be interpreted in a perfectly symmetric
way. Invert β(E) into E(β), and write

F(β) = [βE − S(E)]
∣∣
E(β)

Alternatively:
F + S = βE ,

where, depending on the variable one wants to use, β or E, one should re-express everything appro-
priately.

We will see that this is nothing but a Legendre transform. More precisely, as written, it connects
S and F as “Legendre pairs”, and is very symmetrical. For historical reasons, in thermodynamics one
tends to favour E rather than S — after all, it is simpler to “control” E, by insulating the system,
than S —, and use T rather than β. Switching from the Entropy-scheme, in which the fundamental
equation of thermodynamics would look something like S(E, V,N, · · · ) to the Energy-scheme, in which
one deals with E(S, V,N, · · · ), — notice that only extensive variables appear in the arguments of both
— the most natural definition of Legendre transform, which is commonly adopted in thermodynamics,
is slightly less symmetric. We will adopt this way of looking at the Legendre transform, where E and
the free-energy F are Legendre pairs, for instance.

27





Part I.

Basic material

29





2. Thermodynamics

Many very good books on thermodynamics are available. The presentation below is based on the
book by Fermi, for Sec. 2.1, and on the books by Peliti 1 [2] and Callen [3], for the remaining part.

2.1. Carnot Thermodynamics

This section is meant as a brief recap of some of the traditional concepts explained in high-school
and first-year courses on thermodynamics.

The 1st law of thermodynamics. You certainly recall that Joules (1840-1850) proved the
equivalence of heat and work, which led to a clear formulation of the 1st law of thermodynamics,
extending the concept of conservation of energy to the thermodynamical realm:

∆E = Q+W , (2.1)

where ∆E denotes the change in the internal energy of the system, upon doing a transformation.
Here I adopt the convention that Q > 0 when heat is given to the system, while Q = −Qrel < 0 if
some positive heat Qrel > 0 is released to the environment. Less universal is the sign convention
on the work W . Here W > 0 when work is performed on the system. Viceversa, W = −W ext < 0

when a positive useful work W ext > 0 is extracted from the system. a

aEngineers, for obvious reasons, tend to useW ext in their formulas. Independently of the signs of these quantities,
we will use sometimes Q = −Qrel and W = −W ext in our manipulations.

i

Thermal engines are thermodynamical systems going through operating cycles, which try to convert
“heat” into useful “mechanical work”. 2 These engines have a fundamental limitation set by physics:
in trying to convert “heat” into “mechanical work”, you have to waste part of that heat, necessarily.
3 This is essentially the content of Kelvin’s formulation of the 2nd law of thermodynamics.

Refrigerators are like reversed thermal engines: they transfer heat from a cold body to a hot
body/environment, but to do so you must perform some work, necessarily. 4 This is essentially
the content of Clausius’s formulation of the 2nd law of thermodynamics. 5 6 You have seen already
1Notice that Peliti adopts a different convention on the meaning of “convex” versus “concave” for a function, exactly
opposite to ours (and to what you find in Wikipedia, for instance). So, if you extract only parts of arguments
from that book, remember that when Peliti says “convex”, you should translate into “concave” (i.e., _-convex for
extra-clarity), and vice-versa.

2Generally, engines do cycles that transform “some form of energy” into mechanical work. In some engines, for instance,
electrical motors, energy is transformed into mechanical work without fundamental limitations (apart from friction,
which you can in principle reduce to smaller and smaller values by improving your technology). Thermal engines
have a fundamental limitation set by the 2nd law of thermodynamics.

3The reverse is not true: I can totally transform work into heat; a bit of a waste, but that is essentially what you do
with an electrical heater.

4Other possibilities are given in presence of two heat baths. In particular, the thermal accelerator is a system in which
work is done on the system to accelerate the natural flow of heat from the hot source to the cold one.

5Once again, the reverse is not true: simply unplug your refrigerator and open up its door.
6Modern air conditioners, with “inverters”, have two reversed directions built-in: they can work as refrigerators (during
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Engine

Bath at T

Q

W ext

NO! 

Heater
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W
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Bath at T2
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Bath at T1

Q1
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Q1

rel

Engine Refrigerator

Figure 2.1.: Left: An impossible-to-build thermal engine, violating Kelvin’s formulation of the 2nd law, and
the (perfectly allowed) waste of work that you do with your electrical heater. Right: A thermal engine and a
refrigerator.

the proof of the fact that the two formulations of the 2nd law are indeed equivalent: I will not repeat
that proof here.

Briefly, thermal engines have to operate with at least two heat-reservoirs, at temperatures T1 and
T2 > T1. They take an amount of heat Q2 > 0 from the T2-reservoir, they perform some work
W ext > 0, and they release some smaller quantity of (wasted) heat Qrel

1 > 0 to the T1-reservoir. They
do that by performing cycles, i.e., returning to the initial state repeatedly. The first-law tells us that
∆E = 0, hence W ext = Q2 −Qrel

1 .

Efficiency of thermal engines. The efficiency of the engine is by definition the ratio of the
work performed W ext over the heat absorbed Q2. Hence

η =
W ext

Q2
=
Q2 −Qrel

1

Q2
= 1− Qrel

1

Q2
. (2.2)

Notice that 0 ≤ η ≤ 1. The 2nd law will force the second inequality to be strict: η < 1.

i

Carnot understood that the crucial ingredient to maximize the efficiency, for fixed T1 and T2, is the
reversibility of the engine.

Reversibility. Reversibility needs some comments. In essence, reversibility requires a quasi-
static transformation, in which the system very slowly evolves by infinitesimal steps which proceed
through equilibrium states. But this is not enough. Reversibility requires that you can macro-
scopically “undo” the process, by an infinitesimal change in the control parameters, reversing the
direction of the action performed. This requires, in particular, that all sources of friction be
eliminated. For instance, a reversible isotherm is one in which the temperature of the reservoir
is infinitesimally different from that of the system, in such a way that an infinitesimal quantity
of heat flows in/out of the system, heat that the system uses to perform/absorb work. Such
an action can be reversed, by adjusting the temperature of the reservoir, provided one neglects
the friction between the piston and the chamber, which always opposes the motion. Joule’s free
expansion provides an example of an irreversible process: the system expands in vacuum while no
heat is absorbed, nor work performed. Even if you think of this expansion as proceeding through
infinitesimal small free-expansions (just imagine a long tube with a myriad of small faucets you
can open one after the other), it is clear that you cannot macroscopically “undo” each infinitesimal
step.

i

summer) or as “heat pumps” (during winter). The latter, however, should not be regarded as a “thermal engine”
because it uses (electrical) work rather then producing it. The inverter simply implements an exchange of the “role”
of the two bodies in a refrigerator: a “heat pump” takes away heat from the (colder) outside environment to give it
to your house.
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A perfectly reversible engine can execute a reverse cycle, working as a refrigerator: absorb Q1 > 0

from the low-temperature thermostat at T1, absorb some work W = −W ext > 0 to release a large
amount of heat Qrel

2 > 0 to the T2 (high-temperature) thermostat, with exactly the same “efficiency”
7 η = W

Qrel
2
. We can prove the following:

Carnot theorem. Among all thermal engines working with two heat-reservoirs at T1 and T2:

(a) No engine can have an efficiency larger than that of a reversible engine.

(b) Reversible engines must have the same efficiency, independently of the working substance of
the engine.

(c) A reversible engine has (maximal) efficiency given by:

ηrev = 1− T1

T2
. (2.3)

i

Proof. Statement (a) is proved by contradiction. Imagine there is some wonder engine with the efficiency

ηwonder =
W ext

Q2
> ηrev =

W ext
rev

Q2,rev
=

Wrev

Qrel
2,rev

,

where in the last equality we have reversed the cycle of the reversible engine. Now construct a combined

Bath at T2

Q2

Wext

Bath at T1

Q1
rel

Bath at T2

Q2,rev

=W

Bath at T1

Q1,rev

rel

RefrigeratorWonder Engine
Carnot

0 0

Figure 2.2.: The set-up to prove Carnot’s theorem. The width of the arrows indicates the amount of heat.
The green and red segments on the left and right axis correspond to the work and heat. The efficiency is the
ratio of “green to red segments”: the lower is the position of the rectangle denoting the system, the larger is
the efficiency. The supposed larger efficiency for the wonder engine implies less released heat (smaller arrow,
lower system box) as compared to the heat absorbed by the Carnot refrigerator, using the same work extracted
from the wonder engine. The net result is heat transferred from T1 to T2, against Clausius’ formulation of the
2nd law.

engine that uses the wonder-engine to produce W ext and a (reversible) Carnot refrigerator absorbing exactly
that work Wrev = W ext produced by the wonder-engine. The supposed inequality

W ext

Q2
>

Wrev

Qrel
2,rev

≡ W ext

Qrel
2,rev

=⇒ Q2 < Qrel
2,rev ,

hence Qrel
2,rev −Q2 > 0 is the overall heat released to the T2-reservoir. Energy balance (1st principle) requires

that

W ext = Q2 −Qrel
1 = Qrel

2,rev −Q1,rev = Wrev =⇒ Qrel
2,rev −Q2 = Q1,rev −Qrel

1 > 0 ,

7Notice that usually the performance of a refrigerator is defined in a slightly different way, through a coefficient of
refrigeration κ = Q1/W .
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hence Q1,rev −Qrel
1 > 0 is the heat absorbed from the T1-reservoir. The combined effect of the wonder-engine-

plus-Carnot-refrigerator is therefore to transfer a certain amount of heat Q1,rev−Qrel
1 > 0 from a cold reservoir

to a hot reservoir, without other effects. This violates the 2nd law of thermodynamics in the formulation by
Clausius. Statement (b) is now very simple: we did not use any particular property of the “wonder engine”:
imagine it is a second reversible engine working with a newly invented substance: we proved that its efficiency
cannot be larger than the first reversible engine. But, exchanging the roles of the two, it cannot also be
smaller! Hence all reversible engines must have the same (maximal) efficiency. Statement (c) follows from the
fact that the maximal efficiency is independent of the substance. Hence you can calculate it using an ideal gas
as a working substance. A prototypical reversible cycle working between T1 and T2 is the Carnot cycle, made
by two reversible isotherms, and two reversible adiabatics. 8 A standard calculation, typically performed in
high school, shows that the efficiency of the reversible Carnot cycle is indeed 9

ηrev = 1− Qrel
1

Q2
= 1− T1

T2
.

Efficiency vs maximum power. One important observation is that maximum efficiency does
not mean that a Carnot engine is particularly useful. Indeed, reversibility requires a very slow
operation: ideally, you should produce work in a cycle that lasts an infinitely long time. This
implies that the power produced, which is the work per unit time, goes to zero. It is interesting
to ask how to design a maximum power engine. The endo-reversible engine described by Curzon
& Alhborn [3] does that.

!

Carnot inequality. Carnot’s theorem implies that for any engine working between T1 and T2

we have:
η = 1− Qrel

1

Q2
≤ ηrev = 1− T1

T2
=⇒ Q2

T2
− Qrel

1

T1
=
Q2

T2
+
Q1

T1
≤ 0 . (2.4)

In the last step, we have replaced −Qrel
1 = Q1 < 0. We will refer to Eq. (2.4) as the Carnot

inequality. From now on we will write all heat exchanges as Qi, in such a way that heat has an
arbitrary sign: positive if heat is absorbed, negative if released.

i

8Alternative cycles, like the Stirling cycle which substitutes the two adiabatics with two isochores, can also be made
reversible, and therefore with maximal efficiency. Nevertheless, while a reversible adiabatic needs just that you isolate
your system from the reservoirs and you perform/absorb work by a quasi-static expansion/compression, reversible
isochores require that you continuously adjust the temperatures of the reservoirs giving/absorbing heat in such a way
that they are infinitesimally close to that of the system, while the system increases/decreases its temperature from
T1 to T2 or vice-versa. Hence, the Carnot cycle is in a sense the most “economical” one in terms of heat-reservoirs.
For a discussion of the efficiency of several well-known cycles, see Arovas.

9The fact that ηrev is a universal function of the two reservoirs temperatures, together with the fact that an ideal gas
Carnot cycle leads to Qrel

1 /Q2 = T e1 /T
e
2 , where T

e
1,2 denotes the empirical temperatures measured by, for instance,

gas thermometers, led Kelvin to introduce an absolute temperature scale by simply defining the ratio of the absolute
temperatures of two systems as the efficiency of the Carnot cycle operating between two reservoirs held in thermal
equilibrium with the two systems:

T1

T2
≡ 1− ηrev .

This definition is universal, because the efficiency of a reversible engine is universal, and can be in principle made
into an actual “graduated” scale as explained in the book by Huang. Quite nicely, it coincides with the empirical gas
thermometer scale in the regions where gas thermometers can operate, provided you fix a common reference point,
which is taken to be the temperature of the triple point of water: T0 = 273.16 K◦.
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Main Engine

Auxiliary Carnot device

Figure 2.3.: Left: A cycle in the T − V plane working with n reservoirs at temperatures Ti. Red horizontal
lines are isotherms (with an exchange of heat Qi), blue lines are adiabatics (just a sketch) during which no
heat is exchanged. Right: An arbitrary engine E exchanging heat Qi during isotherms with reservoirs at
temperatures Ti, producing a work W ext

E . The left part sketches the auxiliary system made by n Carnot
reversible engines so devised that they “give back” (if Qi > 0) or “take” (if Qi < 0) exactly an amount of heat
Qi from each Ti-reservoir, while their second reservoir is a common one at temperature T0.

Clausius inequality. Consider now the arbitrary cycle represented in a T − V diagram of
Fig. 2.3. The system goes through a series of isotherms at different temperatures Ti (i = 1, · · · , n);
the isotherms are connected by adiabatics (where heat is not exchanged). Call Qi the heat
exchanged during the isotherm at Ti, where Qi > 0 for expansions, Qi < 0 for compressions.
What Clausius proved in 1865 is a generalisation of Carnot’s inequality, i.e.:

©
n∑
i=1

Qi
Ti
≤ 0 , (2.5)

the equal sign applying only if the cycle is reversible.

i

A proof of this statement proceeds as follows. Imagine that we supplement our engine with a series of n
reversible Carnot cycles working between a common reservoir at temperature T0 and the various Ti-reservoirs.
This auxiliary Carnot system is devised in such a way as to “give back” (if Qi > 0) or “take” (if Qi < 0) exactly
an amount of heat Qi from each Ti-reservoir, in such a way that each Ti-reservoir is left in its initial state at
the end of each cycle of the combined system. Correspondingly, each Carnot cycle takes/gives back a quantity
of heat Q0i from the T0 reservoir, performing a work W ext

i (which can be positive, or negative if the Carnot
engine works like a refrigerator). The Carnot relationships imply that 10

−Qi
Ti

+
Q0i

T0
= 0 =⇒ Q0i = T0

Qi
Ti

.

The total heat Q0 exchanged by the Carnot cycles with the T0-reservoir is therefore

Q0 =

n∑
i=1

Q0i = T0

n∑
i=1

Qi
Ti

.

Let W ext
E be the work performed by the main engine E. The total work performed during the cycle is

W ext = W ext
E +

n∑
i=1

W ext
i .

But the combined effect of the main engine plus Carnot auxiliary system is to perform a cycle during which
heat Q0 is exchanged with a single reservoir, producing a work W ext = Q0. Hence, by Kelvin’s formulation

10Notice that if Qi > 0 the Carnot system has to give back that heat, meaning that it releases heat to the Ti-reservoir,
hence the −Qi < 0 term below.
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of the 2nd law we must have:

W ext = Q0 = T0

n∑
i=1

Qi
Ti
≤ 0 , (2.6)

the equal sign applying only if the engine E is reversible.

Quite clearly, you can make the cycle in Fig. 2.3 as close as you wish to an arbitrary cycle in T −V
space: you just need to take n→∞, exchanging infinitesimal amounts of heat δQi with each reservoir
at a dense mesh of temperatures Ti. In that limit, the Clausius inequality can be written in terms of
an integral: ∮

δQ

T
≤ 0 . (2.7)

The equal sign applies only to reversible cycles, for which δQ can be identified with an (inexact)
differential form d−Q, for which we write: 11∮

d−Q

T

∣∣∣
rev

= 0 . (2.8)

The fact that a cyclic reversible transformation has zero integral of d−Q/T implies that, while d−Q is
an inexact differential form, d−Q/T is an exact differential.12

The entropy function. The integral∫
γrev

i→f

d−Q

T
= S(Xf)− S(Xi) , (2.9)

is independent of the (reversible) transformation γrev one might consider, and depends only on
the final and initial points Xf/i. S is a state function, the entropy, whose exact differential is
given by:

dS =
d−Q

T
. (2.10)

More about the meaning of the thermodynamical variables X in the following sections.

i

Ideal gas example. Let us apply this idea to calculate the entropy difference for an ideal gas, for
which pV = NkBT and E(T ) = 3

2NkBT . The reversible path γrev
i→f is made by an isotherm at Ti,

which changes the volume from Vi → Vf , followed by a reversible isochor at Vf , which changes the
temperature from Ti → Tf . During the isotherm the heat and the work are equal (recall that E(T )

does not depend on the volume), hence the entropy change during the (reversible) isotherm is

∆Srev.isotherm =
Qrev

Ti
=
W ext

rev

Ti
= NkB log

Vf

Vi
.

Then we do a reversible isochor at Vf . Since the constant volume heat capacity of the monoatomic
ideal gas is Cv = 3

2NkB we get an entropy change: 13

∆Srev.isochor =

∫ Tf

Ti

dT
Cv
T

=
3

2
NkB log

Tf

Ti
.

11We restrict the use of d−Q to infinitesimal reversible transformations, while δQ indicates a generic infinitesimal quantity
of heat exchanged.

12One often says that 1/T is the integrating factor for the inexact differential d−Q.
13More generally, if we use the 3rd law of thermodynamics, which states that S vanishes at T = 0 (this law is inherently

quantum in nature), then you can, for instance, obtain the entropy at any finite T by integration of the specific heat
at constant volume Cv(T, V ):

S(T, V ) =

∫ T

0
dT ′

Cv(T ′, V )

T ′
.

More about this later on.
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The total entropy change is, therefore:

∆S = NkB log
Vf

Vi
+

3

2
NkB log

Tf

Ti
= NkB log

Vf

Vi

(
Tf

Ti

) 3
2

, (2.11)

which gives precisely the same result as our statistical mechanics calculation in Eq. (1.72). 14

Let us explore a few consequences of Clausius’ inequality. Consider a general transformation γi→f

followed by a reversible transformation γrev
f→i. We get:∫

γi→f

δQ

T
+

∫
γrev

f→i

d−Q

T
≤ 0 =⇒

∫
γi→f

δQ

T
≤ S(Xf)− S(Xi) = ∆S . (2.13)

If the transformation γi→f occurs in an isolated system — one usually calls such a transformation an
adiabatic —, it must imply no exchange of heat, δQ = 0. Hence:

2nd law in terms of entropy. For an arbitrary transformation in isolated systems the entropy
cannot decrease:

∆S = S(Xf)− S(Xi) ≥ 0 . (2.14)

Reversible transformations of isolated systems (reversible adiabatics) have ∆S = 0. They are also
called isoentropic transformations. More generally, if you consider the system plus its environ-
ment, which is by definition isolated, you necessarily have that for any transformation the total
entropy cannot decrease:

∆Stot = ∆SS + ∆SE ≥ 0 .

i

Consider now isothermal transformations, where the system is maintained in contact with a thermal
reservoir at temperature T . Clausius’ inequality, as encoded in Eq. (2.13), now implies that∫

γi→f

δQ

T
=
QT
T
≤ S(Xf)− S(Xi) = ∆S =⇒ QT ≤ T∆S , (2.15)

where QT is the heat exchanged with the thermostat. If you call WT the work done on the system
during the transformation, and you use the 1st law ∆E = QT +WT then you conclude that

∆E = E(Xf)− E(Xi) = QT +WT ≤ T∆S +WT . (2.16)

Helmholtz free-energy and isothermal work. We will see later on that the quantity F = E−TS is an
important thermodynamical potential, relevant when you can control the temperature T . It is known
as Helmholtz free-energy. For isothermal transformations ∆F = ∆E − T∆S, hence we deduce that
the Clausius’ inequality directly leads, through Eq. (2.16), to the following isothermal work inequality:

∆F = F (Xf)− F (Xi) ≤WT . (2.17)

The equal sign applies to reversible isotherms, which shows that the free-energy acts as a sort of
“bank account balance” for work: the change in free energy is equal to the amount of reversible work
performed on the system. For a general isothermal transformation, some work is inevitably dissipated,
i.e., it does not increment the free-energy of the system:

Wdiss = WT −∆F ≥ 0 . (2.18)

More about these facts when we will discuss stochastic thermodynamics inequalities.
14Recall that Eq. (1.72), after introducing the Boltzmann constant, leads to:

S(E, V,N) = NkB log e
5
2 v

(
4πmε

3h2

) 3
2

, (2.12)

where ε = E/N and v = V/N . Using the fact that ε = E/N = 3
2
kBT for an ideal gas, you see that the two

calculations agree.
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2.2. Entropy and the fundamental principle

The elementary considerations of the previous section are unsatisfactory for at least two reasons:

1) How should I select the variables X which supposedly govern the behaviour of the entropy function
S or of the other thermodynamical potentials? What are such X and how many variables should
I use?

2) The 2nd law appears encoded by Clausius’ inequality. We have seen specific implications for
adiabatics and for isotherms, but the scheme does not seem general and flexible enough.

We will now see how it is possible to give a new mathematical dress to the 2nd law of thermodynamics,
building the whole theory starting from some specific requirements given to the entropy function.

So, let us assume that there is a set of extensive variables describing your system, like E (the total
energy) V (the volume), N (the total number of particles), for a simple homogeneous fluid. This
is called the fundamental hypothesis of thermodynamics which states that it should be possible to
fully characterise the thermodynamical state of a system by specifying an appropriate (small) set of
extensive variables. 15 More generally we denote these extensive variables by:

X = (X0 = E,X1, · · · , Xr︸ ︷︷ ︸
=X

) = (E,X) . (2.19)

The extensive variables X = X1, · · · , Xr can be thought as “generalised displacements” giving rise to
a reversible work (inexact) differential form 16 17

d−W = −p dV + µdN + · · · =
r∑
i=1

fi dXi = f · dX . (2.20)

The associated generalised forces f = (f1, · · · , fr) are intensive variables, 18 for instance f1 = −p,
f2 = µ, etc. The generalised forces should be regarded, themselves, as functions of the relevant
thermodynamical variables (E,X), for the time being, or, when we switch to the energy-scheme (see
below), (S,X).

We will give now a new dress to the 2nd law of thermodynamics, by formulating it in more math-
ematical terms. We will see how useful this reformulation is. Let us assume that you are given an
entropy function S(E, V,N) — or more generally S(E,X) = S(X) — which is a continuous function
19 of the set of extensive variables describing your system with the following properties:

Additivity. If a system is made of two parts, described by S1(X(1)) and S2(X(2)), then the combined
system 1 ∪ 2 has entropy

S1∪2(X(1),X(2)) = S1(X(1)) + S2(X(2)) . (2.21)

15In more complex systems you might have to include the number of several different chemical species, N1, · · · , Nk, or
the total magnetisation M of your system, or the area of some surface which is relevant in describing the contact
between several systems, etc. All of these should be included in the list of the extensive variables.

16d−W is the infinitesimal work associated with a reversible transformation in which the X change infinitesimally.
Reversibility is important, as evident from a quasi-static infinitesimal Joule expansion in vacuum, where no work is
performed although V changes to V + dV .

17In homogeneous crystalline solids, the usual isotropic term pdV appearing in the work should be supplemented by
stress-strain terms of the form V

∑
ij σijdεij where σij is the stress tensor and εij the strain tensor appearing in

the theory of elasticity.
18Intensive variables, like p or µ, should not be confused with “densities”, like E/N , V/N , or N/V . We will comment

on this distinction later on.
19In most cases this continuous function is also continuously differentiable, except at phase transitions, where the

derivatives can have discontinuities. More about this later on.
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Monotonicity in E. S is an increasing function of E: 20

∂S

∂E

∣∣∣∣
X

= β(E,X) > 0 . (2.22)

Concavity. S is a concave function of all its arguments.

These requirements, together with the fundamental “principle of maximum entropy”, which I am
going to illustrate and then formulate, encode essentially the 2nd law of thermodynamics.

Before doing that, let us observe that additivity implies that if I join together two identical copies
of my system, then I must have S(2E, 2X) = S(E,X) + S(E,X) = 2S(E,X). More generally, by
playing with different integers and fractions of the system, I expect that additivity implies extensivity
of the entropy, which can be more generally expressed as:

S(λX) = λS(X) ∀λ > 0 . (2.23)

Mathematically, this can be rephrased by saying the S is a homogeneous function of degree 1, for
which we could apply Euler’s theorem (see Wikipedia), 21 as we will do in a short while. Next, we
observe that since S is concave, then it must be a concave function of E alone: If I plot S(E,X)

versus E at fixed X the derivative β(E,X) will decrease as E increases. Hence we understand that if
we define instead:

∂S

∂E

∣∣∣∣
X

= β
def
=

1

TS
> 0 , (2.25)

then TS(E,X) will be an increasing function of E. We will soon see that TS can be identified with
the absolute temperature of a system in equilibrium, but for the moment we add a label “S” to it.

Let us now consider a system made of two parts that, although in contact, are initially isolated from
each other, as well as from the external world, through a thermally insulated wall. System 1 and 2

are initially in equilibrium, characterised by extensive variables (Ein
1 ,X1) and (Ein

2 ,X2), respectively,
and have entropy S1(Ein

1 ,X1) and S2(Ein
2 ,X1). Because of additivity, the total entropy is

S1∪2(Ein
1 , E

in
2 ,X1,X2) = S1(Ein

1 ,X1) + S2(Ein
2 ,X1) .

Now we remove the insulation in the wall separating 1 from 2 so that the two systems can exchange
energy and reach a final equilibrium state. The total energy E = E1 + E2 = Ein

1 + Ein
2 is conserved,

but the share of energy that the two systems will make will be different. How? The principle of
maximum entropy will tell us that among all possible choices of E1 and E2, the final equilibrium is
realised when the entropy of the combined system is maximum, i.e.,

MaxE1+E2=E S1∪2(E1, E2,X1,X2) =⇒ (Eeq
1 , Eeq

2 ) . (2.26)

In other words, by maximising the total entropy under the given constraint of fixed total energy one
obtains the actual equilibrium sharing of energy that the system will get to. Before we proceed with
this simple calculation, let us stress the “among the possible choices of E1 and E2” means that I am
20I use the standard “thermodynamical” notation of explicitly expressing the variables that are kept fixed, which might

appear redundant, because a partial derivative always requires that. The advantage of this notation is that I have
immediately under control the full set of variables that the function and the derivative I am calculating will be
dependent upon: above, for instance, I might omit the variables in β(E,X) and simply write β. Having control of
the variables is vital in a field in which changing variables, with the associated partial derivative gymnastic, can
become quite a nightmare.

21A function f(x) is (positively) homogeneous of degree k if for every λ > 0 you have that f(λx) = λkf(x). If f(x) is
continuously differentiable, then Euler theorem states that:

x ·∇f(x) = kf(x) . (2.24)
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assuming that I consider the entropy of a virtual state, characterised by (E1, E2,X1,X2), which is not
an equilibrium state, unless I introduce appropriate constraints that force it (for instance, preparing
the two initial systems with the given values of E1 and E2 and maintaining the constraint of thermal
insulation). Callen calls such virtual states constrained equilibrium states. We will see later further
uses of this concept of accessing “virtual states” and minimising/maximising functions in a similar
way. To calculate the constrained maximum, we introduce a Lagrange multiplier and search for the
extremum, for fixed X1,X2, of the function

S̃(E1, E2, λ) = S1(E1,X1) + S2(E2,X1)− λ(E1 + E2 − E) .

The two derivatives with respect to E1 and E2 give:
∂S1

∂E1

∣∣
X1

= λ

∂S2

∂E2

∣∣
X2

= λ

=⇒ ∂S1

∂E1

∣∣∣∣
X1

=
∂S2

∂E2

∣∣∣∣
X2

. (2.27)

Hence, equilibrium is realised when the two energy-derivatives of the entropies match, i.e.:

∂S1

∂E1

∣∣∣∣
X1

=
1

TS1 (Eeq
1 ,X1)

≡ 1

TS2 (Eeq
2 ,X2)

=
∂S2

∂E2

∣∣∣∣
X2

.

But we can say even more. Since the entropy is maximised (more comments about why we must have
obtained a maximum, and not simply an extremum, below), we can say that:

S1(Eeq
1 ,X1) + S2(Eeq

2 ,X2) ≥ S1(Ein
1 ,X1) + S2(Ein

2 ,X2) . (2.28)

But each Si(Ei,Xi) is a concave function of its energy Ei. And one of the characteristics of concave
functions is that they stay below their tangent at any point. Hence, for instance:

S1(Eeq
1 ,X1)− S1(Ein

1 ,X1) ≤ ∂S1(Ein
1 )

∂E1

∣∣∣∣
X1

(Eeq
1 − Ein

1 ) =
1

T in
1

(Eeq
1 − Ein

1 ) ,

where T in
1 denotes the initial “temperature” (we have omitted the “S” label) of system 1. A similar

equation holds for system 2, initially at “temperature” T in
2 . Rearranging the terms in Eq. (2.28) we,

therefore, deduce that:

0 ≤
[
S1(Eeq

1 ,X1)− S1(Ein
1 ,X1)

]
+
[
S2(Eeq

2 ,X2)− S2(Ein
2 ,X2)

]
≤ 1

T in
1

(Eeq
1 − Ein

1 ) +
1

T in
2

(Eeq
2 − Ein

2 ) =

(
1

T in
1

− 1

T in
2

)
(Eeq

1 − Ein
1 ) , (2.29)

where we used that Q2 = Eeq
2 − Ein

2 , the “heat absorbed-or-released” by 2, is the opposite of Q1 =

Eeq
1 − Ein

1 . So you see that Q1 > 0 goes with T in
1 < T in

2 and vice-versa. Hence, the principle of
maximum entropy and the concavity of S has led us to Clausius’ formulation of the 2nd law: Heat
flows spontaneously (and irreversibly) from “hot” to “cold” bodies.

This suggests that TS(E) is indeed a “measure” of temperature: it signals thermal equilibrium and
the direction of heat flow. In general, if TS is a generic monotonic function of the absolute temperature
T , it would do its job correctly. But we can show that TS must be a linear function of the absolute
temperature T : hence, if you measure it in the appropriate scale, you can simply identify TS with the
absolute temperature T .

To show this, imagine that we construct a thermal engine with two usual “heat reservoirs”, one at a high
temperature T2 and one at a lower temperature T1 < T2. This time, however, we imagine that the whole
system is enclosed in a perfectly insulating enclosure so that the only exchange of energy with the external
world is through the mechanical work W that the engine produces. Let us re-examine in more detail what
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we mean by heat-reservoir. Before the engine cycle starts, the T2-reservoir has energy Ein
2 , while at the end

of the cycle, it has energy Efin
2 and has given to the system a certain amount of heat Q2 = Ein

2 − Efin
2 > 0.

Consider now the entropy of the T2-reservoir as a function of its energy E2, S2(E2,X2). Since its energy has
decreased, Efin

2 = Ein
2 −Q2 < Ein

2 , you would imagine that not only the entropy of the reservoir has decreased
but also is temperature should be slightly decreased (remember that S2 is a concave function of E2, which
implies that TS2 (E2) is a monotonically increasing function of energy). Nevertheless, since the initial energy
of the reservoir is immensely larger than the heat Q2 it gives up in a cycle — E2 � Q2 — you can reasonably
approximate S2(E2,X2) with its linear-term Taylor expansion. With the shorthand TS2 (Ein

2 ) = TS2 we can
therefore write:

S2(E2) ≈ S2(Ein
2 ) +

1

TS2
(E2 − Ein

2 ) .

A similar hypothesis, and formula, holds for the T1-reservoir, but remember that the engine gives heat Q1 =

Efin
1 − Ein

1 > 0 to the reservoir. At the end of the cycle, the engine has produced a work W returning to its
initial state (hence ∆E = 0 and ∆S = 0 for the engine alone). The work W ext produced, by the 1st law of
thermodynamics, is equal to

W ext = Q2 −Qrel
1 =

[
Ein

2 − Efin
2

]
−
[
Efin

1 − Ein
1

]
.

On the other hand, the total entropy change of the two reservoirs should be non-negative, hence: 22

∆Stot =
[
S2(Efin

2 )− S2(Ein
2 )
]

︸ ︷︷ ︸
−Q2
TS2

+
[
S1(Efin

1 )− S1(Ein
1 )
]

︸ ︷︷ ︸
Qrel

1
TS1

= −Q2

TS2
+
Qrel

1

TS1
≥ 0 .

By using this inequality, which implies Qrel
1 ≥ Q2

TS1
TS2

, we can derive that

W ext ≤ Q2

(
1− TS1

TS2

)
.

But from Carnot’s theorem and Kelvin’s definition of the absolute temperature scale, we know that

W ext ≤ Q2

(
1− T1

T2

)
.

Hence, we conclude that:
T1

T2
=
TS1
TS2

, (2.30)

i.e., we can identify TS with the absolute temperature T (provided we fix the same reference point T0, the
triple point of water).

One thing that you might ask is: you imposed that the entropy has an extremum, through the
method of Lagrange multipliers, but who guarantees that this is indeed a maximum? Concavity is
once again the crucial ingredient. Let us see why. Consider the total entropy of a composite system
as a function of all the extensive variables of each of the subsystems. Additivity tells us that

Stot(X1,X2, · · · ) =
∑
j

Sj(Xj) .

Each of the Sj is a concave functions of its variables, hence Stot is also a concave functions of the
whole collection of extensive variables (X1,X2, · · · ). The constraints are that some of these variables
are kept fixed, — in the previous example, all the variables except E1 and E2 — while some of
the variables can change (I “relax” some “walls”, for instance allowing the flow of heat) but with an
overall constraint still in place — in the previous case E1 + E2 = E. Overall, the constraints make
up a “hyper-plane” in the whole space (X1,X2, · · · ). The restriction of the total entropy Stot to
such a hyper-plane is what I am trying to “extremize”, and, as I will now show, indeed “maximise”
22Notice that we are using here the Clausius inequality. This is a bit unsatisfactory, as we would like to derive everything

from the maximum entropy principle. I think that this can be done, but we have no pretence of being axiomatic
here. So we take this shortcut at this point.
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(automatically, no need to check). Indeed, the restriction of a concave function to a hyperplane is still
a concave function. 23 Contrary to each individual Sj(Xj) — which, I remind you, is the entropy of
a subsystem in equilibrium for a value of the extensive parameters Xj — which are concave but have
generally no extremal point (think of the ideal gas entropy), the concave total-entropy function Stot

restricted to the hyper-plane set by the constraints can have an extremum (this is what the Lagrange
method gave us).

The importance of concavity. The extremum of a concave function, if it exists, must be a
maximum. In one dimension, the result is trivial to picture and show. More generally, the key
ingredient is that a concave function lies always below its tangent plane: at an extremal point,
where the gradient vanishes, this implies that the function is always below the extremal value,
which is, therefore, a maximum.

i

Let’s return to our simple example of two subsystems, but we now consider the slightly more
complex case in which the wall between system 1 and 2 is movable, so that the two systems can
redistribute also their volumes, under the new constraint that V1 + V2 = V is fixed. The principle of
maximum entropy for the combined system tells us that the re-distribution of energies and volumes
will lead to a maximum of:

MaxConstraints S1∪2(E1, E2, V1, V2,X1,X2) =⇒ (Eeq
1 , Eeq

2 , V eq
1 , V eq

2 ) , (2.31)

where X1 and X2 denote the other (fixed) variables of system 1 and 2. The maximum is obtained
from the Lagrange multiplier function

S̃(E1, E2, V1, V2, λ1, λ2) = S1(E1, V1,X1) + S2(E2, V2,X1)− λ1(E1 + E2 − E)− λ2(V1 + V2 − V ) .

The derivatives with respect to E1 and E2 imply, as before, equal temperatures:

∂S1

∂E1

∣∣∣∣
V1,X1

=
1

T1
≡ 1

T2
=
∂S2

∂E2

∣∣∣∣
V2,X2

.

The derivatives with respect to V1 and V2 imply the new condition:

∂S1

∂V1

∣∣∣∣
E1,X1

= λ2

∂S2

∂V2

∣∣∣∣
E2,X2

= λ2

=⇒ ∂S1

∂V1

∣∣∣∣
E1,X1

=
∂S2

∂V2

∣∣∣∣
E2,X2

. (2.32)

Hence we understand that equilibrium is now regulated also by the volume derivative of the entropy:

∂S

∂V

∣∣∣∣
E,X

def
=

p

T
. (2.33)

Here p is a quantity that we will soon discover to be related to the pressure. For the time being, let
us take it as a definition of the volume derivative of S. Hence, in presence of a movable wall that
allows the exchange of energy, the maximum entropy principle predicts that equilibrium is obtained
by imposing that T1 = T2 and p1 = p2. Again, since Si(Ei, Vi,Xi) is a concave function of its energy
Ei and volume Vi, it must stay below its tangent plane at any point. Hence, for instance:

S1(Eeq
1 , V eq

1 ,X1)− S1(Ein
1 , V

in
1 ,X1) ≤ 1

T in
1

(Eeq
1 − Ein

1 ) +
pin

1

T in
1

(V eq
1 − V in

1 ) ,

23More generally, you can easily show that the restriction of a concave function to any domain that is convex — i.e., it
contains all the points λx2 + (1− λ)x1 with λ ∈ [0, 1] if it contains x1 and x2 — is still concave.
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where T in
1 , and pin

1 denotes the initial temperature and “pressure” of system 1. A similar equation
holds for system 2, initially at temperature T in

2 , with “pressure” pin
2 . Maximisation of the total entropy

implies, once again, that:

0 ≤
[
S1(Eeq

1 , V eq
1 ,X1)− S1(Ein

1 , V
in
1 ,X1)

]
+
[
S2(Eeq

2 , V eq
2 ,X2)− S2(Ein

2 , V
in
2 ,X2)

]
≤

(
1

T in
1

− 1

T in
2

)
(Eeq

1 − Ein
1 ) +

(
pin

1

T in
1

− pin
2

T in
2

)
(V eq

1 − V in
1 ) . (2.34)

In particular, if the initial state was such that energy was in equilibrium, and the common temperature
of the two systems is T , then the first term vanishes and the inequality implies

0 ≤ 1

T

(
pin

1 − pin
2

)
(V eq

1 − V in
1 ) .

Hence pin
1 > pin

2 implies that V eq
1 > V in

1 for a spontaneous process, as you expect from the interpreta-
tion of p as pressure. Quite nicely, the new dress for the 2nd law produces a consequence that appears
to extend Clausius’ formulation to other variables, like p here.

The final simple application of the law of maximum entropy is the derivation of equilibrium when
the wall is semi-permeable to a given chemical species denoted by k, such that Nk,1 +Nk,2 = Nk: such
k-particles can move across the wall (leading automatically to energy exchange). A similar calculation
will bring now to the equality, at equilibrium, of the derivatives with respect to Nk of the two entropies.
24 Here the crucial quantity is

∂S

∂Nk

∣∣∣∣
E,X

def
= −µk

T
, (2.35)

where X denotes all extensive quantities except E and Nk. One can show that µk is indeed the
chemical potential of the chemical species k. We will also see the reason for the minus sign. More on
the derivatives of the entropy function in the next section.

With these examples in mind, it will be easier to understand the general principle of maximum
entropy:

Principle of maximum entropy. For a composite system made by different subsystems
initially isolated from each other by wall-type constraints, and at fixed total energy E, the final
equilibrium state after some of these constraints are released is the one that maximises the total
entropy as a function of the free-variables (virtual states).

i

Exercise 2.1. The following exercise, taken from Callen, shows how to use the principle of maximum
entropy, in a slightly more complex situation, to derive the condition for mechanical equilibrium.
Consider the system in Fig. 2.4, where you assume that the system has no external pressure acting on
it, it is overall thermally isolated from the external world (total E = E1 +E2 +E3 is conserved), but
heat can flow from one container to the other through the table on which the containers rest (which
makes otherwise no other contribution in this problem). Express the constraints between the volumes
of the three containers due to the rigid bar shown in the figure as two linear equations relating V1, V2,
and V3. Maximise the total entropy (you need 3 Lagrange multipliers) to find a relationship between
the equilibrium pressures of the three containers, as well as the three final temperatures. (Assume, as
we will soon show, that what enters in the volume derivative of the entropy is indeed the pressure p.)

24Callen nicely summarises these three examples by arguing that, as T is the (generalised) “potential that governs heat
flow”, and p is the “potential that governs volume changes”, in the same spirit, µ is the “potential that governs matter
flux”. “Potential” here should be understood in the sense that, for instance, differences in chemical potential provide
a “generalised force” to matter flow, from regions of high µ to regions of low µ. When different chemical species can
react together, the final chemical equilibrium is indeed regulated by the chemical potentials of the different species.
µ is, therefore, a crucial concept in thermochemistry. More about this, maybe, later on.
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Figure 2.4.: A system of three containers with gases inside, in thermal equilibrium through the common
thermally conducting table, and in absence of any external pressure.

2.3. The energy-scheme and the principle of minimum energy

The 2nd law of thermodynamics was reformulated in terms of the properties of the entropy function,
which depends on E and on the other extensive quantities. Let us now reformulate it by inverting
the relationship between S and E to express E(S,X). This is in principle easy: since S(E,X) is
a monotonic function of E, we can always invert it. It is simple to show that E(S,X) shares the
properties we have seen for S(E,X):

Additivity. If a system is made of two parts, described by E1(X(1)) and E2(X(2)), then the combined
system 1 ∪ 2 has energy 25

E1∪2(X(1),X(2)) = E1(X(1)) + E2(X(2)) . (2.36)

Monotonicity in S. E is an increasing function of S, and by the chain rule you get: 26

∂E

∂S

∣∣∣∣
X

= T (S,X) > 0 . (2.37)

Convexity. E is a convex function of all its arguments.

The fact that E is a convex function follows from the fact that S is concave and monotonic in
E. You can prove it using the definition of convex/concave functions (see Peliti’s book on page 26),
or, more simply, by observing that if the tangent plane to S(E,X) is above the entropy function at
any point, then when you consider E(S,X), the same plane will appear below the energy function.
Additivity, once again, implies that E is a homogenous function of degree one, for which Euler’s
theorem applies (more about this in a short while):

E(λX) = λE(X) ∀λ > 0 , (2.38)

where now X = (X0 = S,X).

If you want to practice on your ability to recognise if a given putative fundamental equation, S(E,X)

or E(S,X), satisfies or not the essential requisites of thermodynamics (additivity, monotonicity, con-
cavity/convexity), consider Problem 1.10-1 and 1.10-2 in Callen’s book.

Let us now consider the other derivatives of E(S,X) at constant S. To do that, consider infinitesimal
reversible iso-entropic transformations: they must involve no heat exchange, hence the change in
energy must be due to work only, by the 1st law:

dE|S = d−W =

r∑
i=1

fi dXi .

25Additivity here requires, clearly, that we neglect non-extensive terms that originate from the boundary of the two sys-
tems. Clearly, what we need to assume is that the interactions are reasonably short-ranged. Long-range interactions
lead to a failure of the additivity property.

26Strictly speaking, I should denote the derivative as T̃ (S,X) = T (E(S,X),X) because it is not the same function as
the T (E,X) appearing in the previous section. We simplify our notation, since the indication of the variables, or
even simply knowing what are the variables of the function, automatically suggests the correct dependence.
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Figure 2.5.: (Left) The entropy function of the ideal gas, versus E, V . (Right) The energy function of the
ideal gas, versus S, V .

Therefore, the derivatives of E at fixed S give us directly the generalised forces fi:(
∂E

∂Xi

)
S

= fi(S,X) . (2.39)

This expression, together with Eq. (2.37), allows us to write the full differential of the function E as:

dE =

d−Q︷ ︸︸ ︷
T dS+

d−W︷ ︸︸ ︷∑
i=1···r

fi dXi , (2.40)

where we have underlined the heat and work contributions, according to the 1st law. In the concrete
example of a homogeneous fluid we would write, for instance:

dE = T dS − p dV + µdN , (2.41)

which immediately encodes all the remaining first derivatives of E:
∂E

∂V

∣∣∣∣
S,N

= −p(S, V,N)

∂E

∂N

∣∣∣∣
S,V

= µ(S, V,N)

(2.42)

We are now ready to explore the consequence of the homogeneity condition (2.38), which follows from
Euler’s theorem on homogeneous functions. Taking a derivative with respect to λ, and setting λ = 1,
we easily derive from Eq. (2.38) (see Eq. (2.24)) that:

E(S,X) = T S +

r∑
i=1

fiXi . (2.43)

For a simple homogeneous fluid this condition reads:

E(S, V,N) = T S − p V + µN . (2.44)

Notice the non-trivial nature of such an equality: it implies in particular that all derivatives of E —
like T , p, µ, etc. — must be homogeneous functions of degree 0, i.e., intensive variables.

Let us now return to the derivatives of S(E,X) we have already encountered in our applications
of the maximum entropy principle. We promised to show that they are indeed related to pressure
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and chemical potential. Let us see why. A first fast route to show this consists in simply taking the
expression for the differential dE, and inverting it to find the differential dS:

dS =
1

T
dE −

r∑
i=1

fi
T

dXi . (2.45)

For a homogenous fluid:

dS =
1

T
dE +

p

T
dV − µ

T
dN . (2.46)

The expression for dS immediately encodes all the first derivatives and shows the promised result. If
you are not satisfied by this rather swift derivation, then use more formally the properties of composite
and inverse functions. We do this explicitly to illustrate some useful tricks which consist in applications
of the chain rule of differentiation. Similar things appear repeatedly in thermodynamics. 27 Since S
and E are inverse functions, you can clearly write:

S(E(S,X),X) = S ,

where we have momentarily denoted by S the function and by S the variable (and will similarly do
for E and E). If you take a derivative of the previous expression with respect to S, keeping all the X

fixed, applying the chain rule you get:(
∂S
∂E

)
X

(
∂E
∂S

)
X

= 1 =⇒
(
∂S
∂E

)
X

=

(
∂E
∂S

)−1

X

, (2.47)

which leads to the result for the temperature T we have already seen. But if you take the derivative
with respect to a different variable Xi included in X, which appears in S both directly and through
the dependence of E on Xi, then you get: 28

∂S
∂E

∂E
∂Xi

+
∂S
∂Xi

= 0 =⇒ ∂S
∂Xi

= −
(
∂E
∂S

)−1
∂E
∂Xi

= −fi
T
, (2.48)

which shows the promised relationship between derivatives of E and derivatives of S.

It is worth taking a small break to illustrate, by manipulating a bit the previous expressions, an
important non-trivial identity of thermodynamics, the so-called triple product identity. We rewrite the
first expression appearing in Eq. (2.48) by stressing (some of) the variables kept constant in taking
the partial derivatives: (

∂S
∂E

)
Xi

(
∂E
∂Xi

)
S

= −
(
∂S
∂Xi

)
E

. (2.49)

Consider now the function Xi(E,S, X̂), where X̂ denotes all variables X exceptXi, obtained by (locally)
inverting S(E,X). The derivatives at fixed E (and X̂, which we omit indicating) are related by:(

∂S
∂Xi

)
E

=

(
∂Xi
∂S

)−1

E

. (2.50)

Substituting in Eq. (2.49) we can finally write:(
∂S
∂E

)
Xi

(
∂E
∂Xi

)
S

(
∂Xi
∂S

)
E

= −1 . (2.51)

Observe how a naif application of the chain rule of partial derivatives would predict the wrong result
that the product of these three derivatives would give +1, while the correct result is −1. So, beware of
27One of the aspects of thermodynamics, which can easily generate confusion, is that functions of state can become

variables and vice-versa. For instance, the entropy is a function that becomes a variable when you invert it in favour
of E.

28We did not want to make the notation too clumsy, but you should notice that fi(S,X) and T (S,X) should be
interpreted as fi(S(E,X),X) and T (S(E,X),X) when you use them in the expression below.
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such swift calculations. If you want to become an athlete in the thermodynamics gymnastic of partial
derivatives, go to Appendix B.4.

We are now ready to consider how the principle of maximum entropy translates in the new scheme
in which energy is the fundamental function.

Principle of minimum energy. For a composite system made by different subsystems initially
isolated from each other by wall-type constraints, and at fixed total entropy S, the final equilibrium
state after some of these constraints are released is the one that minimises the total energy as a
function of the free-variables (alias virtual states, or constrained equilibrium states).

i

This result is quite easy to derive, a bit more difficult to visualise in general. Fig. 2.6 tries to visualise,
for the case of thermal equilibrium of two ideal gases, how is it that the maximum entropy principle
implies a minimum energy principle and vice-versa (see also Callen’s Figs. 5.1 and 5.2). Let us

Figure 2.6.: (Left) The total entropy of two ideal gases, each with one mole of particles at the same volume
V0, versus the energies of the two gases, together with the plane of E = E1 + E2. The black sphere is the
maximum entropy equilibrium state. (Center) The same equilibrium state (black sphere), seen as a minimum
total energy state at constant S. Notice the unusual direction of increasing E1 and E2 in the two
energy axes. Notice also that, starting from the same initial point, the two processes lead to generally
different final equilibrium points. (Right) Both the plane of total S and that of total E, shown together.

start with a formal proof, followed by some discussion that we find in Callen’s book. Let X denote
the collection of all the extensive variables, beside the total energy E, which appear in any of the
subsystems making up the composite system we are considering. Notice that X includes here the
energies of the different subsystems (except one whose energy is obtained from the constraint of total
energy E), as well as their volumes, particle numbers, etc. Some of these variables are fixed by
wall-type constraints, some are free (virtual states) because we might remove some constraints, and
we know that their values Xeq are such that the entropy is maximum, for the given total energy E.
Hence, if ∆X denotes a variation of the free parameters, and Xeq + ∆X any virtual state away from
equilibrium, we know that:

∆S = S(E,Xeq + ∆X)− S(E,Xeq) ≤ 0 .

Since S is a monotonically increasing function of E, there must exist some E′ ≥ E such that

S(E′,Xeq + ∆X) = S(E,Xeq) .
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Since E′ > E, when you invert the relationship between S and E you will write the previous equation,
equivalently, by:

E(S,Xeq + ∆X) ≥ E(S,Xeq) , (2.52)

which shows that the total energy is minimum at the equilibrium, for fixed total entropy S. 29

Callen gives also the following physical argument to justify the result. Suppose that the equilibrium
state is not associated with minimal energy at constant S. You could then subtract energy from the
system, keeping S constant, by performing some reversible work W in adiabatic conditions. Subse-
quently, you can give back that work in the form of heat Q transferred to the system. The internal
energy of the system would return to its original value, but the total entropy would now increase due
to the heat transfer. Hence, the initial state would not be associated with maximum entropy.

Callen discusses also the analogy between this problem and the iso-perimetric problem in geometry:
you know that the circle can be equally well characterised as the figure of maximal area for a given
perimeter, or as the figure of minimum perimeter for given area. Nevertheless, the two strategies
suggest two different routes to obtaining the “circle”, which lead to different final “states”. If you start
from a square of area A = L2 and perimeter P = 4L, and you deform the shape by keeping the
perimeter fixed, you will find that the maximum-area figure is a circle of radius R = 2L/π. Viceversa,
by deforming the square while keeping the area fixed, you find that the minimum-perimeter figure is a
circle of radius R = L/

√
π. In any case, once a given “extremal” circle is obtained, that figure satisfies

both extremal conditions for its final values of area and perimeter. These two routes towards the final
equilibrium are also present in the thermodynamical case. Suppose you have a thermally insulated
cylinder with a piston inside (assumed to be thermally conducting), which divides the system into
two subsystems 1 and 2. You now remove the constraint on the position of the piston and allow
the two subsystems to change their volumes and reach equilibrium at fixed total energy E. They do
so by maximising the entropy, which implies equal pressures for the two subsystems at equilibrium.
Alternatively, you can reach an equal-pressure equilibrium state keeping the entropy constant, by
doing reversible work with the piston, which you imagine attached to some external shaft pushing on
a spring and compressing it. If this process is done very slowly (reversibly), entropy is kept constant,
while the internal energy of the system is decreased — because we do work and get no heat — until it
reaches a minimum in the equilibrium equal-pressure state 30. Notice that the two final equilibrium
states are different, like in the iso-perimetric problem, but they share the property that they are both
minimum-energy and maximum-entropy with respect to variations of free parameters.

Exercise 2.2. Make detailed calculations of these two different strategies for reaching an equal-
pressure final equilibrium for the case of an ideal gas occupying the two portions 1 and 2.

Exercise 2.3. Re-derive our conditions for thermal and mechanical equilibrium by using the minimum
energy principle, instead of maximum entropy.

29A proof based on evaluating the first and second derivatives of E(S,X) with respect to a free parameter X in terms
of the corresponding ones for S(E,X) is given in Callen’s book, on page 134. The crucial minus sign in the second
derivative that transforms a maximum into a minimum is essentially related to the minus sign appearing in Eq. (2.48).
Indeed you can show (see Callen’s Eq. 5.7) that at an extremal point:

∂2E

∂X2

∣∣∣∣
S

= −T
∂2S

∂X2

∣∣∣∣
E

.

30Lorenzo Fant observes that the shaft system implies a slight imbalance in the two final pressures since there is a force
contribution due to the spring. Make estimates assuming that the spring constant is very small, and discuss more
carefully
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2.4. Equations of state

The equations of states are just the expressions of the various intensive parameters (generalised
forces) in terms of the extensive ones. An explicit example by using an ideal gas will clarify the
matter. Consider the fundamental equation S(E, V,N), which I recall here:

S(E, V,N) = NkB log
eV
N

(
4πmeE
3h2N

) 3
2

. (2.53)

You can write T , p, and µ as a function of (E, V,N) by taking derivatives of S:

1
T = ∂S

∂E = 3
2
kBN
E

p
T = ∂S

∂V = kBN
V

µ
T = − ∂S

∂N = + 5
2kB −

S
N

. (2.54)

We will later show that, quite generally, µ can be always re-expressed as a function of the other two
intensive parameters T and p. 31 Let us ignore it for a while. Notice that the first equations of
state simply tells us that E = 3

2NkBT . The second is the well known ideal gas equation of state
pV = NkBT . But, properly speaking, the equation of state pV = NkBT , alone, is insufficient to
reconstruct the whole fundamental equation S(E, V,N): you need the equation for T to be able to
reconstruct S.

Exercise 2.4. Assume that you are given a fundamental equation of the form:

SvdW(E, V,N) = NkB log
[
A(v − b)

(
ε+

a

v

)c]
(2.55)

where, as usual, v = V/N and ε = E/N . Here b and a are constants with appropriate dimensions
(the van der Waals constants that we will meet later on, experimentally available for many gases),
while c = 3/2, or 5/2 or anything you want. A is a constant with dimensions [Length]−3[Energy]−c.
Derive the two equations of state for T and p, and observe that they lead to the famous van der Waals
isoterms:

p =
kBT

v − b
− a

v2
. (2.56)

In a completely identical way, you can deduce the equations of state for the intensive parameters, in
the energy scheme, from E(S, V,N): obviously, the resulting T , p, µ will now be functions of S, V,N .
In full generality, if E(S,X) is the energy function expressed in terms of the extensive variables, where
X = (X1 · · ·Xr), then you know that: 

T (S,X) =
∂E

∂S

fi(S,X) =
∂E

∂Xi

. (2.57)

These r + 1 equations, expressing T and the generalized forces fi — all of them being intensive
quantities — as a function of the extensive variables are known as equations of state. We will show
later on that only r intensive variables are capable of independent variation, as there is a relationship
between the r + 1 derivatives of E, known as Gibbs-Duhem relation. See Sec. 2.7.3 on the Gibbs
potential for more details.
31For the ideal gas, for instance:

µ =
5

2
kBT − kBT log

ekBT
p

(
2πmekBT

h2

) 3
2

.
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2.5. Concavity of S and thermodynamic stability

We have stressed that S is a concave function of its extensive parameters, while E is convex.
This, essentially, encodes the 2nd law in a mathematical framework. Let us see the consequence of
concavity in the context of thermodynamic stability. Suppose you had two identical systems described
by S(E, V,N), isolated from each other and the external world by adiabatic walls. The total entropy
of the composite system is 2S(E, V,N). Imagine now that the wall separating the two systems is made
thermally conducting, and that you propose an exchange of energy (heat) between them, such that
system 1 gets E1 = E −∆E, while system 2 has E2 = E + ∆E. The total entropy for this (virtual)
configuration is S(E −∆E, V,N) + S(E + ∆E, V,N). Suppose that S(E, V,N) was monotonic in E
but not concave, like the example shown in Fig. 2.7(left). Then you immediately deduce that:

2S(E, V,N) < S(E −∆E, V,N) + S(E + ∆E, V,N) , (2.58)

which would imply that the system would spontaneously try to maximise its total entropy by making
the energy different between the two systems: the initial equilibrium configuration with equal energies
(and temperatures) would then be unstable. Stability would on the contrary require:

2S(E, V,N) ≥ S(E −∆E, V,N) + S(E + ∆E, V,N) , (2.59)

By taking the limit ∆E → 0 you realize that stability requires, locally, ∂2S
∂E2 ≤ 0. Similarly, you

can write a condition for stability against redistributions of volumes (assuming you make the wall
separating the two systems mobile), which locally implies ∂2S

∂V 2 ≤ 0. Similarly, for any other extensive
variable X you would require ∂2S

∂X2 ≤ 0. But these local conditions are not enough to guarantee
concavity and stability. For instance, if you observe Fig. 2.7(right), you will see that there are regions
— like BC and EF — where ∂2S

∂X2 ≤ 0: nevertheless, the system is unstable there. Indeed, if the
initial value of X is exactly in the middle of the BF region, X in = 1

2 (X(B) + X(F )), then the
entropy would increase by a redistribution of ∆X = 1

2 (X(F ) − X(B)), leading to a final entropy
S(X(B)) + S(X(F )) > 2S(X in). The only way in which the given S(E,X) can be made stable is
by constructing the concave envelope of its tangents, as shown in Fig. 2.7(right) by the straight line
segment BHF .

Figure 2.7.: (Left) A non concave but monotonic S(E, V,N) versus E. Notice that S(E, V,N) < 1
2
(S(E −

∆E, V,N) + S(E + ∆E, V,N)) because the curve is above its tangent in the point E. Instability follows.
(Right) A general non-concave S(E,X) versus one of its extensive variables X. Notice that the system is
unstable even in regions in which the second derivative is negative, like BC and EF . Figures taken from
Callen’s book [3]. Notation: U , in Callen’s book, denotes the internal energy E.

As anticipated before, having negative second derivatives is not enough to guarantee concavity.
What you would need is a negative semi-definite Hessian. In the simple case of a homogenous fluid
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with S(E, V,N), denoting X = (E, V,N) and ∆X = (∆E,∆V,∆N), you see that:

∆S = S(X+∆X)+S(X−∆X)−2S(X) = (∆E,∆V,∆N)

 ∂2S
∂E2

∂2S
∂E∂V

∂2S
∂E∂N

∂2S
∂V ∂E

∂2S
∂V 2

∂2S
∂V ∂N

∂2S
∂N∂E

∂2S
∂N∂V

∂2S
∂N2


 ∆E

∆V

∆N


︸ ︷︷ ︸∑

ij HSij∆Xi∆Xj≤0 for stability

+ · · ·

The condition for a negative semi-definite Hessian HS , which is a real symmetric matrix because the
mixed second derivatives are identical upon exchange of variables — a condition that will lead to the
so-called Maxwell relations between different apparently unrelated derivatives of intensive variables
—, is that all the eigenvalues λi of the Hessian are non-positive λi ≤ 0. Clearly, the extensivity of the
entropy function demands exact linearity if you move along the direction X: S(λX) = λS(X). This
leads to the conclusion that one of the eigenvalues must vanish: more precisely the one associated
with the eigenvector (E, V,N)T (or X in the general case). If you restrict the ∆X to variations of E
and V at fixed N — i.e., take ∆N ≡ 0 — you can reduce your Hessian to the 2× 2 sub-matrix

HS =

(
∂2S
∂E2

∂2S
∂E∂V

∂2S
∂V ∂E

∂2S
∂V 2

)

which must be negative semi-definite, implying: 32
∂2S
∂E2 ≤ 0
∂2S
∂V 2 ≤ 0

∂2S
∂E2

∂2S
∂V 2 −

(
∂2S
∂E∂V

)2

≥ 0

. (2.60)

The first two conditions are quite clear. The third condition comes from the fact that the determinant
of a matrix with two negative eigenvalues must be positive!

The physics behind these stability conditions is easier to extract by working in the energy scheme,
where the fundamental equation E(S, V,N) must now be convex for stability, otherwise, you would
violate the minimum energy principle. Identical arguments, including that on extensivity, lead then
to the conclusion that the reduced 2× 2 Hessian of the energy function

HE =

(
∂2E
∂S2

∂2E
∂S∂V

∂2E
∂V ∂S

∂2E
∂V 2

)
must be positive semi-definite, implying:

∂2E
∂S2 =

(
∂T
∂S

)
V

= T
Cv
≥ 0

∂2E
∂V 2 = −

(
∂p
∂V

)
S

= 1
V κS

≥ 0

∂2E
∂S2

∂2E
∂V 2 −

(
∂2E
∂S∂V

)2

= T
V κSCv

−
(
∂T
∂V

)2
S

= T
V κSCv

−
(

1
V αS

)2

≥ 0

. (2.61)

A physical interpretation now urges. We have already indicated the main physical quantities involved
in these stability conditions. Let us start from the top, which expresses the fact that the temperature
is a monotonically increasing function of S at constant V . Although everything would be more clear by
working with a thermodynamic potential in which T is the relevant variable (the Helmholtz free-energy
F , see below), it is quite clear that

T

(
∂S

∂T

)
V

def
= Cv ≥ 0 , (2.62)

32See Arovas, Eqs.(2.259)-(2.263) for an explicit proof in this 2 × 2 case. More generally, you realize that a quadratic
form that is negative (semi)-definite must have necessarily non-positive elements in the diagonal. There is a simple
reason for that: do you see why? Next, the determinant is a product of the eigenvalues. Here I have two negative
eigenvalues, hence the determinant must be positive.
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must be the specific heat at constant volume, because TdS = d−Q is the heat necessary to lead to an
increase of T by dT at constant V . The second stability condition has to do with the fact that the
pressure p is a monotonically decreasing function of V at constant S, which requires the isoentropic
compressibility to be non-negative:

− 1

V

(
∂V

∂p

)
S

def
= κS ≥ 0 , (2.63)

The third condition guarantees that a concerted variation of E and V does not lead to a reduction
of the total energy at constant S. 33 As previously mentioned, the equality of the mixed derivatives
tells us that:

∂2E

∂S∂V
=

∂2E

∂V ∂S
=⇒ −

(
∂p

∂S

)
V

=

(
∂T

∂V

)
S

, (2.64)

one of the many Maxwell relations that you can write from the equality of the mixed second derivative
of any state function. 34 We have used this fact in writing the third inequality, which you can see
involves also the iso-entropic thermal expansivity

1

V

(
∂V

∂T

)
S

def
= αS . (2.65)

Notice that this is certainly not the most common thermal expansivity you encounter in an experiment.
Much more accessible, experimentally, would be the constant pressure thermal expansivity

1

V

(
∂V

∂T

)
p

def
= αp . (2.66)

Exercise 2.5. Calculate κS , αS , and αp for a monoatomic ideal gas, using the fact that isoentropic
transformations have V T

3
2 = const and that the equation of state pV = NkBT is satisfied. The

calculation of Cv = 3
2NkB is easier by working with the free-energy F (T, V,N), but you can easily

perform it by expressing the entropy S of the ideal gas in terms of the temperature T . Observe that
αS is negative, but this is not a problem. Verify that all the stability conditions are satisfied.

2.6. The Legendre transform

I will present here the Legendre transform, that you have likely seen in Hamiltonian mechanics,
through two different points of view: one related to mechanical equilibrium in presence of an external
force, the second related to line geometry.

Suppose you have a classical particle in a potential U(x). We assume that U(x) is (strictly) convex,
i.e., it stays always above its tangent and has no straight-line pieces, as sketched in Fig. 2.8. 35

33It is simple to show that an Hessian of the type: (
1 2

2 1

)
is associated to a quadratic form which is not positive definite.

34One should not underestimate the fact that this equality while being mathematically trivial, is experimentally highly
non-trivial: if you didn’t know that there must be a state function E(S, V,N) governing the thermodynamics of your
system, you would be highly surprised by measuring the equality of two apparently unrelated quantities. Since we
are working with extensive variables, this Maxwell relation is not that easy to measure experimentally. It will be
much easier to interpret similar relations when we will switch to thermodynamic potentials which involve intensive
variables, like the Gibbs potential G(T, p,N).

35In the figure U(x) has a minimum at some point x0 but this is not necessary. All you need is that U′′(x) > 0. In higher
dimension, you would need to require that the Hessian is positive definite. More precisely, what we have required
is often called a strictly convex function. Notice that strictly convex functions, like x4 can have a vanishing second
derivative somewhere: so, the condition on a positive definite Hessian is only sufficient to have strict convexity.
Simple convexity might allow U′′(x) ≥ 0, or a positive semi-definite Hessian in the multi-dimensional case. We will
write our equations in such a way that they apply to the multi-dimensional case.
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0

The Legendre transform of U(x)

x(f)

f x(f)

G(f) + fx
(tangent of slope f)

U(x)

\(x,f) - G(f)

G(f) U(x(f)) - f x(f) = G(f)

x

Figure 2.8: Geometrical
construction behind the
Legendre transform of
U(x), for the problem of
mechanical equilibrium
in the potential U(x)

in presence of an extra
force f. The meaning of
the various quantities is
explained in the text.

New potential: Consider now the equilibrium problem for a particle in that potential under the action
of an extra constant force f. The new potential in presence of f has an extra term −f · x:

Φ(x, f) = U(x)− f · x . (2.67)

New equilibrium: The new equilibrium point x(f) is obtained by imposing

∂xΦ(x, f)|x(f) = 0 =⇒ ∂xU|x(f) = f .

The condition ∂xU(x) = f univocally 36 defines an equilibrium point x(f) because the derivative
∂xU(x) is monotonically increasing, since U(x) is convex. The geometrical interpretation is
the following: Because the derivative ∂xU(x) is monotonically increasing, if you try to “approach”
the curve with a straight-line of given slope f you will “touch” it at a uniquely defined point x(f).
37

The tangent: Let us construct the tangent t(x) of U(x) at the new equilibrium point x(f):

t(x) = U(x(f)) + f · (x− x(f)) = G(f) + f · x ,

where we defined G(f) to be the intercept with the y-axis of the tangent:

G(f)
def
= U(x(f))− f · x(f) ≡ Φ(x(f), f) . (2.68)

The last equality stresses the fact that such a quantity coincides with the value of the new
potential at the equilibrium point, Φ(x(f), f). The G(f) so defined is the Legendre transform of
U(x). See Fig. 2.8 for a graphical representation of all the quantities introduced so far.

The knowledge of G(f) encodes all the information you need to reconstruct U(x): you know all
the tangents for all possible slopes. In a line-geometry framework, you might reconstruct the
full curve for U(x) from the envelop of the various tangents, 38 as illustrated in Fig. 2.9.

36Equivalently, −∂xU(x) + f = 0, as the total force vanishes. Notice that this might happen even if the potential U(x)

has no minimum in absence of the extra force.
37Notice that if you allow convexity with the milder requirement U′′(x) ≥ 0, there might be straight-line pieces in the

graph of U(x): when f “matches” the slope of the straight-line pieces, the corresponding x(f) is not uniquely defined,
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Figure 2.9: Reconstructing a convex function, here denoted
by L(v), from the envelop of its tangents. Figure adapted
from Fig. 5.2 on pag. 214 of the book by José & Saletan on
Classical Mechanics.

A variational bound: One important fact concerning the tangent t(x) is that, since U(x) is convex, it
stays always above its tangents, in particular that at x(f). Hence:

U(x) ≥ t(x) = G(f) + f · x =⇒ Φ(x, f) = U(x)− f · x ≥ G(f) ≡ Φ(x(f), f) .

We have therefore transformed the equilibrium problem in the presence of an extra force f into a
variational problem. The new potential Φ(x, f), being itself convex, has indeed the nice properties
that: 39 

∂xΦ(x, f)|x(f) = 0 Φ is stationary at x(f)

Φ(x, f) ≥ Φ(x(f), f) ≡ G(f) Φ is minimum at x(f)

. (2.69)

First derivative of G(f): If you calculate ∂fG(f) you easily 40 establish that: 41

∂fG(f) = −x(f) . (2.70)

and the Legendre transform shows a discontinuity in the derivative at that f: we will see that this happens at
first-order transition points, where you have phase coexistence.

38Callen gives a nice discussion of the reason why U(x(f)) alone, seen as a function of f, loses information contained in
U(x). Essentially, if you know U(x(f)) = Ũ(f) as a function of f, you know the value of the function when the slope
is f but you lost information about the precise point x(f) where this occurs. To retain that information, you have
to know the intercept of the tangent at x(f) for each given f: this will uniquely give you both x(f) and U(x(f)) for
given f.

39The variational principle can be cast in the form:

G(f) = minxΦ(x, f) = minx(U(x)− f · x) .

40Using the chain rule:
∂fG(f) =((((

(((∂xU(x(f)) · ∂fx(f) −���
�f · ∂fx(f) − x(f) ≡ −x(f) .

41You see below the starting point of the inverse Legendre transform, with a conspicuos minus sign — recall that in the di-
rect transformation we had ∂xU(x) = f —due to our definition. A mathematician would write G(f) = f x(f)−U(x(f))

in such a way that ∂fG(f) = x(f), and this is, by the way, what you usually do in Hamiltonian mechanics as well,
when you switch from the Lagrangean to the Hamiltonian, hence the change of sign in the potential energy that
you get there. Stiking to our thermodynamics definition of Legendre-transform, you can equivalently regard our
relationships as

U(x) = G(f(x)) + xf(x) ,

which shows that U(x) is the inverse Legendre transform of G.
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Hence, the derivative of the Legendre transform G(f) immediately gives you the equilibrium point
x(f). You should appreciate that the whole process of solving the implicit equation ∂xU(x) = f

to get x(f) was indeed instrumental to construct G(f), but if someone gives you G(f), then you
find the equilibrium point x(f) by just taking a derivative.

Concavity of G(f): Take now a further derivative of ∂fG(f):

∂2
ffG(f) = ∂f(∂fG(f)) = −∂fx(f) .

On the other hand, by taking the derivative of ∂xU(x(f)) = f with respect to f, it is simple to
deduce that:

f = ∂xU(x(f)) =⇒ 1 = ∂f∂xU(x(f)) = ∂fx(f) · ∂2
xxU(x(f)) = −∂2

ffG(f) · ∂2
xxU(x(f)) .

Therefore, we conclude that:

∂2
ffG(f) = −[∂2

xxU]−1|x(f) . (2.71)

Hence, G(f) is concave if U(x) is convex, and viceversa.

Exercise 2.6. If you want to practice a bit, try to apply the previous construction to U(x) = aeαx,
and to U(x) = ax4. The peculiar behaviour of the derivative of the Legendre transform when the
function has straight line pieces is appreciated if you study the following case: U(x) = a(x− 1)2 for
x > 1, U(x) = 0 in x ∈ [−1, 1] and U(x) = a(x + 1)2 for x < −1.

The previous equations might be carried over, with essentially no modification, to the multi-
dimensional case where x ∈ Rn: this is the reason why we wrote f · x in a kind of “scalar product” form.
What we still miss to do thermodynamics is what happens when you Legendre-transform a function
U(x, y) with respect to some of its arguments (x), leaving the other arguments (y) untouched. The
modifications are simple, but we need to mention a few things about convexity which will turn out to
be important in the study of thermodynamics.

So, let us consider a convex function U(x,y) of its n + m arguments and repeat the previous
steps by Legendre-transforming only the n-dimensional variable x. See App. B for a few useful info
about convexity. We now explicitly switch to a multi-dimensional notation. So, for every y we define
a modified potential Φ(x, f,y) = U(x,y)− f · x, where f is n-dimensional, which has the properties
that: 

∂xΦ(x, f,y)|x(f,y) = 0 Φ stationary at x(f,y)

Φ(x, f,y) ≥ U(x(f,y),y)− f · x(f,y) ≡ G(f,y) Φ minimum at x(f,y)

. (2.72)

As before, x(f,y) is the solution of implicit equation

∂xU(x,y)|x(f,y) = f , (2.73)

and it is quite simple to show that:
∂fG(f,y) = −x(f,y) . (2.74)

The derivative with respect to the untransformed variables y are identical to those of U, as you can
immediately verify: 42

∂yG(f,y) = ∂yU(x,y)|x(f,y) . (2.75)

42Indeed:
∂yG(f,y) =

((((
(((

(((
∂xU(x(f,y),y) · ∂yx(f,y) −((((

(f · ∂yx(f,y) + ∂yU(x(f,y),y)
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What is more boring, but useful for thermodynamics, is to derive the convexity properties of G(f,y).
To do that, let us start from ∂xU(x(f,y),y) = f, which we write in components as:

fa = ∂xa
U(x(f,y),y) ,

and take a derivative with respect to fb. Using the chain rule we get:

δab = ∂fb fa = ∂fbxc(f,y) ∂2
xcxa

U(x(f,y),y) = −∂2
fbfcG(f,y) ∂2

xcxa
U(x(f,y),y) .

So, if you define the partial n× n Hessian of U to be:

[HU(f,y)]ab
def
= ∂2

xaxb
U(x(f,y),y) =⇒ [HG(f,y)]ab

def
= ∂2

fafb
G(f,y) = −[[HU(f,y)]−1]ab . (2.76)

If U is convex, then its restriction to the variables x is convex, hence the partial Hessian [HU]ab is
positive definite. 43 Hence you conclude that G(f,y) is f-concave if U is convex.

The proof that G(f,y) is y-convex, as the original U(x,y) it came from, is a bit more complex (in
particular in the multidimensional case, see [1]). Give it a try.

2.7. The thermodynamic potentials

We would like to move from the fundamental equation written in the energy scheme, E(S,X) or
E(S, V,N) for a simple system, to a new potential that uses some of the intensive variables which
come from the derivatives of E. In this section, we will keep N fixed and Legendre-transform only S
and/or V . Later on, when considering the grand-canonical ensemble, in which some calculations are
extremely easy and convenient, we will Legendre-transform E with respect to S and N .

2.7.1. The Helmholtz free-energy: from S to T

The simplest example of Legendre transform of E is one in which, in the notation of the previous
section U(x, y) = E(S,X) where x = S and y = X = (V,N) (in the simplest case). Hence, the
corresponding f would be the temperature:

∂U

∂x
= f =⇒ ∂E

∂S
= T .

By inverting T (S,X) you can re-express S(T,X) — the new equilibrium point x(f) for given slope
f = T — and the correct potential that keeps all the information we had in E(S,X) is the so-called
Helmholtz free-energy: 44

F (T,X) = E(S(T,X),X)− TS(T,X) . (2.77)

The corresponding derivatives are 
∂F

∂T
= −S(T,X)

∂F

∂X
=
∂E

∂X

, (2.78)

where all quantities should be regarded as functions of (T,X). So, for the simple E(S, V,N) we get:

dF = −S(T, V,N) dT − p(T, V,N) dV + µ(T, V,N) dN .

43Alternatively, [HU]ab being the partial Hessian of a bigger positive definite Hessian must be itself positive definite:
just evaluate it on vectors which are restricted to the variables of interest and you get your result.

44Callen would write this as E[T ] — really U [T ] since U is the internal energy in Callen — meaning that we Legendre-
transform the variable S in E into its intensive generalised force T . Notice also that, in the literature, the Helmholtz
free-energy is sometimes denoted by A, from the German Arbeit (Work).
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A bit of physical understanding is in order. Suppose you have an empty box of volume V , completely
isolated from the surrounding world, except for thermal contact with a reservoir kept at temperature
T . I ask: how much work should I do to assemble a system of N interacting particles inside that box,
while heat can be exchanged with the reservoir? In the beginning, I have no particles, hence I start
from E = 0 and S = 0. In the end, the total energy is E(T, V,N). The 1st law tells me that

E(T, V,N) = Q+W ,

where Q is the heat exchanged with the reservoir, and W is the work I have done to assemble the
system. 45 But we can imagine that the construction is very slow, and the heat exchange is reversible
so that you can write that:

Q = T∆S = TS(T, V,N) ,

where I have used that also the initial entropy was 0.

Free-energy as a work investment. Hence the work done on the system to build it is:

W = E(T, V,N)− TS(T, V,N) ≡ F (T, V,N) . (2.79)

You see from this argument that F is like an “investment” of work done to build the system:
notice that this work is less than the total energy E because the building of the system was
helped by some positive heat Q entering the system from the reservoir.

i

If F is seen as a “bank account” of work, when you make a “withdrawal of work”, the balance of
the account should decrease and vice-versa. This is precisely what happens, at least for reversible
transformations at constant T . Recall that from the 1st principle

∆E = Q+W ,

expressing conservation of energy independently of the nature of the transformation, reversible or not.
If the transformation is reversible and occurring at fixed temperature T , then Qrev

T = T∆S. Hence,
from the 1st law you conclude that:

∆F = ∆E − T∆S = W rev
T .

If some positive work is done on the system, W rev
T > 0, then F increases by the same amount and

vice-versa. If the transformation starts and ends at the same fixed T but is otherwise irreversible,
then QT ≤ T∆S, by Clausius inequality. From that, you can easily derive that in general:

∆F = ∆E − T∆S ≤WT . (2.80)

A famous example of irreversible process is Joule’s free expansion of a rarefied (ideal) gas in
vacuum, by removal of a wall separating the gas from an empty container. a The system
is completely isolated, hence ∆Q = 0. We do no work, hence ∆W = 0. Nevertheless, the
entropy increases ∆S > 0 and the free-energy decreases ∆F < 0. Since ∆F < 0 the system has
effectively diminished its “potential” to do useful work. Incidentally, while the total energy must
be conserved, because of the 1st law, the fact that the temperature does not change is due to the
ideal nature of the gas, and to the temperature equation of state E = 3

2NkBT .

aThe process occurs at fixed temperature T , for an ideal gas.

Example Joules’ free expansion.

45Notice the positive sign in front of W because it is the work done on the system.
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Exercise 2.7. After inverting the ideal gas entropy S(E, V,N) to express E(S, V,N), calculate the
ideal gas free-energy F (T, V,N). Observe that F is T -concave while being convex in the other two
variables. Calculate the work done during a reversible isothermal expansion at temperature T by
using F (T, V,N). Confirm that you obtain the same result by using the standard integration of pdV
together with the ideal gas equation of state pV = NkBT .

Returning to the fundamental principle, one can show that the maximum entropy/minimum energy
principle leads to a minimum free-energy principle. More precisely, from E(S,X) for a composite
system, for which you know that E(S,Xeq) is minimum, you can Legendre transform the energy
obtaining F (T,X) = E(S(T,X),X)−TS(T,X). Let F (T,Xeq) be the free-energy in equilibrium. You
can show that:

Principle of minimum Helmholtz free-energy. For a composite system made by different
subsystems kept at fixed temperature T , the final equilibrium state after some of these constraints
are released is the one that minimizes the total Helmholtz free-energy as a function of the free-
variables (virtual states).

i

X

S

Xeq X

S(T,X)

S(T,Xeq)

E(S(T,X),X)

E(S(T,Xeq),Xeq)

E(S(T,Xeq),X)

≥T∆S

≥0

Figure 2.10: The S − X “plane”
with a few “energy points” used
in the proof of the minimum free-
energy principle. See text for de-
tails.

A proof of this principle proceeds as follows. We want to show that

∆F = F (T,X)− F (T,Xeq) ≥ 0 .

Writing the terms explicitly, and adding and subtracting a term E(S(T,Xeq),X), see Fig. 2.10 for a schematic
representation of the S,X domain, we indeed get:

∆F = [E(S(T,X),X)− E(S(T,Xeq),X)]︸ ︷︷ ︸
≥T∆S by convexity of E

−T [S(T,X)− S(T,Xeq)]︸ ︷︷ ︸
=∆S

+ [E(S(T,Xeq),X)− E(S(T,Xeq),Xeq)]︸ ︷︷ ︸
≥0 by minimum E principle

≥ 0 . (2.81)

Notice that we have essentially used only the minimum energy principle (in the last term, where the total
entropy is the same), and the convexity of E (in the first term). Similar proofs can be written down for all the
minimum potential principles that you can write for the various Legendre transforms of the energy E(S,X).

Info: We stress that the Helmholtz free-energy is very important in statistical mechanics because
it is directly calculated in the canonical ensemble.

i
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2.7.2. The Enthalpy: from V to p

Suppose that E(S, V,X), where here and in the following X = X2 · · ·Xr denotes the collection of
the other extensive variables. Take now x = V and y = (S,X). Hence, the corresponding f would be
(−p):

∂U

∂x
= f =⇒ ∂E

∂V
= −p .

By inverting p(S, V,X) you can re-express V (S, p,X) and the correct potential that keeps all the
information we had in E(S, V,X) is the so-called Enthalpy:

H(S, p,X) = E(S, V (S, p,X),X) + pV (S, p,X) . (2.82)

The relevant derivatives are 

∂H

∂S
=
∂E

∂S
= T

∂H

∂p
= V (S, p,X)

∂H

∂X
=
∂E

∂X

, (2.83)

where all quantities should be regarded as functions of (S, p,X). So, for the simple E(S, V,N) we get:

dH = T (S, p,N) dS + V (S, p,N) dp+ µ(S, p,N) dN .

As before, one can prove a minimum enthalpy principle for transformation occurring at constant S
and p. Moreover, one can show that the enthalpy is the “potential for Heat”, as F was the “potential
for Work”. H is loved by chemists because chemical reactions involve the release/absorption of heat
that can be measured by calorimetric techniques. We will have not much to deal with it.

2.7.3. The Gibbs potential: from (S, V ) to (T, p)

Suppose that we want to Legendre-transform E(S, V,X) with respect to both S and V . Hence
x = (S, V ) and y = (X). The corresponding f would be (T,−p), and the derivatives are exactly as
seen before. We now invert to obtain S(T, p,X) and V (T, p,X), and write the Gibbs potential:

G(T, p,X) = E(S(T, p,X), V (T, p,X),X)− TS(T, p,X) + pV (T, p,X) . (2.84)

The relevant derivatives are 

∂G

∂T
= −S(T, p,X)

∂G

∂p
= V (T, p,X)

∂G

∂X
=
∂E

∂X

, (2.85)

where all quantities should be regarded as functions of (T, p,X). So, for the simple E(S, V,N) we get:

dG = −S(T, p,N) dT + V (T, p,N) dp+ µ(T, p) dN .

Notice that we have written µ(T, p) because µ, being intensive (i.e., a homogenous function of degree
0 in Euler’s terminology) cannot depend on N . Indeed, extensivity implies that for a simple system
described by (S, V,N) we have the Euler relation, see Eq. (2.44):

E = T S − p V + µN , (2.86)
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which indeed holds for whatever variables you decide to work with! So, in the (T, p,N) scheme
appropriate to G we have that:

G(T, p,N) ≡ E − T S + p V ≡ µ(T, p)N . (2.87)

Hence, G is exactly linear in N , and the Gibbs potential “per particle” is precisely µ(T, p). Extensivity
suggests that we could use the volume and entropy per particle as well: 46

s(T, p) =
S(T, p,N)

N
v(T, p) =

V (T, p,N)

N
. (2.88)

It is easy to show, from the form of dG, that we can write the differential of µ as follows:

dµ =

(
∂µ

∂T

)
dT +

(
∂µ

∂p

)
dp = −s(T, p) dT + v(T, p) dp . (2.89)

This is a particular case of the so-called Gibbs-Duhem relation, which relates the differential of the
intensive variables among each other. Physically, it tells that only two of them are independent: if
you fix T and p, then µ is a function of (T, p).

More generally, the extensivity of E(S,X) implies the Euler relationship

E(S,X) = T S +

r∑
i=1

fiXi = f(X) ·X , (2.90)

where we have extended our notation setting f = (f0 = T, f1, · · · , fr) and X = (X0 = S,X1, · · · , Xr).
Notice that:

∂E

∂X
= f .

Hence, the Legendre transform of E(X) with respect to all the extensive variables must vanish:

Φ(f) = E(X(f))− f ·X(f) = 0 .

The vanishing of this function of the intensive variables implies a relationship among them. Since
Φ = 0 implies that dΦ = 0, but on the other hand

dΦ =
∂Φ

∂f
· df = −X(f) · df ,

then we conclude that the following general Gibbs-Duhem relation must hold:

X(f) · df = 0 . (2.91)

Written for a simple system this reads:

SdT − V dp+Ndµ = 0 =⇒ dµ = −s(T, p) dT + v(T, p) dp ,

as indeed found previously.

Quite generally, one defines the number of thermodynamical degrees of freedom to be the number of
intensive variables capable of independent variation. If we have r + 1 extensive variables, the number
of thermodynamical degrees of freedom is r. For a simple system, r = 2.

46Note that while S(E, V,N) is in general not linear in N , we have that S(T, p,N) must be exactly linear in N .
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2.8. Stability conditions from the Gibbs potential

Let us return to a simple system described, in the Gibbs potential framework, by G(T, p,N) =

µ(T, p)N . If we write the 2× 2 Hessian of G with respect to (T, p), or equivalently, by dividing by N ,
that of µ we get:

[d2µ] =

[
∂2µ
∂T 2

∂2µ
∂T∂p

∂2µ
∂p∂T

∂2µ
∂p2

]
. (2.92)

Stability requires this Hessian to be negative (semi)-definite. But physically:

∂2µ

∂T 2
= − ∂s

∂T
= −cp

T
≤ 0 ,

where we defined the specific heat at constant pressure:

Cp(T, p,N) = T

(
∂S

∂T

)
p

= Ncp(T, p) . (2.93)

So, local stability with respect to T (redistributions of energy) requires cp ≥ 0. Similarly:

∂2µ

∂p2
=
∂v

∂p
= −vκT ≤ 0 ,

where we defined the isothermal compressibility:

κT (T, p) = − 1

V

(
∂V

∂p

)
T

= −1

v

(
∂v

∂p

)
T

. (2.94)

So, local stability with respect to p (redistributions of volume) requires κT ≥ 0. But stability requires
also that det[d2µ] ≥ 0 (the product of two non-positive eigenvalues is non-negative). Looking at the
off-diagonal elements we first observe that the equality of the mixed derivatives implies the following
Maxwell relation:

∂2µ

∂p∂T
=

∂2µ

∂T∂p
=⇒

(
∂s

∂p

)
T

=

(
∂v

∂T

)
p

≡ vαp , (2.95)

where we have introduced the volume expansivity at constant p, also known as coefficient of thermal
expansion:

αp =
1

V

(
∂V

∂T

)
p

=
1

v

(
∂v

∂T

)
p

. (2.96)

Notice the non-trivial experimental fact implied by this trivial mathematical consequence of the exis-
tence of a state function µ(T, p). Notice also that, while αp is often positive, it can also be negative,
like for water close to freezing (remember your last beer forgotten in the ice compartment?) Stability
requires only that:

cpκT ≥ Tvα2
p , (2.97)

and, as you notice, only α2
p enters: the sign of αp is not important.

Exercise 2.8. Calculate the Gibbs potential G(T, p,N) for the monoatomic ideal gas. Calculate then
the specific heat cp, the isothermal compressibility κT and the coefficient of thermal expansion αp.
Verify the stability conditions.

2.9. Reconstructing S, V and µ from thermodynamic
integration

An large body of information is available on the behaviour of cp(T, p) and κT (T, p) for many
substances at various T and p. What can we do with those measurements? We can reconstruct
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s(T, p), v(T, p) and µ(T, p). To see this, observe that that the definition of cp(T, p) implies that:

s(T, p)− s(T0, p) =

∫ T

T0

dT ′
cp(T

′, p)

T ′
.

Using the 3rd law, S(0, p) = 0, we could even calculate the absolute entropy of our system as:

s(T, p) =

∫ T

0

dT ′
cp(T

′, p)

T ′
. (2.98)

A similar strategy allows to reconstruct S(T, V,N) from data for the specific heat at constant volume
Cv(T, V,N).

Concerning v(T, p) the situation is also quite simple. If you have measured κT (T, p), then

log
v(T, p)

v(T, p0)
= −

∫ p

p0

dp′ κT (T, p′) ,

or, more explicitly:
v(T, p) = v(T, p0) e−

∫ p
p0

dp′κT (T,p′)
. (2.99)

Once you have s(T, p) and v(T, p), the integration of the Gibbs-Duhem form in Eq. (2.89) gives
directly the desired µ(T, p). For instance, you can select an integration path (any path is equivalent,
since we are dealing with an exact differential form) made by two straight lines connecting the intial
point (T0, p0) to the desired final point (T, p), one at constant p0 with increasing T (γT ) and the
second at constant T with increasing p0 (γp).

T

p

T0 T

p

p0

∂µ
∂T =−s

∂µ
∂p=v

γT

γp

Figure 2.11: The p−T plane with the paths used
to reconstruct the chemical potential. See text for
details.

The result is:

µ(T, p)− µ(T0, p0) =

∫
γT+γp

dµ = −
∫ T

T0

dT ′ s(T ′, p0) +

∫ p

p0

dp′ v(T, p′) . (2.100)

Notice that unlike entropy – for which the 3rd law fixes an absolute reference value at T = 0 —, µ,
like any other “energy-related” quantity, is given only with respect to some arbitrary reference point:
only differences are meaningful.

2.10. The meaning of imposing convexity: the example of
latent heat.

Suppose that a certain energy fundamental equation E(S, V,N) has the form given in Fig. 2.12
(top/left). You will notice that the curve is convex, as it should, but it has a straight line BC. What is
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it? Observe also the two pieces of dashed curves, which appear as the natural continuation of AB, and
CD. These dashed curves have been eliminated by the construction of an envelope of tangents, leading
to the straight line BC. Physically, the tangent to E is the temperature T : hence that straight line
means that there is a fixed temperature T ∗ that the system shows, while the entropy increase by some
amount ∆S. This is a signal of a 1st order transition occurring at T ∗: indeed, a familiar experience
from the boiling of a pot of water. The system increases its energy by a certain amount, the latent
heat ∆Q = T ∗∆S, while the temperature does not change at all, hence the use of the word “latent”, as
you well know. The temperature T (S) is plot right below the E(S) curve. You see that the two dashed
lines would represent a “metastable (overheated) liquid” (close to B) and a “metastable (overcooled)
vapour” (close to C). These metastable states might be obtained under some conditions; generally,
it takes even the slightest perturbation to reveal their intrinsic instability, eventually leading to the
stable state represented by the straight line BC. Physically, the line BC is a mixture (coexistence) of
the two phases in B and C, represented by a convex combination:

X = λXC + (1− λ)XB ,

with λ ∈ [0, 1]. The straight-line BC means that

E(X) = E(λXC + (1− λ)XB) = λE(XC) + (1− λ)E(XB) ,

i.e., in words, the energy of the mixture is the convex combination of the energies of the pure states.

So far, we have discussed the two left plots, which refer to the energy scheme. Whenever such
situations occur, a better description is obtained by switching to a scheme in which the intensive
variable T becomes the control variable, e.g., the Gibbs potential G(T, p,N). 47 In the right plots,
you see that, if S is considered not a variable, but rather a function of T , then it has a jump at the
transition: this jump is reflected in a slope discontinuity of G(T ) at T ∗.

The same phenomenology would occur if you plot, for instance, F (T, V,N) for this system: you
would see a straight-line piece which signals that the pressure p does not change as V increases,
and again a slope discontinuity would be observed in G(T, p). So, straight-line pieces signal phase
coexistence (e.g., a liquid coexisting with a vapour) and the correct variables to use in such cases are
the intensive variables T , p, while the extensive variables (S and V ) show jumps.

A very nice problem regarding these aspects, and making sense of the Maxwell construction in the
pV isotherms of a van der Waals fluid is suggested in the final problems.

47The Helmholtz free-energy F (T, V,N) would be equally good for the purpose, but you will see that at the transition
also the volume of the two phases is discontinuous, and the pressure p is the other natural intensive control variable.
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Figure 2.12.: A system showing a 1st order phase transition at a temperature T ∗, with associated latent
heat.
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3. Statistical mechanics ensembles

The goal of the present chapter is to give a flavour of how a statistical description can be given for
the measurement of physical observables, which bypasses the extremely complex dynamical problem
posed by the classical (Newton or Hamilton) or quantum (Schrödinger) dynamics of a system with
many degrees of freedom.

We will see that two important aspects of this journey towards a statistical description of observables
touch upon the concepts of ergodicity [7–10] and mixing [8, 9], which have been quite well studied in
the classical world, much less in the quantum case. The first, ergodicity, is a fundamental hypothesis
introduced by Boltzmann and Maxwell while laying the foundations of classical statistical mechanics;
remarkably, is still a widely studied problem in the mathematical and physics community. The concept
of mixing concerns the way a classical out-of-equilibrium state reaches thermal equilibrium and is
deeply connected to irreversibility, probably one of the most intriguing concepts of thermodynamics.

Figure 3.1.: The stadium mixing. Figures due to Simone Ziraldo.

In some way, the billiard animations shown in the introductory lectures, of which we reproduce
here two snapshots, should give a flavour of the idea behind the statistical description of a many-
body dynamical system, at least in the classical case. Another possible clue to the micro-canonical
description of a system emerges from our analysis of Shannon’s entropy, and might be phrased by
saying that “events that are exponentially more probable will typically occur”. Finally, the guided
problem presented in App. C should make you appreciate how a micro-canonical description emerges
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from the time-reversal invariant dynamics described, after a phase-space coarse-graining, by a classical
master equation.

3.1. The ergodic problem and the classical micro-canonical
ensemble

The first goal of our discussion is to justify the big conceptual steps in going from mechanics (clas-
sical or quantum) — where we have the deterministic equation of motion of a large number N of
particles —, to a statistical description of the relevant measurement of some physical observable. We
will give here some heuristic arguments in favour of the fundamental postulate linking the thermody-
namic entropy to the phase space volume. The arguments are much developed in the classical case
— classical chaos in dynamical systems is a very mature field —, less so in the quantum case, but
have enjoyed a certain popularity in the last 30 years, when physicists became again interested in the
foundations of quantum statistical mechanics.

3.1.1. Hamilton and Liouville

We begin with a brief recap of classical Hamiltonian dynamics, which has no pretence of rigour or
completeness: we refer the reader to the book by Arnold, or Ref. [11], for details and rigour. The
classical dynamics description of a system of N particles is based on Hamilton’s equations: q̇ = +∂H

∂p (q(t),p(t))

ṗ = −∂H∂q (q(t),p(t))
=⇒ ẋ = V(x(t)) , (3.1)

where q = (q1, · · · ,qN ) ∈ R3N denote positions, p = (p1, · · · ,pN ) ∈ R3N the momenta, and x =

(q,p) ∈ R6N a variable which lives in the so-called phase space of the system. Here V(x) is a vector
function in phase space determining the velocity field for the Hamiltonian flow, which you can directly
read from Hamilton’s equations. These equations determine in a unique deterministic way the motion
of all particles once a suitable initial condition q(0) and p(0), hence x(0) = x0, is given. Notice that
the Hamiltonian velocity field V(x) has zero divergence:

∇x ·V =

N∑
i=1

[
∂

∂qi

(
∂H

∂pi

)
+

∂

∂pi

(
−∂H
∂qi

)]
= 0 , (3.2)

by Schwartz’s theorem on the equality of the mixed second derivatives for sufficiently regular functions
H(q,p).

Time averages and phase-space distributions. Consider now a single trajectory in phase space
x(t), originating from the initial condition x0 = x(t = 0) and the corresponding infinite-time average
of a given quantity A(x):

A = lim
T→∞

1

T

∫ T

0

dt A(x(t)) = lim
T→∞

1

T

∫ T

0

dt

∫
dxA(x) ρ(x, t) (3.3)

where ρ(x, t) = δ(x − x(t)) is a Dirac’s delta function centred at the moving particle position x(t),
with ρ(x, 0) = δ(x − x0). More generally, we can consider an ensemble of trajectories originating
from different initial points x(j)

0 , each weighted with a weight factor pj ∈ [0, 1] such that
∑
j pj = 1,

and evolving into x(j)(t) according to Hamilton’s equations. The corresponding distribution ρ(x, t) in
phase space is given by:

ρ(x, 0) =
∑
j

pjδ(x− x(j)
0 ) =⇒ ρ(x, t) =

∑
j

pjδ(x− x(j)(t)) . (3.4)
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By the usual trick of coarse-graining, we can also adopt a continuous description, where ρ(x, 0) is
the distribution density in phase space, and ρ(x, t) the corresponding evolution according to the
Hamiltonian flow. The density distribution ρ(x, t) is such that∫

dx ρ(x, t) = 1 ∀t ≥ 0 . (3.5)

The corresponding ensemble average of the time-averages A is given by:

[
A
]
ens

= lim
T→∞

1

T

∫ T

0

dt

∫
dxA(x) ρ(x, t) = lim

T→∞

1

T

∫ T

0

dt 〈A〉t , (3.6)

where the last equality defines the ensemble average of A(x) at time t:

〈A〉t =

∫
dx A(x)ρ(x, t) . (3.7)

Observe now that ρ(x, t), like all distribution functions expressing the motion of “conserved objects”,
must obey a continuity equation, where the associated current is nothing but J(x, t) = ρ(x, t)V(x),
in perfect analogy with electromagnetism. The continuity equation will read:

∂

∂t
ρ = −∇x · J(x, t) = −∇x · (ρV) . (3.8)

By using the fact that V(x) has zero divergence, we can write

∇x · (ρV) = (∇xρ) ·V + ρ��
��∇x ·V = V · (∇xρ) .

There are two equivalent ways of writing out the consequences of such divergence-less nature of the
Hamiltonian flow. The first is to write a differential equation obeyed by ρ(x, t), which is known as
Liouville equation:

∂

∂t
ρ = −V ·∇xρ =

N∑
i=1

(
∂H

∂qi

∂ρ

∂pi
− ∂H

∂pi

∂ρ

∂qi

)
def
= {H, ρ}PB (3.9)

where in the last equality we recognise the Poisson brackets of H and ρ. 1 The second is that the
total derivative of ρ(x(t), t) vanishes:

d

dt
ρ(x(t), t) =

∂

∂t
ρ+ ẋ ·∇xρ =

(
∂

∂t
+ V ·∇x

)
ρ = 0 . (3.11)

This in turn means that ρ(x(t), t) = ρ(x0, 0), which says that ρ(x(t), t) is constant along Hamiltonian
trajectories.

Liouville theorem. Consider now a region R0 ⊂ Ω(E) in the phase space available to the system
at fixed total energy E (E is a conserved quantity in Hamiltonian flow). You can associate to it a
characteristic (or indicator) function IR0

(x) such that:

IR0
(x) =

{
1 if x ∈ R0

0 if x /∈ R0
. (3.12)

1Notice the similarity with the quantum mechanical von Neumann’s equation obeyed by the density matrix ρ̂. More
precisely, if ρ̂(0) = |ψ(0)〉〈ψ(0)| is the initial density matrix, then ρ̂(t) = |ψ(t)〉〈ψ(t)| = Û(t)ρ̂(0)Û†(t) obeys the von
Neumann equation:

d

dt
ρ̂(t) =

1

i~
[Ĥ, ρ̂] . (3.10)

In particular, observe that the Liouville equation is linear, and the whole evolution of ρ(x, t) might be also regarded
as a linear problem in phase space.
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You can measure the volume of R0 by the corresponding integral: 2

vol(R0) =

∫
dx IR0

(x) . (3.13)

Next, take the classical time-evolution operator Ut(x0) = x(t), with x(0) = x0, which we might also
denote by x(t,x0). You can consider the image under Ut of the region R0, defined by:

Rt ≡ Ut(R0) = {x | ∃x0 such that x = Ut(x0)} . (3.14)

Let us take as initial distribution

ρ(x, 0) =
IR0

(x)

vol(R0)
=⇒

∫
dx ρ(x, 0) = 1 .

Under evolution, since ρ(x(t), t) = ρ(x0, 0), it is easy to realise that:

ρ(x, t) =
IRt(x)

vol(R0)
.

But the total integral of ρ(x, t) must be 1, hence:

1 =

∫
dx ρ(x, t) =

∫
dx IRt(x)

vol(R0)
=

vol(Rt)

vol(R0)
=⇒ vol(Rt) ≡ vol(R0) . (3.15)

The last equality says that the Hamiltonian flow conserves the phase space volume 3 of any region
R0: this is one of the ways of expressing the Liouville theorem of Hamiltonian mechanics. However,
you should refrain from thinking that since vol(Rt) = vol(R0) the “shape” of Rt is somewhat related,
perhaps weakly deformed, to that of R0: we will return to this issue again when discussing the Poincaré
recurrence theorem and the concept of “mixing”.

Constants of motion. To proceed, we need to discuss the concept of constant of motion. Let us
see what happens, in general, to a quantity A(x) defined in phase space under time evolution. It is
immediate to show that once again the Poisson’s brackets govern the motion: 4

d

dt
A(x(t)) = ẋ ·∇xA(x) = V ·∇xA(x) = {A,H}PB . (3.17)

By definition, a conserved quantity or integral of motion of the Hamiltonian flow is a function Iα(x)

defined in phase space such that
Iα(x(t)) = Iα(x0) , (3.18)

which in turn can be expressed equivalently as:

d

dt
Iα(x(t)) = ẋ ·∇xIα = V ·∇xIα = {Iα, H}PB = 0 . (3.19)

I1(x) = H, the Hamiltonian itself, is always a constant of motion, provided H does not depend
explicitly on t. What other constants of motion would a system have? It depends. In general, the
phase space has dimension 2n, where n = 3N is the configuration space dimension for particles in
three dimensions. A system is said to be completely integrable in the Liouville sense if a set of n (hence,
as you see an extensive number) independent integral of motion exists {I1 = H, I2, · · · , In} such that
{Iα, Iα′}PB = 0. Without entering in the details of this wonderful construction, which you can find
2In general, a Lebesgue integral, if the region is not very regular.
3In hydrodynamical terms, you can think of the distribution ρ(x, t) as representing an incompressible fluid moving
under the action of a zero-divergence stationary dissipation-less velocity flow V(x).

4Again, notice the analogy with the Heisenberg’s equations of quantum mechanics:

d

dt
ÂH(t) =

1

i~
[ÂH(t), Ĥ] . (3.16)
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discussed in all details in the book by Arnold, let me exemplify this definition with some examples.
For a single particle in one-dimension, n = 1 hence {I1 = H} is enough to guarantee integrability.
5 The motion of a particle in a central potential is also integrable, as {H,L2, Lz} are integral of
motions. 6 An assembly of harmonic oscillators would also be integrable, as you can easily realise.
What is less trivial is that there are many-body one-dimensional non-linear interacting problems, for
instance, those generically known as Calogero-Moser-Sutherland models, which are integrable. One of
its variants reads:

H =
1

2

N∑
j=1

(p2
j + ω2q2

j ) + g2
N∑
j 6=j′

1

(qj − qj′)2
. (3.20)

But complete integrability, and even the presence of constants of motions beyond the Hamiltonian
itself, is more the exception than the rule. 7 Generic systems tend to have only the Hamiltonian H
as a constant of motion.

Physical observables. Not all functions A(x) defined in phase space are physically meaningful,
or in any case, we cannot hope to be able to describe them all by statistical techniques. We need to
distinguish thermodynamically relevant physical observables as those extensive quantities which vary
very little when only a few degrees of freedoms are changed. For a physical observable, we would
expect a behaviour such as the one sketched in Fig. 3.2. Let me give you some elementary examples.
The total kinetic energy of the system:

K =

N∑
j=1

p2
j

2m
, (3.22)

certainly qualifies as an observable: it is extensive, and if you change the momenta of a few particles,
the fractional change of K is of order O(1/N). The same considerations apply to the total one-body
potential and the total interaction potential:

U1−body =

N∑
j=1

V1−body(qj) Uint =
1

2

N∑
j 6=j′

Vint(|qj − qj′ |) . (3.23)

Notice that the previous quantities, while being physical observables, are not constant of motion: only
their sum, the total energy, is a constant of motion. An obvious constant of motion is the total number
of particles N , which you can view as the integral of the local density of particles 8

n(r) =

N∑
j=1

δ(r− qj) =⇒ N =

∫
V

dr n(r) . (3.24)

You can easily write down quantities which are not observables. For instance:

N∏
j=1

θ(r2
0 − |qj |2) (3.25)

5Indeed, energy conservation allows to define a one-dimensional manifold in the (q, p) two-dimensional phase space over
which the trajectory lives. One can then reduce the problem to integration, as you know very well from elementary
mechanics.

6The conservation of L implies two of the three Kepler laws, but you should notice that {Lx, Ly}PB = Lz , hence you
can extract only two integral of motions, L2 and Lz , as you probably know from the quantum mechanical solution
to the problem.

7A very famous exception is the Fermi-Pasta-Ulam-Tsingou model:

H =
1

2

N∑
j=0

(p2
j + (qj+1 − qj)2) +

α

3

N∑
j=0

(qj+1 − qj)3 , (3.21)

where qj = xj − ja denote the displacement from the equilibrium positions ja of a system of non-linear oscillators
with fixed boundary conditions q0 = qN+1 = 0. This model gave the birth to a lot of studies in non-linear physics,
chaos, integrability, etc.

8Technically, the density itself, being not an extensive observable, falls outside of the realm of the observables that you
would consider in thermodynamics. However, this quantity has certainly the status of an observable in a statistical
mechanics context.
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is a quantity which is equal to 1 is all particles are contained in a sphere of radius r0 around the origin,
but it is enough to have one particle leaving that sphere for the quantity to abruptly jump to 0.

Figure 3.2: A sketch of the be-
haviour in time of a physical observ-
able, for one particular realization
of the dynamics. While the initial
point can change, the final steady-
state value, with fluctuations around
a well-defined time average, is usually
independent of the initial conditions.
The goal of statistical mechanics is
to provide a theory to calculate those
time averages in terms of a handful of
macroscopic parameters.

3.1.2. Ergodicity and the long-time average of observables

Let us now consider again the issue of the time average of A(x), but we now assume that A(x)

is a physical observable. First of all: why do we consider time averages in the first place? At
the end of the nineteenth century, Boltzmann argued that the measurement of a physical quantity
necessarily requires a finite amount of time. Hence, the result of a measurement provides us with
an average over a certain finite time interval. The measurement time interval is usually much larger
than any characteristic time-scale of the corresponding microscopic dynamics. Hence, to all practical
purposes, it is legitimate to assume that a measurement of A(x) will be essentially given by the infinite
time average of A(x(t)). Theoretically, you could start your “molecular dynamics” simulations from
different initial points, and the results of the infinite time average should be identical for all different
simulations. Hence, it should make no difference in the calculation of the averages if we also include
an “ensemble average”:[

A
]
ens

= lim
T→∞

1

T

∫ T

0

dt

∫
dxA(x) ρ(x, t) = lim

T→∞

1

T

∫ T

0

dt 〈A〉t . (3.26)

Suppose 9 that the distribution itself “converges” to a stationary distribution for t→∞:

lim
t→∞

ρ(x, t) −→ ρst(x) . (3.28)

If such a ρst(x) exists, since the dynamics of ρ(x, t) is given by:

∂

∂t
ρ(x, t) =

N∑
i=1

(
∂H

∂qi

∂ρ

∂pi
− ∂H

∂pi

∂ρ

∂qi

)
= {H, ρ}PB (3.29)

the limiting stationary distribution should satisfy {H, ρst}PB = 0. Now, suppose that the system
admits k independent constants of motions {I1 = H, I2, · · · , Ik}. Then, the limiting stationary distri-
bution must be a function of the integral of motions:

ρst(x) = F (I1(x), I2(x), · · · , Ik(x)) . (3.30)
9Please regard this as a swift “physicist” approach to the subject. A more careful approach would be to postulate that
the limit exist in a weaker sense, i.e., under an average with all physical observables:

lim
t→∞

∫
dx A(x) ρ(x, t) −→

∫
dx A(x) ρst(x) . (3.27)

If the limit exists, then you can easily show that it dominates the infinite-time integral: [A]ens =
∫

dx A(x) ρst(x).
But the infinite time-average of A might exist even if 〈A〉t =

∫
dx A(x) ρ(x, t) has bounded fluctuations around

some average value.
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Indeed, it is simple to show 10 that since {H, Ij}PB = 0, then automatically {H, ρst}PB = 0.

By far the most common case — for a system that is non-integrable and with appropriate conditions
(confined in a box) which kill all the trivial constants of motions such as total momentum or total
angular momentum — is that the only relevant constant of motion is the Hamiltonian itself, hence
ρst(x) = F (H(x)). Hence, if the ρ(x, 0) was chosen such that it lies entirely in the manifold with
H(x) = E, then

ρst(x) = ρµCE(x) ≡ δ(E −H(x))

Ω(E)
, (3.32)

where Ω(E) is an appropriate normalisation factor (see below). This, essentially, defines the micro-
canonical ensemble distribution ρµCE(x) in terms of which we now formulate the ergodic hypotesis:

[A]ens ≡ 〈A〉µCE =

∫
dµ A(x) ρµCE(x) (3.33)

where dµ denotes the integration measure in phase space, which we are free to rescale by an appropriate
dimensional constant h3N , end even with a Gibbs counting factor 11 1/N !:

dµ =
dx

N !h3N
=

1

N !

N∏
i=1

dqidpi
h3

, (3.34)

as long as the total volume Ω(E) appearing as a normalisation factor in ρµCE(x) is accordingly calcu-
lated as:

Ω(E) =

∫
dµ δ(E −H(x)) =⇒

∫
dµ ρµCE(x) = 1 . (3.35)

Notice that, although our argument went through the assumption that the distribution ρ(x, t)
“converged” to a stationary micro-canonical distribution, the ergodic hypothesis requires less: it only
requires that the “infinite time average” of the distribution approaches the micro-canonical one: 12

lim
T→∞

1

T

∫ T

0

dt ρ(x, t) −→ ρµCE(x) . (3.36)

More about the distinction between ergodicity — which is the less stringent requirement in Eq. (3.33)
— and mixing — which is the more stringent requirement in Eq. (3.27) — below.

A slight relaxation of the strict restriction to the manifold with H(x) = E is possible and indeed
advisable since one might object that it is impossible to control with infinite precision the initial energy
of all the initial points described by ρ(x, 0). Indeed, let us assume that ρ(x, 0), when analysed in its
energy content, occupies an interval of energies [E −∆E , E], say with a flat histogram. Then, if you
denote by IµCE(·) the so-called indicator (or characteristic) function of the energy interval [E−∆E , E]:

IµCE(x) =

 1 if x ∈ [E −∆E , E]

0 otherwise
(3.37)

10Simply use the chain rule for derivatives with the function F (y1, · · · , yk):

{H, ρst}PB = {H,F (I1 · · · Ik)}PB =

N∑
i=1

(
∂H

∂qi

∂F

∂pi
−
∂H

∂pi

∂F

∂qi

)

=
k∑
j=1

∂F

∂yj

N∑
i=1

(
∂H

∂qi

∂Ij

∂pi
−
∂H

∂pi

∂Ij

∂qi

)
=

k∑
j=1

∂F

∂yj
{H, Ij}PB = 0 . (3.31)

11As you remember from the first lectures, the Gibbs counting factor is crucial to get a properly extensive entropy at
the classical level. It comes naturally from the classical limit of the quantum ideal gas calculation, together with the
appropriate factors of h3N , as we shall see later on.

12Again, we should better intend the limit in the weak sense: under average with all possible physical observables,
which is what Eq. (3.33) actually states.

71



Statistical mechanics ensembles (Lecture Notes by G.E. Santoro)

the limiting micro-canonical distribution would be given by

ρµCE(x) ≡ IµCE(H(x))

NµCE(E)
(3.38)

with the normalisation factor given by:

NµCE(E) =

∫
dµ IµCE(H(x)) =

∫ E

E−∆E

dE′ Ω(E′) . (3.39)

Once again, the ergodic hypothesis stipulates that long-time averages should be reproduced by the
micro-canonical averages calculated with ρµCE(x). 13

The ergodic condition 14 can be “pictured” in many ways: an interesting geometrical “picture” is
that a system is ergodic when the trajectory x(t) passes close to nearly all the states compatible with
the conservation of energy, see Figure 3.3, for almost all possible initial conditions.

Figure 3.3: A sketch of an ergodic trajectory in phase space
Γ. The grey surface is the set of configurations with energy
E, the micro-canonical energy shell, where E is the energy of
the initial state x0. An ergodic trajectory x(t) passes close
to nearly all the states with energy E as t approaches ∞.

Ergodicity has been mathematically proven for a small set of systems, mainly billiards with hardcore
spheres [12, 13]. A lack of ergodicity could come from many factors: integrability, on one extreme,
and glassiness, on the other. A classical system is integrable when there is a complete set of constants
of motion which restricts the dynamics to essentially one-dimensional degrees of freedom. In this
case, ergodicity can be in some sense “recovered” by restricting the micro-canonical average to the
appropriate surface in which all the constants of motion are fixed. More interesting is the case
of systems that are “close to integrability”: when the Hamiltonian is slightly perturbed from an
integrable one, the trajectories remain “trapped” in surfaces, called invariant tori, and they are unable
to fill the available phase space. A numerical example of this effect was discovered by Fermi, Pasta,
and Ulam [14]; the mathematics of it is contained in the famous Kolmogorov-Arnold-Moser (KAM)
theorem [11,15–17]. Glasses, at the other extreme, are a well-known class of systems where ergodicity
fails. In these systems, the configuration is dynamically trapped in a subset of the phase space and
the system is not able to fill the allowed micro-canonical energy shell in any reasonable time scale.
Glassy dynamics has been shown even in simple systems, e.g., lattice Hamiltonians with density
constraints, for instance when a particle on a lattice cannot have more than a given number of
occupied neighbouring sites [18]. Glassiness, and ergodicity breaking, is also present in disordered
systems, like spin glasses [19], i.e., disordered magnets with frustrated interactions. Besides these
13Notice that when ∆E is small, you can approximate:

NµCE(E) ' ∆EΩ(E) ,

and therefore:
ρµCE(x) '

IµCE(H(x))

∆EΩ(E)

∆E→0−→
δ(E −H(x))

Ω(E)
.

14Notice that ergodicity and chaos [11] are not synonyms: in ergodicity, we analyse the filling of the phase space while
in chaos we study the behaviour of the trajectories starting from similar initial conditions. This means that if a
system is ergodic it is not necessarily chaotic, and the opposite (for instance, N-bodies in gravitational interaction
is chaotic but not ergodic). At the same time, chaos gives to the ergodic hypothesis even more importance: if a
system is chaotic, even if we know the initial state x0 we will not be able to follow its dynamics because any small
error, even infinitesimal, generates divergent trajectories.
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well-studied cases, it is commonly believed that in most of the non-trivial classical Hamiltonians with
many degrees of freedom ergodicity is fulfilled [9].

3.1.3. Ergodicity versus mixing and the Poincaré recurrence theorem

Question: if we start from an out-of-equilibrium state, will the observables approach their equi-
librium (micro-canonical) value as time proceeds? The answer to this important question is deeply
rooted in the concept of mixing.

Recall the definition we have already given before. A system is said mixing if for any initial ensemble
ρ(x, 0) and any observable A(x) we have:

lim
t→∞

∫
dµ A(x) ρ(x, t) relaxes to eq.−→

∫
dµ A(x) ρµCE(x) . (3.40)

In other words, this means that, in a mixing system, the mean value at time t of A(x) approaches,
for large times, the micro-canonical average. To illustrate the concept of mixing, we sketch in Fig. 3.4
possible different types of flow in phase space starting from an initial ensemble which is concentrated
in a finite volume of phase space (the deformed rectangles). During the time evolution the volume

Figure 3.4.: Sketch of three types of flow in phase space. (a) non-ergodic: the initial sample moves without
distortion, returning to the initial condition after a finite time; (b) ergodic: the shape of the initial sample
is only slightly altered by time evolution but it never returns to the initial condition and it sweeps out the
allowed portion of phase space; (c) mixing: the shape is distorted by time evolution and after an infinite time
it spreads out over the whole allowed phase space. Figure taken from Ref. [9].

occupied by the initial ensemble moves and deforms, building a flow inside the phase space. From
Liouville’s theorem, the volume is conserved by the flow, but the shape can evolve and be deformed
in many ways. The simplest case is illustrated in panel (a) of Fig. 3.4, in which the initial volume
moves without distortion, returning to the initial position in phase space after a certain time: in
this case, the flow sweeps a finite fraction of the available phase space. This flow is neither ergodic
nor mixing. An example of ergodic flow is shown in panel (b) of Fig. 3.4, where the initial shape is
only slightly altered, but it never returns to its initial location and visits essentially every region of
available phase space. Finally, panel (c) of Fig. 3.4 illustrates a mixing flow: here the shape of the
initial distribution is highly distorted as time increases and evolves into an octopus with contorted
arms which grow into extremely fine filaments that spread out uniformly over the whole phase space.
An example of a mixing flow is shown in Fig. 3.5. Essentially, in a mixing flow, starting from an
initial out-of-equilibrium ensemble the distribution ρ(x, t) evolves towards the equilibrium one, i.e.,
the micro-canonical ensemble in the case of an isolated system. As one might guess by looking at
the sketches of Fig. 3.4, mixing is a stronger condition than ergodicity: it implies ergodicity but is
not implied by it. Like for ergodicity, mixing has been mathematically proven only for a few simple
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systems. The most known result is due to Sinai who proved, in 1962, that the hard-sphere gas is
ergodic and mixing [12]. It has also been proved rigorously [20] that mixing is strongly connected to
the instability of trajectories associated with chaotic dynamics in phase space, and is deeply related
to the issue of irreversibility [8].

Figure 3.5: An example of a mixing flow: 20% of rum and
80% of cola produce, after mixing, a “Cuba libre”. The figure
is taken from Ref. [8]. If the initial drop is substituted by
oil, then a vigorous shaking will only produce an ergodic mo-
tion of oil drops, which will never mix with the surrounding
medium.

The following simple example shows the difference between ergodicity and mixing. Consider the
simple evolution defined on the two-dimensional torus {(q, p) |with q mod (1), p mod (1)}:{

q̇ = 1 ⇒ q = q0 + t mod (1)

ṗ = α ⇒ p = p0 + αt mod (1)
(3.41)

with α = tan(θ) irrational. 15 Consider now an “observable” A(q, p). On the torus, it will be a periodic
function of (q, p), which we can expand in Fourier series:

A(q, p) =
∑
n,m

Ân,me2πi(mq+np) .

Hence we have that:
A(q(t), p(t)) =

∑
n,m

Ân,me2πi(m(q0+t)+n(p0+αt)) .

The infinite-time average is simple to calculate:

A = lim
T→∞

1

T

∫ T

0

dt A(q(t), p(t)) = Â0,0 +

6=(0,0)∑
n,m

Ân,me2πi(mq0+np0) lim
T→∞

1

T

e(m+nα)2πiT − 1

2πi(m+ nα)

= Â0,0 . (3.42)

This system is evidently ergodic, as the time-average is reproduced by the totally flat distribution
ρst(q, p) = 1:

〈A〉st =

∫ 1

0

dq

∫ 1

0

dp A(q, p)ρst(q, p) = Â0,0 .

But the flow is far from mixing: if you take a small ball R0 as initial ρ(q, p, t = 0) the shape of
this ball is essentially undistorted by the flow: the ball simply moves at an angle θ, bouncing with
periodic boundary conditions at the border of the torus. Hence ρ(q, p, t) does not converge to the flat
distribution ρst(q, p) = 1, but rather comes infinitely close, and infinitely many times, to any point in
phase space.

An early paradox that puzzled the fathers of statistical mechanics is given by the Poincaré recurrence
theorem. The theorem is simple to state and prove. A few definitions will clarify the notation. Let
Ut(x0) denote the (Hamiltonian) evolution operator (or flow) for the initial point x0 at time t:

x(t,x0) = Ut(x0) .

Correspondingly Ut(R) denotes the image under Ut of all points in a region R:

Ut(R) = {x′
∣∣∃x ∈ R such that x′ = Ut(x)} .

15Notice that α is irrational for “almost all” values of the angle θ.
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Let now R0 be a small neighborhood of some point x0 in phase space:

R0 = {x
∣∣|x− x0| < δ} .

Fix now an arbitrary fixed time τ and consider the stroboscopic images of an initial region R0 of phase
space: Uτ (R0), U2

τ (R0) = Uτ (Uτ (R0)), etc. Figure 3.6 illustrates the content of the theorem. The

Figure 3.6: Illustration of the Poincaré recurrence theorem.
Figure adapted from Arovas.

theorem states:

Poincaré recurrence theorem. If the phase space volume is finite, and the evolution
operator is invertible and volume-preserving, then in any finite region R0, there exists a
point x1 ∈ R0 such that x2 = Umτ (x1) ∈ R0 for some finite value of m.

Proof : The proof proceeds by contradiction. If the thesis is assume false, then all Ukτ (R0) will have to be
disjoint sets, for all values k ∈ N. Hence:

vol

(
∞⋃
k=0

Ukτ (R0)

)
=

∞∑
k=0

vol
(
Ukτ (R0)

)
= vol (R0)

∞∑
k=0

1 =∞ ,

which contradicts the hypothesis that the phase space volume is finite. Here we have used the fact that the
flow is volume-preserving. If the different Ukτ (R0) cannot be all disjoint, there must exist two integers k < l

such that
Ukτ (R0) ∩ U lτ (R0) 6= ∅ .

But the invertibility of Ut will allow us to apply U−kτ to the previous set, hence:

R0 ∩ U l−kτ (R0) 6= ∅ .

Let us now call m = l− k > 0. Take an element x2 ∈ R0 ∩Umτ (R0), and define x1 = U−mτ (x2). Then we have
found an x1 ∈ R0 such that x2 = Umτ (x1) ∈ R0, which is what we wanted to prove. The puzzling aspect of
the recurrence theorem is illustrated in Fig. 3.7: a bottle containing vapours of a perfume is opened in
a room empty of molecules (left); after a very short time (centre) all molecules have uniformly occupied
the room; in a sufficiently long time (right), a recurrence should be expected, and all molecules should
be back in the bottle. A few comments are in order. The bottle can be imagined to be arbitrarily small
so that the configuration space neighbourhood of the initial point x0 can be imagined to be very small.
Moreover, given the initial velocities of all the perfume molecules, you can consider a region R0 around
x0 which is indeed arbitrarily small. Two aspects of the theorem should make you confident that no
real violation of irreversibility is practically implied by the recurrence theorem. First, the theorem
guarantees that a suitable x1 ∈ R0 can be found such that Umτ (x1) = x2 ∈ R0: this implies that in
general you have to fine tune the initial condition inside the small region R0 to obtain recurrence.
Second, the effective time mτ for recurrence might be extremely large, indeed even larger than the
age of the universe. Finally, such a rare occurrence would not, in any event, modify the time average
of a physical observable; indeed you might argue that, during the measurement time, the molecules
would return to the “typical” situations predicted by statistical mechanics.
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Figure 3.7: Illustration of the Poincaré recurrence theorem.
Figure adapted from Arovas.

Returning to the concept of mixing, here is an equivalent formulation, mathematically more con-
venient, which proceeds through the “measure” of regions in phase space. Let us denote by

µ(R0) = vol(R0) =

∫
dµ I(R0) ,

the volume of a region R0 in phase space, where I(R0) is the indicator function of R0, and Ω is the full
phase space of finite volume. Recall that Unτ (R0) has the same volume as R0, by Liouville theorem:
µ(Unτ (R0)) = µ(R0). Then mixing requires that for any measurable region B you have:

lim
n→∞

µ(Unτ (R0) ∩B)

µ(B)
=
µ(R0)

µ(Ω)
∀B with µ(B) > 0 . (3.43)

In words, for very long time, the fraction of Unτ (R0) in any region B approaches the absolute volume
fraction of R0 in the full phase space Ω.

To summarise, the various types of behaviour we have discussed can be classified in a hierarchy as
shown in Fig. 3.8.

Figure 3.8: The hierarchy of behaviours for Hamiltonian
systems. Figure taken from Arovas.

3.2. Ensembles in quantum statistical mechanics

In this section, we briefly overview the statistical approach to closed quantum systems. A closed
quantum system is described by a Hamiltonian Ĥ, which is a Hermitian operator [21]. A state of the
system is described by a wave-function |Ψ〉 and the “phase space” 16 is given by the associated Hilbert
space [21]. The dynamics is governed by the Schrödinger equation, which is a linear first-order in time
partial differential equation:

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (3.44)

where |Ψ(t)〉 is the wave-function at time t. We will denote by |Ψ0〉 ≡ |Ψ(0)〉 the initial state.

16Notice the immensely different degree of complexity that quantum mechanics poses. To represent N classical particles
in 3d we need to specify 6N real numbers, hence a number which scales linearly with N . On the contrary, even a
single quantum particle in 1d requires specifying a wave-function, hence an infinite-dimensional space is required.
Even upon truncating the single-particle Hilbert space to a finite number Nstates, the quantum problems associated
with N particles will require dealing with a Hilbert space of dimension (Nstates)N , hence exponentially large in the
number of particles.
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We start with some observations. Given any orthonormal basis set {|α〉} of the Hilbert space, the
initial wave-function |Ψ0〉 can be expressed as

|Ψ0〉 =
∑
α

cα |α〉 , (3.45)

where cα ≡ 〈α|Ψ0〉. An exact description of the initial state requires the knowledge of all the cα’s,
whose number grows as the Hilbert space dimension, i.e., exponentially with the system size. Therefore,
like in classical physics, a statistical approach is essential when you want to deal with macroscopic
systems. The second remark has to do with the linearity of the Schrödinger equation, as opposed
to the generally non-linear Hamiltonian dynamics of classical physics. Due to linearity, if the basis
chosen is given by the eigenstates |α〉 = |φα〉 of the Hamiltonian Ĥ, with eigenvalues Eα, the solution
of Eq. (3.44) is:

|Ψ(t)〉 =
∑
α

cαe−i
Eαt
~ |φα〉 . (3.46)

If we regard this time evolution as a trajectory in “phase space”, quantum dynamics seems far from
being ergodic. Indeed, the square modulus of 〈φα|Ψ(t)〉 = cαe−iEαt/~, proportional to the probability
of getting Eα in a measurement of energy, does not change in time during the evolution:

| 〈φα|Ψ(t)〉|2 = |cα|2 .

As the time advances, only the phase of 〈φα|Ψ(t)〉 “rotates” in the complex plane. Let us denote by

E0 ≡ 〈Ψ0| Ĥ |Ψ0〉 =
∑
α

Eα|cα|2
conserved

=⇒ 〈Ψ(t)| Ĥ |Ψ(t)〉 = E0 , (3.47)

the average energy of the initial state, which is a conserved quantity. We will further assume that
|Ψ0〉 is a reasonable physical state, prepared as an eigenstate of some other many-body Hamiltonian
Ĥ0, in a setting that is often referred to as quantum quench. We will then assume that, while E0 is
extensive E0 ∝ N , the energy spread ∆E0 of the state |Ψ0〉 is sub-extensive, for instance

∆E0 =
√∑

α(Eα − E0)2|cα|2 ∝
√
N . (3.48)

In the Hilbert space, the “hyper-surface” of constant energy E0 is given by all the normalized
states |Φ〉 =

∑
α bα |φα〉 which satisfy the “hyper-ellipsoid” equation E0 = 〈Φ| Ĥ |Φ〉 =

∑
αEα|bα|2.

The states touched by |Ψ(t)〉 during the quantum dynamics are evidently just a small subset of such
“hyper-ellipsoid”, since the |cα|2 are fixed: therefore, whatever is the Hamiltonian and the initial state,
there is a huge set of normalised states |Φ〉 with energy E0 which is neither touched nor close to
the trajectory of |Ψ(t)〉. In summary, the conservation of the quantity | 〈φα|Ψ(t)〉|2 = |cα|2, directly
implied by the linearity of the Schrödinger equation, seems to prevent any kind of ergodicity, at least
in the classical sense: the time evolution of a quantum system does not uniformly sample all vectors
in Hilbert space with given energy. This fact was underlined by von Neumann [22, 23] in his seminal
work on the quantum mechanical counterpart of the ergodic theorem.

A further element that makes the quantum evolution very different, at least superficially, from the
classical one is the fact that the Schrödinger equation is linear, while Hamilton’s equations are in
general non-linear. 17 Non-linearities, typically, bring a chaotic behaviour of trajectories, which tend
17As a disclaimer to the discussion which is about to follow, consider the following paragraph, taken from a Wikipedia

footnote on ETH. “As an intuitive explanation for why quantum chaos must be handled differently from classical chaos,
some authors contrast the linearity of the Schrödinger equation to the non-linear nature of the equations of motion for
classically chaotic systems, emphasizing in particular that the inner product between vectors in Hilbert space is preserved
in contrast to the exponential separation between classical points in phase space. This is misleading, however, as the
Schrödinger equation is equivalent to the von Neumann equation specialized to the case of a pure state, and the von
Neumann equation is directly analogous to the classical Liouville equations — ∂tρ(x, t) = {H, ρ}PB — which is also
linear. In other words, this apparent difference between quantum and classical mechanics is only an artefact of comparing
different representations of the dynamical equations; once classical mechanics and quantum mechanics are put on equal
footing, their dynamical equations are both linear, so that linearity per se cannot be responsible for the different tools
necessary to study quantum versus classical chaos.”
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to depart exponentially fast from each other, even if they start from very close by initial points. On the
contrary, the overlap between two “nearby states” will stay perfectly constant in quantum mechanics,
as you can immediately verify:

〈ψ2(t)|ψ1(t)〉 = 〈ψ2(0)|Û†(t, 0)Û(t, 0)|ψ1(0)〉 = 〈ψ2(0)|ψ1(0)〉 . (3.49)

You might be thinking that there is no hope for “ergodicity” in quantum mechanics, given all these
observations. But this is too fast a conclusion: nature is, after all, quantum.

To better appreciate the crucial role played by non-linearity in the potential entering in the quan-
tum Hamiltonian [24], consider the quantum dynamics of a system governed by the non-relativistic
Hamiltonian:

Ĥ =
p̂2

2m
+ V (x̂) . (3.50)

Quite clearly, you might easily adapt the arguments that follow to a system made of many interacting
particles. Given an arbitrary Hermitean operator Â, the expectation value on the state |ψ(t)〉 =

e−iĤt/~|ψ(0)〉 is
〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|eiĤt/~Âe−iĤt/~|ψ(0)〉 . (3.51)

The expression on the right-hand side defines the Heisenberg representation of the operator Â, as you
know very well:

ÂH(t)
def
= eiĤt/~Âe−iĤt/~ , (3.52)

in terms of which we have:
〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|ÂH(t)|ψ(0)〉 . (3.53)

As you know, one can write a differential equation satisfied by ÂH(t) by simply taking the derivative
with respect to time. It is simple to show that:

i~
d

dt
ÂH(t) = eiĤt/~[Â, Ĥ]e−iĤt/~ = [ÂH(t), Ĥ] , (3.54)

an equation known as Heisenberg equation of motion for the operator ÂH(t). Incidentally, if the
operator Â commutes with Ĥ, then ÂH(t) ≡ Â and, as a consequence:

〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|Â|ψ(0)〉 . (3.55)

Hence, in words, 〈ψ(t)|Â|ψ(t)〉 is a constant of motion.

Let us now use Heisenberg’s equations of motions for x̂ and p̂ to calculate how the average position
and momentum evolve in time. Recall that the operators x̂ and p̂ have canonical commutation
relations and that they verify:

[x̂j , f(p̂)] = i~∇jf(p̂) and [p̂j , V (x̂)] = −i~∇jV (x̂) , (3.56)

provided the functions f(p) and V (x) can be Taylor expanded. Using these results, it takes very little
to show that the Heisenberg’s equations of motions for x̂H(t) and p̂H(t) read as follows:

dx̂j,H
dt

=
p̂j,H
m

dp̂j,H
dt

= −∇jV (x̂H)

. (3.57)

Consider now the expectation values of position and momentum which we briefly denote by 〈x̂〉t
def
=

〈ψ(t)|x̂|ψ(t)〉 and 〈p̂〉t
def
= 〈ψ(t)|p̂|ψ(t)〉. Using Heisenberg’s equations you immediately conclude that:

d

dt
〈x̂〉t =

〈p̂〉t
m

d

dt
〈p̂〉t = −〈ψ(t)|∇V (x̂)|ψ(t)〉

. (3.58)
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Notice that the last equation is non-classical, because in general

〈ψ(t)|∇V (x̂)|ψ(t)〉 6= ∇V (〈x̂〉t) .

And from this equation, you appreciate immediately the role of the non-linearities appearing in V (x).
Indeed, if V (x) is quadratic, then the expectation values of x̂ and p̂ satisfy precisely the classical
equations of motions of a system of harmonic oscillators. However, if non-linear terms appear in V (x),
then ∇V (x̂) involves higher powers of x̂, and you if try to generate their Heisenberg’s equations, you
keep generating other operators, in a never-ending system of coupled differential equations.

3.2.1. Diagonal ensemble and Eigenstate Thermalisation Hypothesis (ETH)

Ergodicity in quantum mechanics is a far from trivial concept, and von Neumann’s work has
stimulated a large body of literature in the last thirty years, aimed at understanding how a statistical
description emerges from a fully coherent (unitary) Schrödinger dynamics. 18 Qualitatively, we might
say that quantum mechanics provides a natural coarse-graining of “phase space”, due to the uncertainty
principle. Any initial wave-function has a finite width in position and momentum; because of “mixing”,
it gets spread all over the energy shell and the asymptotic expectation value of the observables coincides
with the average on the micro-canonical ensemble [25]. To make these considerations more precise,
in analogy with the analysis of classical trajectories in phase space sketched above, let us consider in
more detail the dynamics of states in the Hilbert space and the average of observables. Consider some
operator Â and calculate its average on the time-evolved state |Ψ(t)〉:

〈Â〉t ≡ 〈Ψ(t)|Â|Ψ(t)〉 =
∑
α,α′

e−i(Eα′−Eα)t/~ c∗α cα′ 〈φα|Â|φα′〉︸ ︷︷ ︸
[A]αα′

.

Take now the integral over a large time T, as we did in the classical case:

〈Â〉t ≡ lim
T→∞

1

T

∫ T

0

dt 〈Â〉t = lim
T→∞

1

T

∫ T

0

dt
∑
α,α′

e−i(Eα′−Eα)t/~ c∗α cα′ [A]αα′ . (3.59)

If you assume that the system is finite (so that the spectrum is discrete) and that Ĥ is the only
“constant of motion” (i.e., there are no other “symmetries” in the problem or any other operators that
we might diagonalise simultaneously with Ĥ, getting a “crossing” of eigenvalues), then the eigenvalues
will typically “repel each other” so that the gap between two different states is non-vanishing, i.e,

Eα′ − Eα 6= 0 if α 6= α′ . (3.60)

Assuming such a non-degenerate spectrum, the time-integral reproduces a delta-function: 19

lim
T→∞

1

T

∫ T

0

dt e−i(Eα′−Eα)t/~ = δEα,Eα′ = δα,α′ .

Here, the infinite-time-average of Â becomes:

〈Â〉t =
∑
α

|cα|2[A]αα = Tr
[
ρ̂diagÂ

]
≡ 〈Â〉diag

where
ρ̂diag ≡

∑
α

|cα|2|φα〉〈φα|
. (3.61)

18For this section I am particularly in debt with Angelo Russomanno and Silvia Pappalardi.
19For a many-body system, energy eigenvalues are extensive, i.e., proportional to the number of particles N , while

the number of eigenstates in the spectrum increases exponentially with N : hence, the typical energy splitting δE is
exponentially small in N . Technically, the time T you would need to distinguish two such eigenstates differing by
δE should be fantastically large, larger than the so-called Heisenberg time:

T� THeis ∼
2π~
δE
∼ eN .
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The object we have introduced is a density matrix constructed out of the coefficients |cα|2, and is
usually called the diagonal ensemble density matrix. You can regard it as a time-average of the
original pure-state density matrix ρ̂(t) = |Ψ(t)〉〈Ψ(t)|:

|Ψ(t)〉 〈Ψ(t)| = lim
T→∞

1

T

∫ T

0

dt
∑
α,α′

e−i(Eα′−Eα)t/~ c∗α cα′ |φα′〉〈φα| =
∑
α

|cα|2 |φα〉 〈φα| ≡ ρ̂diag .

(3.62)
So far, there is no hint of ergodicity in the Hilbert space, and the diagonal ensemble cannot be
regarded as a statistical description of our system, as its construction depends explicitly on the very
large number of constants of motion |cα|2 which are determined by the initial state |Ψ0〉.

What we would aim at, is that the result of the average can be equivalently expressed by what we
might call the micro-canonical density matrix

ρ̂µCE(E) =
1

NµCE(E)

∑
α

IµCE(Eα) |φα〉 〈φα| , (3.63)

where IµCE(·) is the indicator function of the micro-canonical energy shell interval 20 [E− ∆E

2 , E+ ∆E

2 ],
and the normalisation, Tr[ρ̂µCE] = 1, requires:

NµCE(E) =
∑
α

IµCE(Eα) = Number of energy eigenvalues in [E − ∆E

2 , E + ∆E

2 ] ≡ Shell(E) . (3.64)

Here, as in the classical case, the Boltzmann’s fundamental hypothesis would be to assume that the
number of states in the micro-canonical shell is essentially the exponential of the thermodynamic
entropy

NµCE(E) =
∑
α

IµCE(Eα) ' eS(E,X)/kB , (3.65)

X being the remaining extensive conserved quantities present in the Hamiltonian (for instance V
and N for a simple fluid). Let us stress here that, in a many-body system, the total number of
eigenstates is exponentially large in N , while the energies are extensive: hence, you can allow yourself
a micro-canonical width ∆E with a rather large freedom, for instance sub-extensive: ∆E ∝ Nα with
1
2 < α < 1.

Such a micro-canonical description is expected to hold for all those initial states |Ψ0〉 whose cα 6= 0

only for Eα ∈ Shell(E0). If you recall that the energy fluctuations ∆E0 are assumed to be sub-
extensive, ∆E0 ∝

√
N , then it is enough to take a shell width ∆E ∝ Nα with α > 1

2 to guarantee that
essentially all energy eigenstates contributing to |Ψ0〉 fall inside the micro-canonical shell Shell(E0), for
large N . But still, the micro-canonical density matrix corresponds to having constant |cα|2 = 1/NµCE

over the whole energy shell Shell(E0), while the cα of the initial state are definitely not constant.

We seem to have reached a paradox: on the one hand, if the observables relax to some steady-state
value, the latter has to be given by the average over the diagonal ensemble in Eq. (3.62); on the other
hand, if there is thermalisation, any detailed information on the initial state must be forgotten, and
such a steady-state value should coincide with the micro-canonical average:

〈Â〉µCE(E0) ≡ Tr
[
Â ρ̂µCE(E0)

]
, (3.66)

associated to the density matrix in Eq. (3.63) for the energy shell Shell(E0).

Borrowing a paragraph from Wikipedia:

In principle it is thus an open question as to whether an isolated quantum mechanical system,
prepared in an arbitrary initial state, will approach a state which resembles thermal equilibrium,

20We take here a more symmetric energy shell, centred at the energy E with width ∆E .
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in which a handful of observables are adequate to make successful predictions about the system.
However, a variety of experiments in cold atomic gases have indeed observed thermal relaxation
in systems which are, to a very good approximation, completely isolated from their environment,
and for a wide class of initial states [26,27]. The task of explaining this experimentally observed
applicability of equilibrium statistical mechanics to isolated quantum systems is the primary goal
of the Eigenstate Thermalisation Hypothesis (ETH). [....] The principal philosophy underlying
the ETH is that instead of explaining the ergodicity of a thermodynamic system through the
mechanism of dynamical chaos, as is done in classical mechanics, one should instead examine
the properties of matrix elements of observable quantities in individual energy eigenstates of
the system.

Figure 3.9.: Test of ETH on the Heisenberg chain model with a staggered field, to break integrability. Notice
decrease of the variance of the various diagonal matrix elements (denoted by ETH) for increasing N . Notice
also the grey shaded low-temperature region, where the low-energy part of the spectrum shows the most
prominent deviations from ETH. Figure taken from Ref. [28].

To solve this apparent paradox, and understand the mechanism behind thermalisation, one has to
look at the properties of the observables and their matrix elements. To make the following discussion
less abstract, let us write down a concrete non-integrable model for which we expect thermalisation
to occur. Take a spin chain composed of N spin-1/2, in a perturbed variant of the so-called XXZ
Heisenberg chain:

Ĥ = J

N−1∑
j=1

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1 + ∆ σ̂zj σ̂

z
j+1

)
︸ ︷︷ ︸

Heisenberg XXZ

+b
∑
j even

σ̂zj . (3.67)

For b = 0 we have a Heisenberg chain model, which is Bethe Ansatz integrable when periodic boundary
conditions (PBC) are used. The phase diagram of this model has three phases as a function of the
anisotropy ∆: a Néel antiferromagnetic phase, for ∆ > 1, a ferromagnetic phase for ∆ < −1, and a
Luttinger liquid phase for −1 < ∆ < 1. For ∆ > 0 the nearest-neighbour correlations between spins
are antiferromagnetic, but a proper antiferromagnetic long-range order (LRO) is possible only in the
Néel phase for ∆ > 1. The role of b is to break integrability.

What has been found is that, in many cases, thermalisation of local observables—both extensive but
also fully local (see below) — occurs at the level of their expectation values on each single eigenstate:
given any energy eigenstate |φα〉 with energy Eα, the matrix element of the observable Â on |φα〉
“equals” the micro-canonical average: 21

21A more general version of ETH can be given for all the matrix elements, in the form:

[A]αα′ ≡ 〈φα| Â |φα′ 〉 ' δα,α′AµCE(Eα) + e−S(Ē)/2kB fÂ(Ē, ω) ξα,α′ , (3.68)

where Ē = (Eα + Eα′ )/2 and ~ω = Eα′ − Eα.
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[A]αα ≡ 〈φα| Â |φα〉 ' AµCE(Eα) + e−S(Eα)/2kBfÂ(Eα) ξα . (3.69)

where AµCE(E) = 〈Â〉µCE(E) is a short-hand notation for micro-canonical average. This assumption
is called Eigenstate Thermalisation Hypothesis (ETH). Here “equals” means “up to an exponentially
small fluctuating term” (notice the entropy factor), where fÂ(E) is a smooth function and ξα a random
number with 0 mean and unit variance. To exemplify the concept of local observable consider, in the
spin-chain example given above, Â = σ̂zj , the spin at a given site j; but also

Â =

region∑
j

(−1)j σ̂zj , (3.70)

the staggered magnetization calculated for all spins in a certain (extensive) region of the system.

ETH implies that, by taking an initial state |Ψ0〉 with overlaps cα restricted to the micro-canonical
energy shell Shell(E0), the time-average of the observable equals its micro-canonical average: 22

〈Â〉t ≡ 〈Ψ(t)| Â |Ψ(t)〉 =
∑
α

|cα|2 [A]αα ' 〈Â〉µCE(E0) . (3.71)

Figure 3.9, taken from Ref. [28], illustrates the validity of ETH for the non-integrable variant of the
Heisenberg spin chain model presented above, with ∆ = 0.5 and b/J = 1. Notice the comparison of the
various diagonal matrix elements (denoted by ETH) with the Gibbs ensemble calculation (rather than
the micro-canonical average) as a function of T , calculated from the derivative of the total entropy
with respect to E.

Moreover, one can give arguments showing that 〈Ψ(t)| Â |Ψ(t)〉 will stay “for most of the time”
close to the micro-canonical average, with small time-fluctuations whose importance vanishes in the
thermodynamic limit. 23

22The algebra is simple. Neglecting the exponentiallly small entropy-related correction, we need to consider AµCE(Eα)

which can be Taylor expanded up to second-order around E0 = Nε0 as follows:

AµCE(Eα) = AµCE(E0) +
(Eα − E0)

N
A′µCE(ε0) +

(Eα − E0)2

2N2
A′′µCE(ε0) + · · ·

The first-order correction vanishes by definition, while the second-order term is proportional to ∆E2
0/N

2, and hence
gives O(1/N) corrections by the assumed sub-extensivity of ∆E0.

23Time fluctuations of the expectation around the thermal average originate from the off-diagonal terms [A]αα′

(δAtime)2 =
[
〈Ψ(t)| Â− 〈Â〉t |Ψ(t)〉2

]
=
∑
α6=α′

|cα|2 |[A]αα′ |2 |cα′ |2 . (3.72)

If we assume that the off-diagonal matrix elements [A]αα′ fluctuate little with α and α′ around their typical value
[A]typ

αα′ , we can use the ETH to show that they are very small. This can be easily done by considering, for each
eigenstate |φα〉, the expectation value of the quantum fluctuation operator (Â− [A]αα)2. Such expectation, because
of ETH, has to be equal to its micro-canonical value; it can be argued to be of order 1 if Â is a local operator [29]
or, at most, order N if Â is an extensive operator, the sum of local operators. Hence, at worst we find

N ∼ 〈φα| (Â− [A]αα)2 |φα〉 =

6=α∑
α′
|[A]αα′ |2 ' eS(E)/kB

∣∣∣[A]typ
αα′

∣∣∣2 (3.73)

where S(E) = kB logNµCE(E) is the entropy on the energy shell, which is extensive in N . Therefore, substituting
|[A]typ

αα′ |
2 ∼ Ne−S(E)/kB in place of |[A]αα′ |2 in Eq. (3.72), we can estimate the time fluctuations of Â as

(δAtime)2 ∼ Ne−S(E)/kB .

In many-body systems, since the entropy is extensive, this quantity is exponentially small in N . Therefore, ETH
implies the relaxation of the expectations of the observables to the thermal average.

Time fluctuations should not be confused with quantum fluctuations which, for each t, give an uncertainty

δA2
t = 〈Ψ(t)|(Â− 〈Â〉t)2|Ψ(t)〉 .
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3.3. From the micro-canonical to the canonical ensemble

Summarising what we discussed in the previous sections, for a closed quantum system obeying the
ETH we can calculate averages of observables through the micro-canonical ensemble. The prescriptions
are the following:

Quantum µCE



〈Â〉µCE ≡ Tr
[
Â ρ̂µCE

]
ρ̂µCE =

1

NµCE

∑
α

IµCE(Eα) |φα〉 〈φα|

NµCE(E) =
∑
α

IµCE(Eα)
Boltzmann' eS(E,X)/kB

. (3.74)

An essentially identical prescription holds in the classical ergodic case, where the difference is
essentially only in the way we calculate the number of states:

Classical µCE



〈A〉µCE ≡
∫

dµ A(x) ρµCE(x)

ρµCE(x) =
1

NµCE

IµCE(H(x))

NµCE(E) =

∫
dµ IµCE(H(x))

Boltzmann' eS(E,X)/kB

. (3.75)

The whole of thermodynamics follows from the knowledge of S(E,X). But the calculation of the
available number of states in the micro-canonical energy shell is non-trivial for all except a few highly
idealised situations.

As discussed in the introductory lectures, a Laplace transform, alias switching to the canonical
ensemble, where the temperature T is the control parameter and F (T,X) is the fundamental quan-
tity, would simplify the calculations enormously. The entropy S(E,X) and the Helmholtz free-energy
F (T,X) contain the same information, and, provided the system under consideration is thermodynam-
ically large and forces are short ranged, one can use the micro-canonical ensemble or the canonical one,
and it should make no difference: this concept is usually called equivalence of the ensembles, and you
can find rigorous approaches where these matters are clarified (see for instance the books by Ruelle
or Gallavotti).

Here I want to show that there is a different route by which the canonical ensemble can be “derived”
(under the appropriate hypothesis of infinitesimally small coupling to a large bath), a route that does
not require that the system under consideration is thermodynamically large: you can do statistical
mechanics of a small system (a single spin, or a single atom), as long as this system is in contact with
a bath which is thermodynamically large.

Let us see how to “derive” the quantum canonical ensemble starting from ρ̂µCE, by using the device
of regarding the system we are interested in as a subsystem of a much larger system S∪B with Hilbert
space HS ⊗HB , comprising the system (S, with Hilbert space HS) and a large reservoir “bath” (B,
with Hilbert space HB).

What we have still to verify is that fluctuations around the micro-canonical average coincide with thermal fluctua-
tions. General statistical mechanics arguments predict fluctuations scaling like 1/

√
N with respect to the thermal

average. The exponentially small time-fluctuations are indeed not enough: we need to consider also the contribution
of quantum fluctuations 〈Ψ(t)|(Â−〈Â〉t)2|Ψ(t)〉 which, analytically in the general semiclassical chaotic case [30] and
through numerical experiments on an ergodic hard-core bosons model [26], have been shown to behave as expected.
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Infinitesimal coupling assumption. We will assume that the Hamiltonian of the combined
system is:

Ĥ = ĤS + ĤB + εĤSB , (3.76)

where ĤS/B is the Hamiltonian of the System/Bath, while ĤSB is the System-Bath interaction,
which we assume to be present — to allow energy exchange between S and B— but infinitesimally
small. The factor ε in Eq. (3.76) reminds us of that assumption. Due to this assumption, the
energy eigenstates of Ĥ are given by products of eigenstates |φα〉 of ĤS , with energy Eα, and
eigenstates |Φb〉 of ĤB , with energy Eb. I will denote them by |φα,Φb〉 = |φα〉 ⊗ |Φb〉, with a
corresponding energy is Etot

α,b = Eα + Eb.

i

Consider now an operator ÂS which acts only on the system Hilbert space HS , and calculate the
full micro-canonical average according to the prescriptions given above:

〈ÂS〉µCE = TrS∪B

[
ÂS ρ̂µCE

]
= TrS

[
ÂS TrB ρ̂µCE︸ ︷︷ ︸

ρ̂S

]
= TrS

[
ÂS ρ̂S

]
,

where:
ρ̂µCE =

1

NµCE

∑
α,b

IµCE(Eα + Eb) |φα,Φb〉 〈φα,Φb| . (3.77)

Our goal is to show that, if the bath B is a very large system, then the reduced density matrix ρ̂S
acting on the system, S is the canonical Gibbs ensemble density matrix

ρ̂S = ρ̂CE =
e−βĤS

TrS e−βĤS
with β =

1

kBT
=

1

kB

∂SB
∂E

, (3.78)

where T is the temperature set by the bath through the usual thermodynamic relationship in terms
of the entropy of the bath SB(E,X).

To show this, let us start observing that

ρ̂S = TrB ρ̂µCE =
∑
b′

〈Φb′ |
∑
α,b

IµCE(Eα + Eb)

NµCE(E)
|φα,Φb〉 〈φα,Φb| |Φb′〉

=
∑
α,b

IµCE(Eα + Eb)

NµCE(E)
|φα〉 〈φα|

=
∑
α

NB
µCE(E − Eα)

NµCE(E)
|φα〉 〈φα| =

∑
α

Pα |φα〉 〈φα| . (3.79)

In this derivation, I have used the fact that:∑
b

IµCE(Eα + Eb) = NB
µCE(E − Eα) ,

in terms of the number of bath states in the micro-canonical shell at E − Eα. Moreover, we can
re-express the full NµCE(E) as a convolution, as follows:

NµCE(E) =
∑
α,b

IµCE(Eα + Eb) =
∑
α

NB
µCE(E − Eα)

=

∫ ∞
0

dEs
∑
α,b

δ(Es − Eα) IµCE(Es + Eb)

=

∫ ∞
0

dEs
∑
α

δ(Es − Eα)︸ ︷︷ ︸
ΩS(Es)

∑
b

IµCE(Es + Eb)︸ ︷︷ ︸
NBµCE(E−Es)

=

∫ ∞
0

dEs ΩS(Es)N
B
µCE(E − Es) , (3.80)
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where I have introduced the many-body density of states for the system eigenvalues: 24

ΩS(Es) =
∑
α

δ(Es − Eα) . (3.81)

Observe that the weights Pα appearing in the mixed state ρ̂S are correctly normalised:

∑
α

Pα =
∑
α

NB
µCE(E − Eα)

NµCE(E)
= 1 . (3.82)

So far, no approximation was made.

Now the crucial assumption is made that the bath is large, hence NB
µCE(E − Es) ' eSB(E−Es)/kB

is exponentially large, and the integral appearing in Eq. (3.80) will be dominated by the maximum
of the integrand elog ΩS(Es)+SB(E−Es)/kB — recall the Laplace method discussed in the introductory
lectures —, which occurs at an energy E∗ such that:

∂

∂Es
log ΩS(Es)

∣∣∣∣
E∗

=
1

kB

∂

∂E
SB(E − E∗) . (3.83)

The energy E∗ represents the average “energy share” that the system gets from the contact with the
large bath, as we have seen in thermodynamics, when discussing equilibrium in presence of a thermal
conduction wall. This exponential dominance implies that the bath entropy can be safely expanded
close to Es = E∗ and the expansion can be stopped at the linear order into the deviation Es − E∗:

SB(E − Es) = SB(E − E∗) +
1

T
(E∗ − Es) + · · · (3.84)

because |E∗−Es| — which will span in the end the spectrum of the system S — is very small on the
scale of the energies of the bath (and of the total energy E). Hence, we can re-express, with the usual
shorthand β = 1/(kBT ):

NB
µCE(E − Es) ' eSB(E−Es)/kB ≈ eSB(E−E∗)/kBeβ(E∗−Es) .

Using this approximation we can easily see that:

NµCE(E) ≈
∫ ∞

0

dEs ΩS(Es) eSB(E−E∗)/kBeβ(E∗−Es) =

∫ ∞
0

dEs ΩS(Es) e−βEs︸ ︷︷ ︸
ZS(β)

eSB(E−E∗)/kBeβE∗

= ZS(β) eSB(E−E∗)/kBeβE∗ . (3.85)

Hence the weights Pα appearing in Eq. (3.79) for ρ̂S are simply given by: 25

Pα =
NB
µCE(E − Eα)

NµCE(E)
≈ e−βEα

ZS(β)
,

where
ZS(β) =

∫ ∞
0

dEs ΩS(Es) e−βEs =
∑
α

e−βEα = TrS e−βĤS , (3.86)

is the canonical partition function.

Summarising, the quantum canonical ensemble is defined, given the Hamiltonian Ĥ of the system
(we omit here the subscript S) as follows:

24In any finite quantum system with a discrete spectrum, this quantity would be a sum of very many (indeed exponen-
tially many) Dirac’s delta in any finite energy interval. It is simple to define an appropriate average of it in each
finite energy interval ∆E , which involves the (micro-canonical) entropy.

25Notice that the average reference energy E∗ and the bath entropy SB(E − E∗) both cancel from the final result!
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Quantum CE



〈Â〉CE(T,X) ≡ Tr
[
Â ρ̂CE

]
ρ̂CE =

1

ZCE

∑
α

e−βEα |φα〉 〈φα| =
e−βĤ

ZCE

ZCE =
∑
α

e−βEα = Tr e−βĤ
Thermodynamics≡ e−βF (T,X)

. (3.87)

To verify that indeed thermodynamics requires that ZCE = e−βF , let us consider the average energy
E(T,X) = 〈Ĥ〉CE, where X denotes as usual the extensive variables, such as (N,V, · · · ), which are
held fixed. On one hand, the canonical ensemble prescription gives:

E = 〈Ĥ〉CE =
∑
α

Eα
e−βEα

ZCE

= − ∂

∂β
logZCE . (3.88)

On the other hand, thermodynamics requires that

E = F + TS = F − T ∂F
∂T

= F + β
∂F

∂β
=

∂

∂β
(βF ) . (3.89)

This shows 26 that indeed logZCE = −βF is the correct thermodynamical identification.

The previous derivation can be repeated almost precisely in the classical case, where the prescrip-
tions for the canonical ensemble read:

Classical CE



〈A〉CE(T,X) ≡
∫

dµ A(x) ρCE(x)

ρCE(x) =
e−βH(x)

ZCE

ZCE =

∫
dµ e−βH(x) Thermodynamics≡ e−βF (T,X)

. (3.90)

It is simple 27 to show that the entropy in the canonical ensemble can be given an explicit expression
in terms of ρ̂CE as follows:

S(T,X) = −kB〈log ρ̂CE〉CE ≡ −kB Tr [ρ̂CE log ρ̂CE] = −kB
∑
α

Pα logPα , (3.91)

where Pα = e−βEα/ZCE is the Gibbs canonical probability of each single eigenstate of Ĥ. This shows a
clear relationship between the thermodynamical entropy and the Shannon (or von Neumann) entropy.

The previous considerations should remind you of our discussion about Shannon entropy in the
introductory lectures. 28 If we take

S[{Pα}] = −kB
∑
α

Pα logPα , (3.92)

26A student was observing that this only fixes the two quantities, up to a temperature-independent function of the
extensive variables X.

27Use that

ρ̂CE =
e−βĤ

ZCE

=⇒ log ρ̂CE = −βĤ − logZCE ,

which immediately gives the correct thermodynamic relation F = E − TS using 〈Ĥ〉CE = E and logZCE = −βF .
28Recall that there we denoted the Shannon entropy as

H[{Pα}] = −
∑
α

Pα log2 Pα = −kS
∑
α

Pα logPα with kS =
1

log 2
.
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to be the expression for the Gibbs-Shannon entropy of the “probability distribution” Pα, then max-
imising it in the presence of the normalisation constraint

∑
α Pα = 1 leads immediately to the micro-

canonical distribution:

µCE



Pα =
IµCE(Eα)

NµCE

NµCE(E) =
∑
α

IµCE(Eα)

S(E,X) = kB logNµCE(E) .

. (3.93)

In the canonical ensemble, the Gibbs-Shannon entropy distribution is maximised with the additional
constraint that the average energy is fixed to be:

E =
∑
α

Eα Pα . (3.94)

A simple calculation with the help of the Lagrange multiplier technique 29 show that the corresponding
maximum for the total entropy now gives the canonical ensemble distribution:

CE



Pα =
e−βEα

ZCE

ZCE =
∑
α

e−βEα

S(T,X) = −kB
∑
α

Pα logPα .

. (3.97)

3.4. Probability distributions of observables in the canonical
ensemble

The fact that you can calculate the expected values, and even the probability distributions, of
observables that are beyond the realm of thermodynamics is one of the great advantages of the
statistical approach.

29We introduce two Lagrange multipliers, λ and β, and calculate the maximum of

S[{Pα}, λ, β] = S[{Pα}]/kB − λ
(∑

α

Pα − 1

)
− β

(∑
α

PαEα − E
)
.

The derivatives with respect to the multipliers, when set to 0, impose the constraints, as usual. The derivative with
respect to Pα leads to:

− logPα − 1 = λ+ βEα =⇒ Pα =
e−βEα

e1+λ
.

Normalisation requires that

e1+λ =
∑
α

e−βEα def
= Z(β) . (3.95)

Finally, a simple calculation shows that the constraint on E simply reads:

E =
∑
α

PαEα =
1

Z

∑
α

Eαe−βEα = −
1

Z

∂Z

∂β
= −

∂ logZ

∂β
. (3.96)
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Beware of misunderstanding the Boltzmann weights. One common misunderstanding is
to believe that Pα = e−βEα/ZCE represents the probability of observing an energy Es ≈ Eα, while
the correct interpretation is that Pα is the probability of observing the single eigenstate |φα〉 of
energy Eα. In the classical framework, this would be similar to thinking that the probability
of energy Es is e−βEs/ZCE, while you know that the latter is simply the probability density
ρCE(x) = e−βH(x)/ZCE in phase space, and a huge volume of phase space, which we should account
for, shares the “same microcanonical” energy Es = H(x). In the Bernoulli trials with random
strings of bits discussed in the introductory lectures, it would be similar to misunderstanding the
probability of a single string, with the probability of strings having a certain number of 0s and
1s, which include large combinatorial — entropy related — factors.

!

Classically, you would indeed say that:

ProbH(Es) =

∫
dµ δ(H(x)− Es) ρCE(x) =

∫
dµ δ(H(x)− Es)

e−βH(x)

ZCE

=

∫
dµ δ(H(x)− Es)

e−βEs

ZCE

= Ω(Es)
e−βEs

ZCE

∝ e−β(Es−TS(Es,X))

ZCE

, (3.98)

where Ω(Es) is the micro-canonical phase space density, which is connected to the micro-canonical
entropy. We will return to this point further below.

Notation. Observe that Es in the expression ProbH(Es) should be intended as the variable
for the probability distribution, rather than the thermodynamical internal energy E(T,X) which
represents the average of the distribution:

E(T,X) =

∫ +∞

−∞
dEs Es ProbH(Es) . (3.99)

!

A similar reasoning would apply to any classical observable A(x) — for instance, the kinetic energy
K(p) or the potential/interaction energy V (q) — which has a probability distribution:

ProbA(a) =

∫
dµ δ(A(x)− a) ρCE(x) =

∫
dµ δ(A(x)− a)

e−βH(x)

ZCE

, (3.100)

where, as you see, the quantity cannot be expressed simply in terms of the micro-canonical entropy.

Nevertheless, because momenta and positions are decoupled in H(x) = K(p) + V (q), and that
the kinetic energy is quadratic in the different momenta, it is relatively straightforward to calculate
probability distributions involving only the velocity: you just have to perform Gaussian integrals. The
well-known Maxwell distribution for the classical velocity comes from a similar calculation. A similar
calculation for the probability distribution of the total kinetic energy K(p) will show that the average
kinetic energy is exactly given by:

〈K〉CE = N
d

2
kBT , (3.101)

with a Gaussian probability distribution around the average which satisfies precisely the law of large
numbers. Both are exact results at the classical level, independent of all interactions, 30 as you will
learn from one of the problems proposed at the end of this Chapter. 31 The practical utility of the
result on the average kinetic energy is quite relevant: in an NV E molecular dynamics simulation, you
will be able to “measure” temperature by the average kinetic of your particles, as sketched in Fig. 3.10

30The miracle is restricted to classical statistical mechanics. In the quantum case momenta and coordinates do not
commute and the probability distributions of the momenta depend in general on the interactions.

31In school you often hear about these results in the context of ideal gases: they are much more general than that.
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Figure 3.10: A sketch of the be-
haviour versus simulation time of a
the kinetic energy of a classical system
obeying Newton’s equations, in the
so-called NV E ensemble, where these
variables are fixed. Kinetic energy
fluctuates around an average given by
3NkBT/2, while the total energy E

is (in principle, at least) exactly con-
served.

As you see, the probability distributions involve a nasty Dirac’s delta, which might be painful to
handle. One common trick is to consider the Fourier transform of the probability distribution:

gA(k) =

∫
da e−ika ProbA(a) =

∫
dµ e−ikA(x) e−βH(x)

ZCE

, (3.102)

which might be easier to handle. Notice that gA(k) generates all the moments of the distribution
ProbA(y) by taking derivatives:

dn

dkn
gA(k)

∣∣∣∣
k=0

= (−i)n
∫

dµ An(x)
e−βH(x)

ZCE

= (−i)n〈An〉CE . (3.103)

For this reason gA(y) is known as moment generating function.

Quantum observables. Let us now turn to the quantum case. If we have an observable repre-
sented by a Hermitian operator Â, von Neumann tells us that each individual measurement will give
one of the possible eigenvalues a of Â. By writing the spectral representation of Â as:

Â =
∑
a

a Π̂A
a , (3.104)

where Π̂a is the projector 32 on the (possibly degenerate) subspace of eigenvectors associated to a,
then you know that for a pure state |ψ〉, the probability of measuring the eigenvalue a is, according
to von Neumann:

〈ψ|Π̂A
a |ψ〉 =

da∑
j=1

|〈φa,j |ψ〉|2 = Tr
(

Π̂A
a |ψ〉〈ψ|

)
. (3.106)

Hence, by linearity, for a state prepared according to the density matrix ρ̂CE you would predict that
the probability of measuring the single eivenvalue a is

Pa = 〈Π̂A
a 〉CE = Tr

(
Π̂A
a ρ̂CE

)
=
∑
α

〈φα|Π̂A
a |φα〉

e−βEα

ZCE

. (3.107)

32If |φa,j〉 are eigenstates of Â associated to eigenvalue a, with a possible degeneracy j = 1 · · · da, then

Π̂Aa =

da∑
j=1

|φa,j〉〈φa,j | . (3.105)
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Distribution and average of a quantum observable. This tells us that

ProbÂ(x) =
∑
a

δ(a− x)Pa =
∑
a

δ(a− x) Tr
(

Π̂A
a ρ̂CE

)
, (3.108)

and, correspondingly

〈Â〉CE =

∫
dxxProbÂ(x) =

∑
a

aPa = Tr
(
Â ρ̂CE

)
. (3.109)

i

In the particular case in which you consider the total energy, Â = Ĥ, since Pα = Tr
(

Π̂Eα ρ̂CE

)
is

precisely the probability of observing the eigenstate with energy Eα — which we assume here to be
non-degenerate — we deduce that:

ProbĤ(Es) =
∑
α

δ(Eα − Es)Pα =
∑
α

δ(Eα − Es)︸ ︷︷ ︸
def
= Ω(Es)

e−βEs

ZCE

= Ω(Es)
e−βEs

ZCE

. (3.110)

As you see ProbĤ(Es) differs from e−βEs/ZCE by the (exponentially) large factor ΩS(Es), which is
indeed related to the entropy. More about this in the next section.

3.4.1. Fluctuations of energy in the canonical ensemble

As we have seen, energy is not fixed in the canonical ensemble. The average energy E(T,X) can be
directly calculated from the canonical partition function:

E(T,X) = 〈Ĥ〉CE =

∑
αEαe

−βEα

ZCE

= −∂ logZCE

∂β
. (3.111)

We can go beyond that, and calculate the second cumulant by taking a further derivative of logZCE:

∂2 logZCE

∂β2
=

∂

∂β

∑
α(−Eαe−βEα)

ZCE

=

∑
αE

2
αe−βEαZCE − ∂ZCE

∂β

∑
α(−Eαe−βEα)

Z2
CE

=

∑
αE

2
αe−βEα

ZCE

−
∑
α(−Eαe−βEα)

ZCE

∑
α(−Eαe−βEα)

ZCE

= 〈Ĥ2〉CE − 〈Ĥ〉2CE = 〈(Ĥ − 〈Ĥ〉CE)2〉CE ≥ 0 .

The variance is the specific heat. This immediately shows that the variance of the energy
distribution is related to the specific heat at constant (V,X): a

σ2
E = 〈Ĥ2〉CE − 〈Ĥ〉2CE = −∂E

∂β
= kBT

2 ∂E

∂T
= kBT

2Cv . (3.112)

aRecall that Cv ≥ 0 was a requirement for thermodynamics stability. Here we see that, as a consistent check, its
positivity emerges from the statistical relationship with the variance of the energy probability distribution.

i

The relationship ∂E
∂T = Cv — perhaps very intuitive from your basic notions of thermodynamics —
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can be formally derived 33 from the definition

Cv(T, V,X) = T
∂S

∂T

∣∣∣∣
V,X

=
∂E

∂T

∣∣∣∣
V,X

, (3.113)

by using F = E − TS, S = −∂F∂T . Notice that, since Cv and E are both extensive, Cv ∝ N , this
implies that the relative fluctuations of the energy decrease as 1/

√
N in the thermodynamic limit,

unless the specific heat diverges (which can happen at second-order phase transition points):

σE
E
∝ 1√

N
.

I remind you that 1/
√
N implies an amazing relative accuracy if N is of the order of the Avogadro

number ∼ 1024: you measure energy to the fantastic accuracy of one part in 10−12. We observe that
the fact that the specific heat is proportional to the variance of the energy provides a practical way
of calculating Cv from simulations, for instance by Monte Carlo.

But we can go even beyond that and argue that, in the thermodynamic limit, the full probability
distribution of the energy goes — in a way entirely reminiscent of the law of large numbers — towards
a Gaussian distribution centred at the average thermodynamic energy E(T,X) and of width σE , as
given above in terms of the specific heat Cv. To see this, I start from the basic definition for the
distribution of energy in Eq. (3.110), using the notation Es for the variable of the distribution to
distinguish it clearly from the thermodynamical energy:

ProbĤ(Es) =
∑
α

δ(Es − Eα)Pα = Ω(Es)
e−βEs

ZCE

∝ e−β(Es−TS(Es))

ZCE

, (3.114)

where I used the fact that the many-body density of states Ω(Es), according to the Boltzmann
hypothesis, is proportional to the micro-canonical entropy S(Es,X), i.e., Ω(Es) ∝ eS(Es)/kB . The
maximum of ProbĤ(Es) is readily calculated by setting the derivative of Es − TS(Es) to zero: 34

0 =
∂

∂Es
(Es − TS(Es,X)) =⇒ 1

T
=

∂S

∂Es

∣∣∣∣
Es=E(T,X)

.

Hence the maximum of ProbĤ(Es) is indeed at Es = E(T,X). Let us define δE = Es−E(T,X) to be
the deviation of Es from the average. Expanding the distribution close to the maximum we get the
Gaussian form: 35

ProbĤ(Es) '
1√

2πkBT 2Cv
e−

(Es−E)2

2kBT
2Cv . (3.115)

33Indeed:
∂E

∂T
=
∂F

∂T
+
∂(TS)

∂T
= −S + S + T

∂S

∂T
= T

∂S

∂T
.

34Note that the maximum is precisely located at the reference energy E∗ we have discussed in Eq. (3.83).
35Notice that the expansion of the entropy S(E + δE) gives:

S(E + δE) = S(E) +
1

T
(δE) +

1

2

∂2S

∂E2
(δE)2 + · · ·

Next, you can show that
∂2S

∂E2
=

∂

∂E

(
1

T

)
= −

1

T 2

1
∂E
∂T

= −
1

T 2

1

Cv
.

Imposing normalisation, or equivalently by setting P (Es) = e−β(Es−TS(Es))

ZCE
with the partition function given by

ZCE =

∫
dEs e−β(Es−TS(Es)) ,

and calculating the latter integral including the gaussian fluctuations, you end up with the expression in Eq. (3.115).
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3.5. Revisiting thermodynamics: entropy, heat and work

If we are given the Hamiltonian Ĥ of a system, the canonical ensemble average energy is simply
E = 〈Ĥ〉CE. Thermodynamics tells us that this should be intended as a function of T and of a set of
extensive variables X which directly appear in the Hamiltonian Ĥ(X) as “parameters” 36, for instance
the volume V or the particle number N . As a consequence, the eigenvalues of Ĥ, as well as the Gibbs
occupations factors Pα = e−βEα/ZCE, have to be intended to depend of X: Eα(X), Pα(T,X), with the
further constraint that ∑

α

Pα(T,X) = 1 . (3.116)

The same comments would apply to the classical canonical ensemble, but the calculations are a bit
easier in the quantum case, where we can express averages in terms of sums over eigenstates rather
than integrals in phase space. So, let us use quantum formalism.

Since E(T,X) =
∑
αEαPα you immediately conclude that its differential should be given by:

dE =
∑
α

Eα dPα︸ ︷︷ ︸
d−Q=TdS

+
∑
α

Pα dEα︸ ︷︷ ︸
d−W

= d−Q + d−W . (3.117)

We want to give now meaning to the two terms which is the one suggested in the brace below the
two parts, i.e., heat and work, as sketched in Fig. 3.11. Before doing that, be aware of the fact that

Figure 3.11: The (microscopic) sta-
tistical interpretation of Heat and
Work. In the text, En, Pn are de-
noted as Eα, Pα. Figure taken from
Arovas [1].

the natural variables for E would be E(S,X), while (T,X) are the natural variables for the Helmholtz
free-energy F (T,X) = E − TS. Hence, we should be careful in the interpretation of the work-related
part, see discussion below.

To show this, let us start from the canonical entropy. As we saw above, we can write:

S(T,X) = −kB
∑
α

Pα logPα

⇓

dS = −kB
∑
α

[
(logPα) dPα +

Pα
Pα

dPα

]
= −kB

∑
α

(logPα) dPα

= −kB
∑
α

(−βEα − logZCE) dPα =
1

T

∑
α

EαdPα .

(3.118)

36Or, in some cases, operators, which would complicate our description a bit. For a magnetic system, you would have
the total magnetisation operator appearing in Ĥ, coupled to the (intensive) magnetic field.
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where we have used (twice) the fact that
∑
α dPα = 0 since the probability is normalized. Hence, we

see that the first term in dE is indeed TdS, the infinitesimal heat transfer: it is related to a change
in the populations Pα of the eigenstates.

Now we turn to the second (work-related) term:∑
α

Pα dEα =
∑
α

Pα
∑
i

∂Eα
∂Xi

dXi =
∑
α

Pα
∑
i

〈φα|
∂Ĥ

∂Xi
|φα〉dXi =

∑
i

〈
∂Ĥ

∂Xi

〉
CE︸ ︷︷ ︸

fi(T,X)

dXi ,

where we have invoked Hellmann-Feynman theorem and defined the generalised canonical-ensemble
forces:

fi(T,X) =

〈
∂Ĥ

∂Xi

〉
CE

6= ∂E(T,X)

∂Xi
. (3.119)

Observe that, quantum mechanically, we would need to calculate here the average of the force operator,
and not the derivative of the average E(T,X). You might think that this is due to quantum mechanics.
Not at all: 37 this is just thermodynamics of Legendre transforms! What we have derived is an
expression for dE in the “wrong variables” (T,X):

dE = TdS +
r∑
i=1

fi(T,X) dXi where fi(T,X) 6= ∂E(T,X)

∂Xi

∣∣∣∣
T

,

where we remarked that the iso-thermal (intensive) forces fi(T,X) are not given by the corresponding
derivatives of E(T,X). On the contrary, if we were using the “right variables” (S,X) we would write
the differential of E as:

dE = TdS +
∑
i

fi(S,X) dXi with fi(S,X) =
∂E(S,X)

∂Xi

∣∣∣∣
S

. (3.121)

The reason why fi(T,X) are not derivatives of E(T,X) is that in our derivation we performed iso-
entropic derivatives since we kept the weight Pα and hence the canonical distribution fixed and calcu-
lated the average of the derivative of the Hamiltonian. We show below that the relevant derivatives
are ultimately given by the derivatives of the free-energy: 38

fi(T,X) =

〈
∂Ĥ

∂Xi

〉
CE

=
∂F (T,X)

∂Xi
. (3.123)

Indeed, we can verify 39 that the fi(T,X) which appeared in our previous derivation are simply a
“swift way” of writing the iso-entropic forces in the canonical variables (T,X):

fi(T,X) = fi(S(T,X),X) =
∂F (T,X)

∂Xi
. (3.125)

37Classically, you would write the same expression as:

fi(T,X) =

〈
∂H

∂Xi

〉
CE

6=
∂E(T,X)

∂Xi
. (3.120)

38Obviously, the differential of the free-energy would directly involve the fi(T,X):

dF = −SdT +
∑
i

fi(T,X) dXi . (3.122)

39To verify these statements, reconsider the derivatives ∂XiE(T,X). From thermodynamics, we know that E(T,X) =

E(S(T,X),X), hence:
∂E(T,X)

∂Xi
=
∂E(S(T,X),X)

∂Xi

∣∣∣∣
S

+ T
∂S(T,X)

∂Xi
,

where the first derivative is intended at fixed S (iso-entropic derivative) and we have used the fact that T = ∂E
∂S

. On
the other hand, from the canonical ensemble, we have, as outlined above, E(T,X) =

∑
α EαPα hence the derivative

has indeed two terms:
∂E(T,X)

∂Xi
=
∑
α

∂Eα

∂Xi
Pα︸ ︷︷ ︸

fi(T,X)

+
∑
α

Eα
∂Pα

∂Xi
.
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Notice also that you might be a bit suspicious in attributing a meaning to the number derivative
operator ∂Ĥ

∂N , while no difficulty is encountered if you interpret this force (the chemical potential)
through thermodynamics:

µ(T,X, N) =

〈
∂Ĥ

∂N

〉
CE

≡ ∂E(S(T,X, N),X, N)

∂N

∣∣∣∣
S

=
∂F (T,X, N)

∂N
. (3.126)

3.6. Problems

Problem 3.1. Consider a classical system subject to the Hamiltonian

H(x) = K(p) + V (q) =

N∑
j=1

p2
j

2m
+ V (q) ,

where V (q) is an arbitrary one-body and two-body potential depending on the coordinates q of all
particles. Assume that the system is in d dimensions, for instance with d = 1, 2, 3.

a) Calculate the probability distribution of the momentum pj and of the velocity modulus |vj | by a
direct integration of the Dirac’s delta.

b) Repeat the previous calculations by using the corresponding moment generating function and
performing the Gaussian integrals.

c) Calculate the probability distribution of the total kinetic energy K(p) by using the moment gen-
erating function. What happens for N →∞?

Problem 3.2. Consider a single free quantum particle in a cubic box of volume V = Ld in d dimen-
sions. Calculate the canonical probability distribution at temperature T for the momentum p̂ and the
kinetic energy.

From the canonical entropy S(T,X) = −kB
∑
α Pα logPα we immediately see (repeating some of the previous steps)

that the second term above is precisely the entropic contribution to the force:

T
∂S(T,X)

∂Xi
= −kBT

∑
α

∂Pα

∂Xi
logPα ≡

∑
α

Eα
∂Pα

∂Xi
.

Hence we conclude that the generalised canonical-ensemble force is indeed the correct iso-entropic force rewritten in
the canonical variables:

fi(T,X) =

〈
∂Ĥ

∂Xi

〉
CE

≡
∂E(S(T,X),X)

∂Xi

∣∣∣∣
S

=
∂F (T,X)

∂Xi
, (3.124)

where we have used the fact that the iso-entropic derivative of E is just the derivative of the Helmholtz free-energy
(recall the Legendre transform of derivatives).
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4. Simple applications of Statistical
Mechanics

We will consider here simple applications of the SM techniques to exactly solvable models. In
classical physics, we have particles or waves. In quantum physics, particles have a statistics, they
are fermions or bosons; waves, in turn, lead usually to a bosonic description. There is a difference,
however, between ordinary bosonic particles like, e.g., He4 or Rb87, and the bosons appearing from
the quantisation of waves (like photons, phonons, etc.): essentially the latter do not have a conserved
particle number, which means that you do not have a chemical potential, i.e., you can always put
µ = 0. We begin with them, before discussing quantum ideal gases of fermions and bosons.

4.1. The quantum harmonic oscillator

Consider a quantum particle in a harmonic potential in one dimension:

Ĥ =
P̂ 2

2M
+

1

2
Mω2X̂2 . (4.1)

You probably know very well how to find the spectrum and the eigenstates of this problem from
standard quantum mechanics courses. I give here a brief recap of the algebraic solution. To start
with, we switch to dimensionless variables by defining a unit of length l, the so-called oscillator length,
such that:

~2

2Ml2
=

1

2
Mω2l2 =⇒ l =

√
~
Mω

.

Using dimensionless length x̂ = X̂/l and momentum p̂ = P̂ l/~, with commutator [x̂, p̂] = i (i.e.,
effectively as if ~ = 1), we rewrite the Hamiltonian as: 1

Ĥ =
~ω
2

(
p̂2 + x̂2

)
. (4.2)

Define now the pair of Hermitian conjugate operators: 2
â = 1√

2
(x̂+ ip̂)

â† = 1√
2

(x̂− ip̂)
=⇒


x̂ = 1√

2

(
â+ â†

)
p̂ = 1√

2i

(
â− â†

) . (4.4)

The commutator of â and â† is immediately calculated, [â, â†] = 1, and the Hamiltonian reads:

Ĥ = ~ω
(
â†â+

1

2

)
. (4.5)

1It is now clear that this procedure is totally equivalent to setting M = 1, ω = 1, ~ = 1. Summarizing, we measure
lengths in units of l, masses in units of M , energies in units of ~ω, momenta in units of ~/l, times in units of
~/(~ω) = 1/ω, etc.

2In x-representation, both are quite simple operators:

â =
1
√

2

(
x+

d

dx

)
and â† =

1
√

2

(
x−

d

dx

)
. (4.3)
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Let us start finding a state |φ0〉 which is annihilated by â, i.e. such that: 3

â|φ0〉 = 0 .

Evidently, |φ0〉 is an eigenstate of Ĥ with eigenvalue ~ω/2. It is very simple to realize 4 that |φ0〉 is
the ground state of Ĥ. Consider now the number operator n̂ = â†â, and construct the obtained by
applying n operators â† to |φ0〉,

|φn〉 =

(
â†
)n

√
n!
|φ0〉 , (4.6)

which turn out to be the eigenstates of Ĥ. You can show 5 that these are eigenstates of n̂ with
eigenvalue n:

n̂|φn〉 = n|φn〉 .

Based on this we realize that

Ĥ |φn〉 = ~ω
(
n+

1

2

)
|φn〉 = En|φn〉 .

It is easy to show 6 that â and â† allow us to move up and down in the ladder of states |φn〉:
â†|φn〉 =

√
n+ 1|φn+1〉 and â|φn〉 =

√
n|φn−1〉.

Notation. You often find |n〉 in place of |φn〉 and |0〉 in place of |φ0〉. The state |0〉 is called
the vacuum of â. â and â† are known as destruction and creation operators, respectively.

i

Let us now calculate the properties of a single oscillator at temperature T in the canonical ensemble,
7 described density matrix 8

ρ̂CE =
∑
n

Pn|φn〉〈φn| =
1

Z
e−βĤ , (4.7)

where Pn = e−βEn/Z, β = (kBT )−1, Z =
∑
n e
−βEn is the partition function, and {|φn〉} denote the

energy eigenstates of Ĥ. Let us start by calculating the canonical partition function Z:

Z =

∞∑
n=0

e−β~ω(n+ 1
2 ) = e−β~ω/2

∞∑
n=0

(
e−β~ω

)n
=

e−β~ω/2

1− e−β~ω
, (4.8)

where the result follows from a simple geometric series. From Z, the Helmholtz free energy F follows
immediately:

F = − 1

β
logZ =

~ω
2
− kBT log

1

1− e−β~ω
. (4.9)

3Such a state has a simple expression in x-representation, φ0(x) = 〈x|φ0〉, since it obeys the equation:

1
√

2

(
x+

d

dx

)
φ0(x) = 0 =⇒

d

dx
φ0(x) = −xφ0(x) ,

which is solved by φ0(x) = Ce−x
2/2, where C a normalisation constant.

4Simply observe that given any state |ψ〉, the expectation value of â†â satisfies 〈ψ|â†â|ψ〉 = ||â|ψ〉||2 ≥ 0.
5One can prove this by recursion, or (better) by using that [a,

(
â†
)n

] = n
(
â†
)n−1.

6One can show, by recursion and using [â,
(
â†
)n

] = n
(
â†
)n−1, that 〈φ0|ânâ†n|ψ0〉 = n!. From that we deduce that

the correctly normalized states are |φn〉 =
(â†)n√
n!
|φ0〉.

7Notice that here the volume V does not appear (the potential itself confines the particle) and the number of particles
N is also missing, since N = 1.

8Observe that we are applying the statistical mechanics to a single oscillator. The results that we calculate describe
the statistical behaviour of an ensemble of different realizations of such a single oscillator in contact with a large
bath at temperature T .

96



(Lecture Notes by G.E. Santoro) 4.1 The quantum harmonic oscillator

From F , you calculate immediately S, E, and the specific heat Cv. 9

S = −∂F
∂T

= kB log
1

1− e−β~ω
+ kB

β~ω
eβ~ω − 1

E = F + TS =
~ω
2

+
~ω

eβ~ω − 1
≡ ~ω

(
〈n̂〉+

1

2

)
≡
∑
n

EnPn

Cv = T
∂S

∂T
=
∂E

∂T
= kB

(β~ω)2 eβ~ω

(eβ~ω − 1)
2

. (4.11)

One thing that is worth noticing is the role played by the average occupation number 〈n̂〉, which we
can extract directly from E:

〈n̂〉 = 〈â†â〉 =

∞∑
n=0

nPn =
1

eβ~ω − 1
≡ fB(~ω) , (4.12)

where we have introduced the Bose-Einstein distribution function fB . 10

Figure 4.1 illustrates the temperature dependence of various physical quantities. Notice the limit
T → 0, where the peculiar quantum behaviour shows up, as opposed to the classical regime where
kBT � ~ω. Notice in particular that E approaches a constant value ~ω/2 for T → 0, due to quantum
fluctuations (zero-point motion).

The exponential suppression of Cv. Correspondingly, the specific heat is exponentially
suppressed:

Cv ≈ kB
(

~ω
kBT

)2

e−~ω/kBT for T → 0 . (4.13)

This exponential suppression of Cv for ~ω > kBT — the quantum regime for the oscillator — is
at the root of the T 3 low-temperature law for the specific heat of solids, or of the T 4 behaviour of
the total energy E(T ) = aT 4 of the black-body problem. Both are related to a density of states
g(ω) ∝ ω2 for low ω, as we will later show.

i

For kBT � ~ω, E approaches the classical equi-partition result Ecl = kBT and correspondingly,
the specific heat approaches the Dulong-Petit value of kB . Worth noticing is the behaviour of the
entropy S, 11 which clearly shows the inadequate description of the low-temperature regime, where
Scl becomes negative and, correspondingly, the free-energy has a wrong slope: it increases with T .
9The corresponding classical calculations require simple Gaussian integrals to be performed. You readily find that
Z = kBT/(~ω), where ~ appears because of the factor h which normalises the phase-space volume. Hence, you
derive immediately that:

F = −
1

β
logZ = −kBT log

kBT

~ω

S = −
∂F

∂T
= kB

(
1 + log

kBT

~ω

)
E = F + TS = kBT

Cv = T
∂S

∂T
=
∂E

∂T
= kB

(4.10)

10Notice that at high temperature you have

〈n̂〉 =
kBT

~ω
−

1

2
+ · · ·

where the sub-leading constant term −1/2 cancels precisely the zero-point fluctuation term in the energy.
11Observe that the correct (quantum) entropy is not a concave function of T . The requirement of concavity applies to

S(E,X), and not to the canonical ensemble entropy.

97



Simple applications of Statistical Mechanics (Lecture Notes by G.E. Santoro)

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

E/-hω

kBT/-hω
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5

S/kB

kBT/-hω

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

Cv/kB

kBT/-hω
-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

F/-hω

kBT/-hω

Figure 4.1.: Plot of E/(~ω), S/kB , Cv/kB and F/(~ω) for a quantum harmonic oscillator. The dashed lines
are the predictions obtained with the classical canonical ensemble.

4.2. Transverse vibrations of a string

As an illustration of how to deal with waves, consider a guitar string, which we idealize as an elastic
object of total mass M , length L — hence mass-per-unit-length µ0 = M/L — which is capable of
sustaining forces along the tangent: the familiar tension τ of the string. A standard application of
Newton’s equation F = ma starts from an element ∆x of the string, whose shape you imagine to be
given by a function Y (x, t) at time t. In general, the tension τ varies when the string is deformed:
given the shape, you can think that at each point (for the deformations realized in the string) there
is some tension τ (x). According to Newton’s equation, the total force along the y direction acting on
a certain section [x0, x0 + ∆x] should be equal to the mass times the acceleration of the section. On
the other hand, the forces are due to the opposite tensions (in general, different) at the two endpoints
(see Fig. 4.2). Hence: 12

(ma)y = µ0∆x
∂2Y

∂t2

∣∣∣
x0

Fy = τ (x0 + ∆x)
∂Y

∂x

∣∣∣
x0+∆x

− τ (x0)
∂Y

∂x

∣∣∣
x0

≈ ∆x
∂

∂x

(
τ (x)

∂Y

∂x

) ∣∣∣
x0

+ · · · (4.14)

Dividing by ∆x and omitting any reference to x0 we end up writing:

µ0
∂2Y

∂t2
=

∂

∂x

(
τ (x)

∂Y

∂x

)
. (4.15)

12Notice that we have neglected gravity (which would give a contribution proportional to gµ0 ∆x) as well as possible
other sources of forces, including dissipation, etc. Notice also that the length of the section has, due to Pitagora,
an extra factor

√
1 + (∂Y /∂x)2 which however cancels with a diminished linear mass density µ(x) in such a way

that the mass of the section is roughly the original unstretched one µ0∆x. Observe also that we assume that the
derivatives ∂Y

∂x
are small, so that we can substitute sinα ≈ tanα = ∂Y

∂x
in calculating the y-component of the tension

forces.
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Now the crucial approximation consists in assuming that τ (x), no matter what the shape and the
stretching of the string is, is roughly given by the tension at rest τ 0, which you can then take out of
the derivative, writing finally the familiar wave equation: 13

µ0
∂2Y

∂t2
= τ 0

∂2Y

∂x2
=⇒ 1

v2

∂2Y

∂t2
=
∂2Y

∂x2
, (4.16)

where v =
√
τ 0/µ0 =

√
τ 0L/M . 14 Guitar or violin strings are held fixed at two points, x = 0 and

Figure 4.2: How to derive the wave equation for a
string.

x = L: the resulting waves are necessarily confined. Confinement is crucial to have resonances at
sharply defined frequencies. 15

Let us “solve” the wave equation. First, we look for factorized solutions Ym(x, t) = ψm(x)bm(t),
where ψm(x) is dimensionless and bm is a length, m being the index for the different solutions (see
below). Substituting this Ansatz in the wave-equation we get:

ψ′′m(x)

ψm(x)
=

1

v2

b̈m(t)

bm(t)
≡ −k2

m .

The last step follows from the fact that the left-hand is a function of x, while the central piece is a
function of t, hence both must be a real constant, which must be also negative, −k2

m, otherwise bm(t)

would blow up. Hence we arrived at:
d2ψm
dx2

+ k2
mψm(x) = 0

d2bm
dt2

+ ω2
mbm(t) = 0

, (4.19)

13A more realistic modelling would consist in assuming that the tension changes when the string is locally stretched, for
instance assuming some Hook’s type of elastic relationship. This brings, inevitably, non-linearities to the problem.
Such non-linearities are quite amusing, and can even bring to instabilities in the vibration of the string: beyond a
certain amplitude, the string has a natural tendency to “rotate” even if you drive it perfectly in a plane.

14For a two-dimensional membrane, Z(x, y, t), a similar derivation would gives as a wave equation of the form

1

v2

∂2Z

∂t2
=
∂2Z

∂x2
+
∂2Z

∂y2
= ∇2Z ,

where v =
√
γ0/µ0 where γ0 is the surface tension (a force per unit length) and µ0 is the mass-per-unit-area of the

membrane.
15Imagine you have an infinite string obeying the wave equation in Eq. (4.16). Now you put a driving force localized at

some point x0 and with a given frequency ω0. The equation you would write (omitting, again, any dissipation) is:

∂2Y

∂t2
− v2 ∂

2Y

∂x2
= Fε(t)δ(x− x0) , (4.17)

where Fε(t) = A[θ(−t)eεt + θ(t)] sin (ω0t). So, A is the amplitude of the forcing, and a regularising factor ε, which
is send to ε → 0 at the end of the calculation, has been included to account for an “adiabatic switching-on” of the
forcing. The problem can be solved by Fourier transforms and some complex plane integration to give:

Y (x, t) =

{
− A

2ω0v
cos
(ω0
v

(x− x0 + vt)
)

for x < x0

− A
2ω0v

cos
(ω0
v

(x− x0 − vt)
)

for x > x0
. (4.18)

As you see, simply a wave moving to the right and the left of the perturbation, but without any resonance: ω0 can
be anything you want.
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where ωm = vkm. We see that the spatial part ψm(x) obeys a Helmholtz equation in one-dimension:

(∇2 + k2)ψ(x) = 0 . (4.20)

The boundary conditions are such that not all values of k are possible: recall the bound states of a
free Schrödinger particle in a box? It is the same problem!

Schrödinger particle in the box. Recall that Ek = ~2k2/(2m) for a free particle, and

− ~2

2m
∇2ψ = Ekψ(x) =⇒ (∇2 + k2)ψ(x) = 0 , (4.21)

with boundary conditions ψ(0) = ψ(L) = 0.

i

Only the dispersion, i.e., the relationship between ωk and k is different: for the wave equation, it
is linear, ωk = vk, while the Schrödinger equation is linear in time, i~∂tψ(x, t) = (− ~2

2m∇
2)ψ(x, t),

hence Ek = ~2k2/(2m). As expected, a discrete spectrum naturally emerges from confinement, like for
the Schrödinger problem. In the present case, for each values of k there are two possible degenerate
solutions eikx and e−ikx or, equivalently, sin (kx) and cos (kx), but the only solutions which satisfy
the boundary conditions are x = 0 and x = L are evidently: 16

ψm(x) =
√

2 sin (kmx) with km =
mπ

L
for m = 1, 2, · · · (4.22)

and the corresponding angular frequencies are therefore ωm = vkm = vmπ/L, or:

fm =
ωm
2π

= m
v

2L
= mf1 , (4.23)

while the wave-lengths are λm = 2π/km = 2L/m. 17

But beware from thinking that, due to the analogy with the Schrödinger particle in a box, this
problem has any quantum mechanics: it is simply a classical wave that we are describing! How can
quantize it? Why should quantize it? The why is simple: nature is quantum. You do not see quantum
effects in the string of your guitar, simply because you are usually not in the quantum regime. But if
the “string” was a nanotube suspended between two points at nanoscale distances, or one of the many
other nano-mechanical devices that people have learned to build and control, then quantum effects
would emerge immediately! So, let us concentrate on the how we quantize a classical wave equation.
The trick is, essentially, to look for harmonic oscillators, and quantize them in the usual way: waves
are just complicated harmonic oscillators!

16Notice the non-standard normalization, with respect to the Schrödinger problem: we here assume that

〈ψm|ψm′ 〉 =

∫ L

0
dxψ∗m(x)ψm′ (x) = Lδm,m′ .

The reason for this is that we want the ψm(x) to be dimensionless, in such a way that the bm has the same dimension
as Y , i.e., a length.

17In music, f1 is the fundamental frequency of the string, while f2, f3, etc. are higher harmonics. For the musicians
among you: If f1 is a C (DO, in italian), call it C(1), then f2 is C(2) (the octave above), f3 is a G(2) (SOL, in
italian, in the second octave), f4 is C(3) (a still higher octave), f5 is E(3) (MI, in italian, in the third octave), etc.
As you see, the harmonics of C have C-E-G (Do-Mi-Sol) in their “body”: that is the physical reason behind the
“consonance” inside a major triad chord. If you repeat a similar exercise for a two-dimensional elastic membrane
held fixed by a ring, a drum, you would discover that the frequencies of the drum are not simple multiples of the
fundamental frequency, but rather come from finding the zeroes of Bessel functions, obtained by separating variables
for the Helmholtz equation in circular coordinates: it is much harder to play the drum, from this point of view! And
if the drum had a stadium shape, you would not be able to solve the Helmholtz equation at all, except for numerical
solutions: no separation of variables is possible; stadium-shaped billiards are the arena for the simplest examples of
quantum chaos.
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Indeed, we have already found the relevant oscillators: you see that the equation for bm is simply
b̈m = −ω2

mbm. All we need is to decide who is the “coordinate” and who is the “momentum”. We will
soon see that the “coordinate” is Qm = bm, and the corresponding “momentum” Pm = Mḃm. To do
that, let us write the “total energy” of the string, in the continuum limit:

H =
µ0

2

∫ L

0

dx (∂tY )2 +
τ 0

2

∫ L

0

dx (∇Y )2

=
1

2µ0

∫ L

0

dx Π2 +
τ 0

2

∫ L

0

dx (∇Y )2 , (4.24)

where you should observe that I written the kinetic energy in term of the momentum-per-unit-length:

Π(x, t) = µ0∂tY ,

while the second term is the potential energy associated to the stretching of the string. 18 Now, let
us expand Y and Π in terms of eigenmodes:

Y (x, t) =
∑
m

ψm(x)bm(t) =⇒ Π(x, t) = µ0∂tY = µ0

∑
m

ψm(x) ḃm(t) ≡ 1

L

∑
m

ψm(x)Pm ,

where we have defined Pm = Lµ0ḃm = Mḃm. Using the orthogonality of the ψm(x), 〈ψm|ψm′〉 =

Lδm,m′ , it is simple to rewrite the kinetic energy as:

1

2µ0

∫ L

0

dx Π2 =
1

2M

∑
m

P 2
m ,

Similarly, the potential energy, after integration by parts 19 and using again 〈ψm|ψm′〉 = Lδm,m′ , can
be rewritten as:

τ 0

2

∫ L

0

dx (∇Y )2 =
τ 0

2

∫ L

0

dx Y (−∇2Y ) =
M

2

∑
m

ω2
mQ

2
m

where Qm = bm. Hence the classical Hamiltonian can be rewritten in terms of the eigen-mode
coordinates Qm = bm and momenta Pm = Mḃm as:

H =
1

2M

∑
m

P 2
m +

M

2

∑
m

ω2
mQ

2
m . (4.25)

This is the expression in terms of harmonic oscillators we were looking for, whose quantisation is now
obvious: 20

Ĥ =
1

2M

∑
m

P̂ 2
m +

M

2

∑
m

ω2
mQ̂

2
m =

∑
m

~ωm
(
â†mâm +

1

2

)
. (4.26)

18It is worth mentioning that the continuum wave-equation might be derived from the Euler-Lagrange equations

d

dt

δL

δẎ
=
δL

δY
,

for the Lagrange functional

L[Y, Ẏ ] =
µ0

2

∫ L

0
dx (∂tY )2 −

τ 0

2

∫ L

0
dx (∇Y )2 .

This leads to the definition of Π as canonical momentum:

Π =
δL

δẎ
= µ0∂tY ,

and to H as associated Hamiltonian.
19Alternatively, recall that in Quantum Mechanics p̂ = −i∂x is Hermitean, hence 〈p̂ψ|p̂ψ〉 = 〈ψ|p̂2ψ〉 = −〈ψ|∇2ψ〉.
20Recall that we have to write Q̂m = lm(âm + â†m)/

√
2 and P̂m = (~/lm)(âm − â†m)/(i

√
2), where the oscillator length

of mode ωm is lm =
√

~/(Mωm).
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Incidentally, you can rewrite Y and Π, which are now quantum fields as:


Ŷ (x) =

∑
m

ψm(x) Q̂m =
∑
m

ψm(x)

√
~

2Mωm

(
âm + â†m

)
Π̂(x) =

1

L

∑
m

ψm(x) P̂m = − i

L

∑
m

ψm(x)

√
M~ωm

2

(
âm − â†m

) .

Notice that we have not indicated any time in Ŷ (x). Quantum mechanically, the operatorial nature
of the field is enough, as the time-dependence automatically comes from the Heisenberg evolution of
the operators:

Ŷ (x, t) = eiĤt/~Ŷ (x)e−iĤt/~ =
∑
m

ψm(x) Q̂m(t) =
∑
m

ψm(x)

√
~

2Mωm

(
e−iωmtâm + eiωmtâ†m

)
.

One thing that you should not push too far is that the number m denoting the eigenmodes can
go to ∞: in practice, the wavelength of the wave being λm = 2L/m, there is intrinsic cut-off to a
mmax when λm reaches the atomic scale. In the following, therefore, we will always assume an upper
cutoff. But there is one case for which in principle such a cut-off is not there: an electromagnetic wave.
Indeed, the exercise we have just carried out resembles in a quite precise way the quantisation of the
electromagnetic field, which poses a few more problems, for the vectorial nature of the electric and
magnetic field and their boundary conditions, but is otherwise very similar in spirit. The resulting
“oscillators” are the photons, and v = c, the velocity of light.

Practising with this quantum string model is highly beneficial to understanding the physics of one-
dimensional fermionic systems, for which there is a technique called bosonization that ends up with a
very similar description. If you want to learn more about this, read for instance Chap.2 of the book
by T. Giamarchi Quantum Physics in One Dimension.

4.3. Statistical mechanics of quantum oscillators

Let us now calculate the thermodynamics of our vibrating string, or indeed of any similar quantized
wave, by employing canonical formalism. The Hilbert space of the problem is H = ⊗mHm, without
any issue of symmetrization: the oscillators are considered as distinguishable. The Hamiltonian is a
sum of independent harmonic oscillators,

Ĥ =
∑
m

Ĥm =
∑
m

~ωm
(
â†mâm +

1

2

)
, (4.27)

where we have denoted by ωm the generic frequency of the different modes, labelled by m. The trace
factorises, hence partition function is the product of the Zm of each single oscillator

Z = Tr e−βĤ =
∏
m

Trm e−βĤm =
∏
m

Zm =
∏
m

( ∞∑
nm=0

e−β~ωm(nm+ 1
2 )

)
. (4.28)
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The free-energy F is the sum of the individual free energies. We would then write:

F = − 1

β
logZ =

∑
m

~ωm
2
− kBT

∑
m

log
1

1− e−β~ωm

S = −∂F
∂T

= kB
∑
m

log
1

1− e−β~ωm
+

1

T

∑
m

~ωm
eβ~ωm − 1

E = F + TS =
∑
m

~ωm
2

+
∑
m

~ωm
eβ~ωm − 1

≡
∑
m

~ωm
(
〈n̂m〉+

1

2

)

Cv = T
∂S

∂T
=
∂E

∂T
= kB~2β2

∑
m

ω2
m eβ~ωm

(eβ~ωm − 1)
2

(4.29)

One simple and famous application of the last formula is the specific heat of solids due to phonons,
the famous Debye model. You notice that the sum over the different oscillators involves only the
frequencies ωm, so that it is appropriate to rewrite everything in terms of the density of states of the
modes: 21

g(ω) =
∑
m

δ(ω − ωm) . (4.30)

The specific heat can be expressed as:

Cv =
~2

kBT 2

∫ ωmax

0

dω g(ω)
ω2 eβ~ω

(eβ~ω − 1)
2 . (4.31)

Without entering into too many details (you can find them in the book of Huang or Callen), the
crucial aspect of the calculation is that behaviour of the density of states for ω → 0. In you assume
that

g(ω) = Ag ω
αg θ(ωmax − ω) with Ag =

(αg + 1)

ω
αg+1
max

Nmodes (4.32)

— where Nmodes is the total number of oscillator modes 22 — the behaviour for T → 0 is easy to
extract by rescaling the variables. Changing variable to x = β~ω, we write:

Cv = (αg + 1)Nmodes

(
kBT

~ωmax

)αg+1 ∫ ~ωmax
kBT

0

dx
x2+αg ex

(ex − 1)
2 . (4.33)

For the Debye model, the important modes are the acoustic phonons which have a linear dispersion
23 ω ∼ vk, and a density of states (in three dimensions) with αg = 2. Hence, the model predicts that
Cv ∼ T 3 for T → 0, as indeed found experimentally.

Why the strings of your guitar do not show any quantum effects? Let us consider a string of
L = 0.5 m which is tuned on the fundamental A (LA, in Italian) with f1 = 440 Hz. The energy of the
corresponding oscillator is: 24

~ω1 = hf1 ≈ 1.8× 10−9 meV ≈ 21× 10−9 K .

21Notice that this definition is not universal. Sometimes the volume of your sample enters explicitly in the fine structure
of the splitting of the energy eigenvalues, and the sum over the levels generates a factor of V which you might prefer
to single out by defining g(ω) to be the density of states per unit volume. We will do that in a short while, but
sometimes (for instance in discussing Bose condensation of cold trapped atoms) we will revert to the definition given
here, without volume factor.

22Simply observe that

Nmodes =

∫ ωmax

0
dω g(ω) = Ag

ω
αg+1
max

αg + 1
.

23For a more realistic description, one should distinguish between the longitudinal and two transverse acoustic phonon
branches, since they have different velocities.

24Recall that 1 THz = 4.1 meV = 48 K.
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Figure 4.3.: Specific heat of Cu, compared to the Debye model fit. Figure taken from Pathria [5].

If you cut off the harmonics of the string to a generous maximum 25 mmax = 106, this would give

~ωmax = hfmax ≈ 1.8× 10−3 meV .

The value of kBT for a temperature T = 300 K is, in the same units, 25.85 meV. Hence kBT � ~ωmax

and all the oscillators behave classically.

Phonons in solids are, essentially, very high frequency “strings”, compared to your guitar. The
energy of typical phonons and vibrations in solids and molecules can easily reach values in the meV
range, i.e., hundreds of GHz. Hence kBT can be smaller than some of the mode frequencies, and
you should include quantum effects in the calculation. If the guitar string, however, was a Carbon
nanotube (a very rigid object indeed) suspended between two points with L = 10−6 m, it is not hard
to figure out that quantum effects would be relevant there as well. The world of nanomechanics,
a quite lively recent research field, is full of examples where you see quantum effects in resonating
mechanical objects.

4.3.1. Calculating the single-particle density of states

Let us now learn a simple strategy to calculate the density of states g(ω) of the modes. A very clear
discussion of the issues related to the discreteness of the levels, and the intrinsic averaging procedure
one is performing in postulating a smooth density of states, is given in [5]. The typical problem in
which density of states enter is one in which we have to calculate a sum of the following form:

1

V

∑
k

f(ωk) =

∫
dω

1

V

∑
k

δ(ω − ωk)︸ ︷︷ ︸
g(ω)

f(ω) =

∫
dω g(ω)f(ω) ,

where now we have defined the density of states per-unit-volume:

g(ω) =
1

V

∑
k

δ(ω − ωk) . (4.34)

Role of dimensionality and dispersion. We will now show that the dimensionality d and the
type of dispersion ωk = Akα both play a role in the density of states g(ω), leading to a power-law
expression of the form:

g(ω) = Agω
αg = Agω

d
α−1 . (4.35)

i

25This corresponds to a minimum wavelength λ ∼ 10−6 m, and to a maximum frequency fmax = 440 MHz, well beyond
the capabilities of human ears.
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To show this, let us assume that the k values we sum are those that you typically encounter when
you apply periodic boundary conditions in d dimensions:

k =
2π

L
(n1, · · · , nd) .

Then, transforming Riemann sums into integrals for large L, you easily establish that:

1

V

∑
k

f(ωk)
L→∞−→

∫
dk

(2π)d
f(ωk) .

If ωk depends only on |k| = k you switch to spherical coordinates. In d dimensions you would write
then:

1

V

∑
k

f(ωk)
L→∞−→

∫
dk

(2π)d
f(ωk) = Ωd

∫ ∞
0

dk kd−1

(2π)d
f(ωk) ,

where

Ωd =
2π

d
2

Γ(d2 )
,

is the solid angle in d dimensions. 26 If you assume a dispersion ωk = Akα, hence dωk
dk = αAkα−1

and k(ω) = (ω/A)
1
α , you can easily change variables in the integral over k and transform it into an

integral over ω. The result is:

1

V

∑
k

f(ωk)
L→∞−→

∫ ∞
0

dω g(ω)f(ω) with g(ω) =
Ωd

(2π)dαA
d
α

ω
d
α−1 ≡ Agωαg . (4.36)

Summarising, when the dispersion is quadratic ωk = Ak2 (like for non-relativistic particles) we find
that g(ω) ∼ ω d

2−1, while a linear dispersion (like for sound waves or light) leads to g(ω) ∼ ωd−1, hence
the characteristic ω2 appearing in the back-body case and in the Debye model.

4.3.2. Photons in cavities and black-body radiation

An interesting application of the previous theory has to do with the electromagnetic field and pho-
tons. As you know, this was indeed the starting point of the quantum theory: Planck found, in 1900,
that the energy spectral distribution of the black-body radiation could be well fit by a phenomeno-
logical theory in which the energy of the “harmonic oscillators” making up the electromagnetic field
was no longer a continuum, but rather quantized in multiples of ~ω.

We postpone a brief introduction to the black-body problem, likely well known to most of you, to
the final part of this section. Although getting the final result would take a couple of lines of algebra
from the equations we already derived, let me spend a few more words on the electromagnetic field
in cavities, essentially because this has to do with a quite lively branch of quantum optics known as
cavity QED.

One thing that needs to be stressed is that the quantisation of the electromagnetic field regards
essentially the radiation field, or, in other words, the transverse part of the field: there is where photons
enter. A bit of clarification of the meaning of transverse versus longitudinal might be appropriate
here. Given a general vector field F(x) in three-dimension, there is a very important theorem due to
Helmholtz which allows to express it as follows:

F(x) = ∇×
∫

dx′

4π

curlF(x′)
|x− x′|︸ ︷︷ ︸

F⊥(x)

−∇
∫

dx′

4π

divF(x′)
|x− x′|︸ ︷︷ ︸

F‖(x)

. (4.37)

26Recall that Γ(1/2) =
√
π and Γ(3/2) =

√
π/2. Hence Ω1 = 2, Ω2 = 2π, Ω3 = 4π.
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The first term, F⊥ has zero divergence (it is the curl of a vector field), and is known as transverse part
of F; the second term, F‖ has zero curl (it is the gradient of a function), and is known as longitudinal
part of F.

Figure 4.4.: The black-body spectral radiance, proportional to the spectral energy density u(λ, T ) at different
temperatures. We plot here the curves versus the wavelength λ = 2π/k = 2πc/ω = c/f .

In electrostatics, the electric field is purely longitudinal and depends on the presence of the charges.
Indeed, since ∇ ·E = 4πρ(x) while ∇×E = 0, you can immediately write from Eq. (4.37)

E = E‖ = −∇
∫

dx′

4π

∇ ·E(x′)
|x− x′|

= −∇
∫

dx′
ρ(x′)
|x− x′|︸ ︷︷ ︸

ϕ(x)

= −∇ϕ(x) ,

as you well know: we can define the Coulomb potential ϕ(x) and derive the field from it. If you
eliminate the charges, you get no field: there is no life in electrostatics in a world devoid of charges.

The same happens in magnetostatics. The B field is always transverse, ∇ ·B = 0: this is general!
In magnetostatics ∇×B = 4πJ(x). Hence, we have:

B = ∇×
∫

dx′
J(x′)
|x− x′|︸ ︷︷ ︸

A(x)

= ∇×A(x) .

If there are no currents J(x) = 0, the magnetic field vanishes.

But when you have electrodynamics, things change completely. The full set of Maxwell’s equations
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reads: 27

∇ ·E = 4πρ(x, t) ∇×E = −1

c

∂B
∂t

∇ ·B = 0 ∇×B = 4πJ(x, t) +
1

c

∂E
∂t

. (4.39)

The radiation field. Even in absence of any charge ρ = 0 and currents J = 0, you have
solutions of the Maxwell equations with E(x, t) and B(x, t) different from zero: this is called the
radiation field. Obviously, the radiation field is transverse (since ∇ ·E = 0 and ∇ ·B = 0), while

∇×E = −1

c

∂B
∂t

∇×B = +
1

c

∂E
∂t

. (4.40)

i

To study it properly, you would need the appropriate boundary conditions on the region (for
instance, an electromagnetic cavity) you are interested in: moreover, the vectorial nature of the fields
complicates the analysis considerably. To simplify the procedure (full details can be found in all books
in quantum optics), assume that we are in an infinite space free-of-charges (ρ = 0 and J = 0). We can
work therefore with Fourier transforms of the fields and need not worry about boundary conditions.
The four Maxwell’s equations become after Fourier transforms in space:

ik ·E(k, t) = 0 ik×E(k, t) = −1

c

∂B(k, t)
∂t

ik ·B(k, t) = 0 ik×B(k, t) =
1

c

∂E(k, t)
∂t

. (4.41)

The divergence-equations impose that the fields are transverse, i.e., perpendicular to k, in Fourier
space. The curl-equations can be rearranged by taking a derivative with respect to time and mul-
tiplying vectorially by k. You can reduce yourself to two decoupled harmonic oscillator equations:
28

∂2E(k, t)
∂t2

= −c2k2 E(k, t)

∂2B(k, t)
∂t2

= −c2k2 B(k, t)
. (4.42)

The essence of the procedure for quantizing the electromagnetic field follows quite closely the
quantisation of the string we have seen before. 29

For the black-body radiation, ωk = ck, and you have to account for a factor 2 due to the two
polarisations of transverse photons. To express the total energy you then write, transforming the sum
27In SI units the Maxwell equations read:

∇ ·E = 1
ε0
ρ(x, t) ∇×E = −

∂B
∂t

∇ ·B = 0 ∇×B = µ0

(
J(x, t) + ε0

∂E
∂t

) . (4.38)

Here µ0 is the vacuum permeability, µ0 ≈ 4π · 10−7H/m = 4π · 10−7N/A2, while 1
4πε0

≈ 9 · 109Nm2/C2. Together,

they are related to the velocity of light in vacuum c =
√
µ0ε0, which is defined to be c def

= 299792458m/s (the meter,
the SI unit of length, is therefore derived from the unit of time and from c).

28In SI units the Maxwell equations in absence of charges and currents, using ∇× (∇×E) = ∇(∇ ·E)−∇2E, read

∂2

∂t2
E = −

1

µ0ε0
∇2E and

∂2

∂t2
B = −

1

µ0ε0
∇2B .

The Hamiltonian would read:
H =

ε0

2

∫
V

dx
(
|E(x, t)|2 + c2|B(x, t)|2

)
.

29We only recall that the quantum expression for the vector potential eventually reads (in Heisenberg representation
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over k into an integral in the usual way: 30

E(T, V ) = 2V

∫
dk

(2π)3

~ωk
eβ~ωk − 1

= 8πV

∫ ∞
0

dk

8π3
k2 ~ωk

eβ~ωk − 1
=

V

π2c3

∫ ∞
0

dω ω2 ~ω
eβ~ω − 1

= V

∫ ∞
0

dω
ω2

π2c3
~ω

eβ~ω − 1
≡ V

∫ ∞
0

dω ε(ω, T ) (4.43)

where we define the spectral energy density

ε(ω, T ) = g(ω)
~ω

eβ~ω − 1
=

ω2

π2c3
~ω

eβ~ω − 1
. (4.44)

Here you recognise the density of states of the modes (see Eq. (4.36) with A = c, α = 1 and d = 3

and an extra factor 2 for the two polarizations):

g(ω) =
ω2

π2c3
. (4.45)

An equivalent way of writing would be to express the spectral density in terms of the wave-length λ
of the radiation. If you recall that k = 2π/λ, and you change variable from k to λ rather than from
k to ω, you can equivalently rewrite:

E(T, V ) = 8πV

∫ ∞
0

dk

8π3
k2 ~ωk

eβ~ωk − 1
= V

∫ ∞
0

dλ
8π

λ4

hc/λ

eβhc/λ − 1

≡ V

∫ ∞
0

dλu(λ, T ) , (4.46)

where
u(λ, T ) =

8πhc

λ5

1

ehc/(λkBT ) − 1
. (4.47)

Historically, quite a few things were known before Planck’s work, more precisely through exper-
iments, performed by Stefan in 1879 and by Lummer & Pringsheim in 1899, and through general
thermodynamical arguments due to Boltzmann and to Wien:

(1) The total energy density behaves as:

E(T, V )

V
= aT 4 , (4.48)

with a = 4σ/c where σ = 5.67 × 10−8 W m−2 K−4 is the Stefan’s constant, experimentally
measured in 1879. The previous relation is known as Stefan-Boltzmann law because Boltzmann
deduced it in 1884 from general thermodynamical arguments.

(2) The second experimentally known fact was that the spectral density u(λ, T ) shows a pronounced
maximum at a wavelength λmax = c/νmax which obeys the Wien’s displacement law:

λmaxT = b ' 2.898× 10−3m K . (4.49)

(3) The spectral density u(λ, T ) should have a universal form given by

u(λ, T ) = λ−5fWien(λT ) , (4.50)

where fWien is a universal function of λT . This was shown by Wien, again based on general
thermodynamical arguments.

and SI units):

ÂH(x, t) =

2∑
s=1

∫
dk

(2π)3

√
~

2ε0ωk

(
εk,seik·x−iωktâk,s + ε∗k,se

−ik·x+iωktâ†k,s

)
where εk,s are the two transverse polarization vectors, and ωk = |k|c. In terms of Â we express the fields as
Ê = − ∂Â

∂t
and B̂ = ∇× Â.

30Notice that we neglect here the zero-point motion term, formally giving a divergent contribution in infinite space. In
a confined geometry, a proper account of that term gives rise to Casimir forces.
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The final formula for the average energy requires an integral 31 and reads:

E(T, V ) = V

∫ ∞
0

dω ε(ω, T ) = V

∫ ∞
0

dω
ω2

π2c3
~ω

eβ~ω − 1

= V
π2

15

(kBT )4

(~c)3
= V aT 4 ,

(4.52)

in agreement with the Stefan-Boltzmann law.

It is interesting to consider the classical limit of the spectral energy density ε(ω, T ), obtained by
assuming that kBT � ~ω, or equivalently for u(λ, T ) when λ� hc/(kBT ). You would get:

εCL(ω, T ) ≈ ω2

π2c3
~ω

1 + β~ω + · · · − 1
=

ω2

π2c3
kBT , (4.53)

or equivalently:

uCL(λ, T ) ≈ 8π

λ4
kBT . (4.54)

These are the results one would obtain by treating the electromagnetic field with classical statistical
mechanics. They lead to a ultraviolet catastrophe: the corresponding integrals over all frequencies or
all wavelengths simply diverges, for ω →∞ or λ→ 0, respectively.

Let us return to the correct (quantum) spectral energy density u(λ, T ) which fits very well the
experimental observations. Calculating a simple derivative, we conclude that the maximum of the
u(λ, T ) versus λ is realised for 32

βhc

λ

1

1− e−βhc/λ

∣∣∣∣
λmax

= 5 =⇒ βhc

λmax
' 4.965 . (4.56)

Rewritten differently, this reads:

λmaxT = b =
hc

4.965kB
≈ 2.898× 10−3m K . (4.57)

This is precisely the content of Wien’s displacement law. For T = 5000 K, you get λmax ≈ 0.59µm.
Finally, Planck’s form for u(λ, T ) in Eq. (4.47) satisfies Wien universal form in Eq. (4.50).

For completeness, let us sketch, before ending this section, some of the issues behind the black-body
problem, to highlight the impasse encountered by classical physics in describing the experiments, and
the brilliant ad-hoc solution given by Planck long before quantum mechanics was developed. You can
view it as the first instance in which discreteness made its appearance in physics.

Bodies in equilibrium at temperature T absorb and emit electromagnetic radiation of different wavelengths
λ, with a broad spectrum. This is essentially a consequence of the fact that electronic states in condensed

31The relevant integral is

I =

∫ +∞

0
dx

x3

ex − 1
.

To calculate it, simply undo the geometric series sum leading to the Planck distribution, writing:

I =

∞∑
n=1

∫ +∞

0
dx x3e−nx =

∞∑
n=1

1

n4

∫ +∞

0
dy y3e−y = ζ(4)Γ(4) =

π4

15
. (4.51)

32Notice that for ε(ω, T ), the maximum of ε(ω, T ) for given T , as a function of ω, is verified when

d

dx

x3

ex − 1

∣∣∣∣
xmax

= 0 =⇒
xmax

1− e−xmax
= 3 =⇒ xmax ≈ 2.82 ,

which corresponds to
~ωmax = hνmax = xmaxkBT ≈ 2.82kBT . (4.55)

Remarkably, the maximum you calculate is different from that obtained by maximising u(λ, T ).
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matter group into energy bands, contrary to the sharp atomic spectral lines. Let us call Rbody
abs (λ, T )dλ and

Rbody
emi (λ, T )dλ the power (energy per unit time) per unit area absorbed and emitted by a certain body in the

wavelength interval (λ, λ + dλ). Let Rinc(λ, T )dλ be the power per unit area incident on the body. We can
define the absorption coefficient of the body:

abody(λ, T ) =
Rbody

abs (λ, T )

Rinc(λ, T )
. (4.58)

In general, if the body is in equilibrium at a fixed temperature T , we must have that:

Rbody
abs (λ, T ) ≡ Rbody

emi (λ, T ) . (4.59)

By general thermodynamics arguments, Kirckoff (1859) showed that Rbody
emi /abody is a universal function of λ

and T . Indeed:
Rbody

emi (λ, T )

abody(λ, T )
= �

���
�

Rbody
emi (λ, T )

��
���Rbody

abs (λ, T )
Rinc(λ, T ) ≡ Rinc(λ, T ) . (4.60)

A black-body (BB) is an idealized system such that aBB(λ, T ) ≡ 1: it absorbs all the incident radiation, at
all λ. Obviously, in equilibrium:

Rinc(λ, T )
BB≡ RBB

abs(λ, T )
eq
≡ RBB

emi(λ, T ) ≡ R(λ, T ) , (4.61)

where we have introduced a shorter notation. Figure 4.5 shows a practical way of realizing a cavity that
essentially absorbs all incoming radiation, which then thermalizes inside the cavity: the radiation emitted
from the hole of the cavity is, therefore, in equilibrium, a good approximation to the black-body radiation.

Figure 4.5: A cavity with a blackened interior,
held at temperature T , and a small hole. The
radiation emitted through the hole is a good ap-
proximation to the black-body radiation.

The total emissive power of a black body is given by:

R(T ) =

∫ ∞
0

dλ R(λ, T ) . (4.62)

An experimental result due to Stefan (1879), later derived through general thermodynamical arguments by
Boltzmann (1884), is that:

R(T ) = σT 4 , (4.63)

where, empirically, the Stefan’s constant is σ ≈ 5.67× 10−8 W/(m2 K4).

Measurements of R(λ, T ) by Lummer and Pringsheim (1899) allowed to confirm Wien’s displacement law
relating T to the λmax for which R(λ, T ) has a maximum:

λmaxT = b , (4.64)

allowing also to experimentally determine b = 2.898× 10−3 m K.
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Consider now the monochromatic (or spectral) energy density u(λ, T ), such that

E(T, V ) = V

∫ ∞
0

dλ u(λ, T ) , (4.65)

is the total energy of the radiation in equilibrium at temperature T in a cavity of volume V . One can show
that it is related to the power emitted by the BB per unit area is:

u(λ, T ) =
4

c
R(λ, T ) , (4.66)

where c is the velocity of light in vacuum. This is a convenient quantity because, as shown by Wien, again
based on general thermodynamical arguments:

u(λ, T ) = λ−5fWien(λT ) , (4.67)

where fWien is a universal function of λT .

To know more about fWien(λT ) we need a model. Imagine the cavity to be a cube of volume V = L3 filled
with electromagnetic (transverse) waves, which are standing waves of wavenumber k, with k = |k| = 2π/λ.
If you have a quantity F (k) to be summed over all the modes of the radiation, then, accounting for the two
polarisations of the transverse waves, we can write the associated density as:

2

V

∑
k

F (k) = 2

∫
d3k

(2π)3
F (k) =

1

π2

∫ ∞
0

dk k2F (k) = 8π

∫ ∞
0

dλ
1

λ4
F̃ (λ) , (4.68)

where F̃ (λ) = F (2π/λ). Hence, we see that (8π)/λ4 is the “density of modes” at wavelength λ. The average
spectral energy density is, therefore:

u(λ, T ) =
8π

λ4
ε(λ, T ) (4.69)

where ε is the average energy of every single mode of the radiation at the given λ and at temperature T .

If you model the electromagnetic field — which obeys Maxwell’s equations 33 — as classical harmonic
oscillators in equilibrium at temperature T , then classical statistical mechanics would predict:

ε =

∫∞
0

dε ε e−βε∫∞
0

dε e−βε
= − d

dβ
log

[∫ ∞
0

dε e−βε
]

=
1

β
= kBT . (4.70)

This classical calculation expresses the equipartition principle. The corresponding fWien = 8πkBλT . Obviously,
this result leads to an ultraviolet catastrophe, since the integral over λ diverges.

It was a bold assumption due to Planck (1900) to imagine that the integral over ε written above should
be modified by assuming that the different values of ε are actually discrete: ε = nε0, with n = 0, 1, 2, · · ·∞.
Simply replacing the integral by a discrete sum changes the outcome of the calculation dramatically:

ε =

∑∞
n=0(nε0) e−βnε0∑∞

n=0 e−βnε0
= − d

dβ
log

[
∞∑
n=0

e−βnε0
]

= − d

dβ
log

[
1

1− e−βε0

]
=

ε0
eε0/(kBT ) − 1

. (4.71)

To be compatible with Wien’s general prescription — recall, the universal function of λT —, the constant ε0
should be ε0 ∼ 1/λ. So, Planck took:

ε0 = hν =
hc

λ
, (4.72)

where h is a constant with dimension [energy] × [time], and ν = c/λ is the frequency of the wave. Hence, we
end up having:

u(λ, T ) =
8πhc

λ5

1

ehc/(λkBT ) − 1
, (4.73)

which is exactly of the Wien’s universal form, but now without ultraviolet catastrophe. The total integral
over λ, together with u(T ) = (4/c)R(T ), leads to the following explicit expression for Stefan’s constant:

σ =
2π5

15

k4
B

h3c2
. (4.74)

33The Maxwell’s equations are linear. You can show that they can be regarded as describing an infinite set of linear
harmonic oscillators. See the previous discussion in this section.
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Similarly, Wien’s displacement law is easily established to lead to

λmaxT = b =
hc

4.965kB
. (4.75)

Since both σ and b had been experimentally measured, and c quite accurately known at that time, Planck
deduced values for kB (Boltzmann constant) and for h (Planck’s constant).

4.4. Ideal quantum gases

Consider now the problem of N identical quantum particles — fermions or bosons — in a box of
volume V : a quantum fluid. Let us try to approach this problem with the canonical ensemble. We
start from a Hamiltonian Ĥ of a rather general form, including interactions. In second quantisation
we would introduce field operators Ψ̂σ(x) and express Ĥ as:

Ĥ =
∑
σ

∫
dx Ψ̂†σ(x)

(
−~2∇2

2m
+ v(x)

)
Ψ̂σ(x) +

∑
σ,σ′

1

2

∫
dxdx′ Vint(|x− x′|) Ψ̂†σ′(x

′)Ψ̂†σ(x)Ψ̂σ(x)Ψ̂σ′(x
′) .

In turn, the field operators Ψ̂σ(x) — which obey standard commutation/anticommutation rules
for bosons/fermions, for instance [Ψ̂σ(x), Ψ̂†σ′(x

′)] = δσ,σ′δ(x−x′) for bosons and {Ψ̂σ(x), Ψ̂†σ′(x
′)} =

δσ,σ′δ(x−x′) for fermions — can be expanded in any one-particle basis set of spin-orbital wavefunctions
labelled by quantum numbers (α, σ), with destruction operators âα,σ, where the statistics (fermions
vs bosons) requires that these operators obey the commutation/anticommutation relations

Bosons:


[
âα,σ, â

†
α′,σ′

]
= δα,α′δσ,σ′[

â†α,σ, â
†
α′,σ′

]
= 0[

âα,σ, âα′,σ′
]

= 0

Fermions:


{
âα,σ, â

†
α′,σ′

}
= δα,α′δσ,σ′{

â†α,σ, â
†
α′,σ′

}
= 0{

âα,σ, âα′,σ′
}

= 0

.

Assume that the orbitals actually factorize into a standard orbital wave-function φα(x) times a stan-
dard spinor in such a way that Ψ̂σ(x) =

∑
α φα(x) âα,σ. There is large freedom in the choice of the

basis φα(x). 34 In general we would end-up writing (including the spin-labels in the α):

Ĥ =
∑
α,α′

Kα′,αâ
†
α′ âα +

1

2

∑
α1,α2

α′1,α
′
2

(α′1α
′
2|Vint|α1α2) â†α′2

â†α′1
âα1

âα2
, (4.77)

34For instance, one could select plane-waves φk(x) = 1√
V
eik·x, where V is the volume, and write the corresponding

expression for Ĥ as:

Ĥ =
1

V

∑
k,σ

~2k2

2m
â†k,σ âk,σ +

1

V

∑
k,q,σ

v(q)â†k+q,σ âk,σ +
1

2V

∑
k,k′,q

∑
σ,σ′

Vint(|q|)â†k′−q,σ′ â
†
k+q,σ âk,σ âk′,σ′ , (4.76)

where we have introduced the Fourier transforms of the external potential v(q) =
∫
dx e−iq·xv(x), and of the

interaction potential Vint(q) =
∫
dx e−iq·xVint(x). For the Coulomb potential in three dimensions:

4πe2

q2
=

∫
d3x e−iq·x

e2

|x|
.

Notice that: 1) the sums over wave-vectors run here over all k vectors of the form k = (kx, ky , kz) with ki =

(2πni)/Li, with all possible ni integers, and not just in the Brillouin zone (BZ) of the crystal. 2) The choice of a
plane-wave basis is optimal for the kinetic energy (which is perfectly diagonal; this term gives the usual free Fermi
gas problem), but not for the external potential, which mixes states of different k-vectors, scattering a wave with k
in all possible waves with k + q with amplitude v(q). 3) The interaction potential causes an even worse mixing of
states, by scattering two particles with wave-vectors k and k′ into states k+q and k′−q, with scattering amplitude
Vint(|q|). For electrons in a crystalline potential, the choice of φnk(x) as the Bloch states of the particle in the
potential v(x), where n is a band index and k a wave-vector running in the BZ of the (reciprocal) lattice, evidently
diagonalizes the p2/2m+ v(x) part of the Hamiltonian. One could write an expression of Ĥ in terms of such states,
introducing destruction operators ank,σ , but you realize that the Coulomb many-body mixing of states is inevitable.
There is no way around it.
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where

Kα′,α =

∫
dx φ∗α′(x)

(
− ~2

2m
∇2 + v(x)

)
φα(x)

(α′1α
′
2|Vint|α1α2) =

∫
dx1dx2 φ

∗
α′1

(x1)φ∗α′2(x2)Vint(|x1 − x2|)φα1(x1)φα2(x2)
. (4.78)

The difficulty in the many-body problem is that, in general, there is no simple way to write Ĥ as a
quadratic form of the creation/destruction operators. 35 If it was not for the interaction, or in any case
in which we have simplified our problem to a quadratic one, one might diagonalize the Hamiltonian
completely by writing it as:

Ĥ =
∑
α

εαâ
†
αâα . (4.79)

For instance, if the interactions are completely neglected, clearly the best basis-set orbitals are the
ones that diagonalize the one-particle Hamiltonian leading to Kα′,α above:(

− ~2

2m
∇2 + v(x)

)
φα(x) = εαφα(x) =⇒ Kα′,α = εαδα′,α . (4.80)

The ideal gas case. This is the setting which we consider: an ideal quantum gas, with
Hamiltonian

Ĥ =
∑
α

εαâ
†
αâα . (4.81)

All eigenstates of Ĥ are simple to write in the occupation number (of Fock) representation:

|{nα}〉 =
∏
α

(
â†α
)nα

√
nα!
|0〉 = |α〉 =⇒ E{nα} =

∑
α

εαnα = Eα . (4.82)

Here nα ∈ N are integers, which, for fermions cannot exceed 1 (by Pauli principle) while they
can have any value for bosons. The notation α will be occasionally used to distinguish these
Fock many-body states from single-particle states, denoted by α. Notice that you can set nα = 0

for all single-particle states which are not occupied. The fermionic states are nothing but the
second-quantized form of Slater determinants.

i

4.4.1. The canonical impasse

Let us try to calculate the canonical partition function of the ideal gas. Since the energy of the
eigenstates is a sum of the individual single-particle energies, it seems at first sight that we have a
simple problem:

ZCE(T, V,N) =

∑
α nα=N∑
{nα}

e−β
∑
α εαnα =

∑
{nα}

δN,
∑
α nα

∏
α

e−βεαnα . (4.83)

We see that the different sums over the nα are “correlated” by the presence of the delta-function
restriction that imposes that the total number of particles is exactly N . So, we have to get rid of this
restriction on N . How? By going over to a framework in which we do not control N , but rather its
conjugate thermodynamic variable µ. We will see that this leads to a new ensemble, called grand-
canonical ensemble. This amounts, effectively, to take a discrete Laplace’s transform which eliminates
the delta-function restriction, as explicitly shown later on.
35Many mean-field techniques — for instance, Hartree-Fock for fermionic systems — can be seen as a way of approxi-

mately reducing the quartic interaction term to a “self-consistently calculated” quadratic piece.
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4.5. The grand-canonical ensemble

To construct the new ensemble in which µ is the control variable, we start from the thermodynamic
Helmholtz free-energy F (T,X, N) (where X are other extensive variables, reducing to the volume V
in the present simple case) and take a Legendre transform with respect to N . Recall that

µ =
∂F

∂N

Invert
=⇒ N(T,X, µ) ,

and calculate
Ω(T,X, µ) = F − µN = E − TS − µN , (4.84)

with the prescription that where you see N you should substitute N(T,X, µ). Recall that all the
derivatives of F remain untouched for Ω (simply expressed in the new variables) except for the
derivative with respect to the Legendre-transformed variable µ which gets an extra minus sign:

N = −∂Ω

∂µ
. (4.85)

For the case of a simple fluid where F (T, V,N) we would write the differential of Ω and Ω itself
(recalling the Euler relation E = TS − pV + µN) as:

dΩ ≡ −SdT − pdV −Ndµ

Ω = F − µN = E − TS − µN ≡ −pV
, (4.86)

where in the last equation we should intend that p(T, µ). Notice that similarity with the Gibbs
potential, G = F + pV = −µN : the grand-canonical potential Ω is nothing but (minus) the pressure-
per-unit-volume (a product of the extensive variable V times its intensive generalized force −p).

How do we write a statistical ensemble to calculate Ω?

The gran-canonical ensemble. The analogy with the canonical ensemble suggests that a
good candidate is to set

GCE



〈Â〉GCE(T,X, µ) ≡ Tr
[
Â ρ̂GCE

]
ρ̂GCE =

∑
α

e−β(Eα−µNα)

ZGCE

|α〉〈α| = e−β(Ĥ−µN̂)

ZGCE

ZGCE =
∑
α

e−β(Eα−µNα) = Tr e−β(Ĥ−µN̂) Thermodynamics≡ e−βΩ(T,X,µ)

.

where |α = |{nα}〉 denotes the many-body Fock states, Nα = 〈α|N̂ |α〉 =
∑
α nα, and Eα =

〈α|Ĥ|α〉 =
∑
α εαnα.

i

To verify that this ensemble Ansatz is indeed correct, let us calculate the average N : 36

N = 〈N̂〉GCE =
∑
α

Nα
e−β(Eα−µNα)

ZGCE

=
1

β

∂ logZGCE

∂µ

!≡ −∂Ω

∂µ
,

36Please observe that the notation used here is such that α denotes many-body states of the whole system, and not the
single-particle orbitals that we introduced in the previous section. Notice also that the density matrix ρ̂GCE acts in
the grand-canonical-Hilbert space, also known as Fock space F, made by the direct sum of the Hilbert-spaces HN
with given N , for all N = 0, · · ·∞:

F = ⊕∞N=0HN .
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which is once again the correct thermodynamical relation for N . Notice that !
= in the second line

means that we have used there our Ansatz which states that logZGCE = −βΩ.

Equally simple is the calculation of the average E − µN in the ensemble. According to the pre-
scriptions we have:

E − µN = 〈Ĥ − µN̂〉GCE =
∑
α

(Eα − µNα)
e−β(Eα−µNα)

ZGCE

= −∂ logZGCE

∂β

!≡ Ω + β
∂Ω

∂β
= Ω− T ∂Ω

∂T
= Ω + TS , (4.87)

which is indeed the correct thermodynamical relation for Ω.

One final thing to observe is that you can rewrite ZGCE as follows:

ZGCE(T,X, µ) =
∑
α

e−β(Eα−µNα) =

∞∑
N=0

eβµNZCE(T,X, N) =

∞∑
N=0

zNZCE(T,X, N) , (4.88)

which can be regarded as the discrete Laplace transform of ZCE, where −βµ is the “Laplace variable”.
Notice that one often introduces the so-called fugacity z = eβµ in terms which we have the last
relationship above. These last remarks should clarify how the grand-canonical ensemble effectively
“solves” the canonical impasse discussed in Sec. 4.4.1 for the non-interacting quantum gases.

4.5.1. Fluctuations of particle number in the grand-canonical ensemble

As we have seen, the average number of particles N(T,X, µ) can be directly calculated from the
grand-canonical partition function:

N(T,X, µ) = 〈N̂〉GCE =

∑
αNαe

−β(Eα−µNα)

ZGCE

=
1

β

∂ logZGCE

∂µ
= −∂Ω

∂µ
. (4.89)

We can go beyond that, and calculate the second cumulant by taking a further derivative of logZGCE:

1

β

∂N

∂µ
= 〈N̂2〉 − 〈N̂〉2 = − 1

β

∂2Ω

∂µ2
. (4.90)

The fluctuations of N around the average. The interesting fact is that, once again, the
variance of N̂ is connected to a thermodynamical quantity, the isothermal compressibility κT , and
that the relative fluctuations of N around the average are small, of order 1/

√
V :√

〈N̂2〉 − 〈N̂〉2

〈N̂〉
=

√
kBTκT√
V

. (4.91)

i

Indeed, one can show that the iso-thermal “number” compressibility is closely related to the corre-
sponding “volume” compressibility:

1

N

∂N

∂µ
=
N

V
κT =⇒ 〈N̂2〉 − 〈N̂〉2

〈N̂〉2
=
kBT

V
κT , (4.92)

where the iso-thermal volume compressibility is:

κT = − 1

V

(
∂V

∂p

)
T,N

, (4.93)
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where N(T,X, µ) should be used, as usual.

To prove this remarkable identity between two seemingly unrelated thermodynamic derivatives, one
needs a Jacobean gymnastics which you can find explained in some detail in App. B. Let me recall,
very briefly, how the machinery works. Let fi(x) with i = 1 · · ·n be functions of the n variables
x = x1 · · ·xn. We denote the Jacobean determinant as:

∂(f1, f2, · · · , fn)

∂(x1, x2, · · · , xn)
= det


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
... · · ·

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 . (4.94)

It is simple to verify that (
∂N

∂µ

)
T,V

=
∂(N,T, V )

∂(µ, T, V )
. (4.95)

The usefulness of such a simple rewriting is that you can now repeatedly use the chain rules of calculus
(and the fact that the determinant of a product is the product of the determinants) to show that you
can rewrite: (

∂N

∂µ

)
T,V

=
∂(N,T, V )

∂(µ, T, V )
=

∂(N,T, V )

∂(N,T, p)

∂(N,T, p)

∂(V, T, p)

∂(V, T, p)

∂(µ, T,N)

∂(µ, T,N)

∂(µ, T, V )

=

(
∂V

∂p

)
T,N

· N
V
· ∂(V, p)

∂(µ,N)
· N
V
, (4.96)

where we used that:

∂(N,T, p)

∂(V, T, p)
=
∂(µ, T,N)

∂(µ, T, V )
=
N

V
(4.97)

and that

∂(V, T, p)

∂(µ, T,N)
=

∂(T, V, p)

∂(T, µ,N)
=

∂(V, p)

∂(µ,N)
, (4.98)

because a determinant does not change if you interchange two columns and two rows (this was used
to move T to the first position and then get rid of it). And now comes a highly non-trivial identity:
if you have a thermodynamic potential whose differential contains a term like f1 dx1 + f2 dx2 then,
quite remarkably, it follows that:

∂(f1, x1)

∂(f2, x2)
= −1 . (4.99)

To apply this result to our case, notice that dΩ = −SdT − pdV −Ndµ, from which you deduce that

− 1 =
∂(−p, V )

∂(−N,µ)
=
∂(p, V )

∂(N,µ)
=

∂(V, p)

∂(µ,N)
. (4.100)

So, substituting back in the original expression we conclude that:

(
∂N

∂µ

)
T,V

= −N
2

V 2

(
∂V

∂p

)
T,N

=
N2

V
κT . (4.101)
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4.6. Ideal quantum gas in grand-canonical ensemble

The calculation of ZGCE for the ideal quantum gas is immediate since we get rid of the annoying
restriction δN,∑α nα

. The result is:

ZGCE =
∑
α

e−β(Eα−µNα) =
∑
α

e−β
∑
α(εα−µ)nα

=
∑
{nα}

∏
α

e−β(εα−µ)nα =
∏
α

(∑
nα

e−β(εα−µ)nα

)
=
∏
α


1 + e−β(εα−µ) (F)

1

1− e−β(εα−µ)
(B)

.(4.102)

The bosonic case. Observe that in the bosonic case the geometric series converges only if

µ < min{εα} .

This will be important when discussing Bose-Einstein condensation, which we will see to occur
precisely when µ→ ε−min.

i

The calculation of the grand-canonical potential is immediate:

Ω(T, V, µ) = − 1

β

∑
α

 log(1 + e−β(εα−µ)) (F)

− log(1− e−β(εα−µ)) (B)
=

ξ

β

∑
α

log(1− ξe−β(εα−µ)) , (4.103)

where we have introduced the statistical factor ξ = −1 for fermions (F) and ξ = +1 for bosons (B).

Volume dependence. The T and µ dependence of Ω is quite transparent. Less obvious is the
V dependence. But recall that the eigenvalues εα will be discrete in a finite quantization volume
V , and indeed volume-dependent, εα(V ). For a system in a cubic box with periodic boundary
conditions, k = 2π

L (n1, · · · , nd), and with a spherically symmetric dispersion εk = Akα you easily
calculate:

∂εk
∂V

=
∂εk
∂k

∂k

∂L

(
∂V

∂L

)−1

= −α
d

εk
V
, (4.104)

which will be useful later on.

i

The whole thermodynamics follows from Ω(T, V, µ); recall that dΩ ≡ −SdT − pdV − Ndµ. The
derivatives of Ω are immediate:

S = −∂Ω

∂T
=

1

T

[
− ξ
β

∑
α

log(1− ξe−β(εα−µ)) +
∑
α

εα − µ
eβ(εα−µ) − ξ

]

p = − ∂Ω

∂V

Euler≡ −Ω

V
= − ξ

βV

∑
α

log(1− ξe−β(εα−µ))

N = −∂Ω

∂µ
=
∑
α

1

eβ(εα−µ) − ξ
≡
∑
α

〈â†αâα〉GCE

〈â†αâα〉GCE ≡ 1

eβ(εα−µ) − ξ

(4.105)

A few comments are in order. First, observe the important ingredient: the Fermi/Bose distribution
function which gives the average of the occupation number operator, which we have highlighted in the
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last expression:

〈â†αâα〉GCE =


fF (εα − µ) ≡ 1

eβ(εα−µ) + 1

fB(εα − µ) ≡ 1

eβ(εα−µ) − 1

. (4.106)

Second, notice that we have by-passed the explicit calculation of the pressure — requiring a deriva-
tive of Ω with respect to V —, by explicitly using the Euler-derived equality p = −Ω/V . A direct
calculation of such a volume derivative, however, would show a non-trivial identity:

p = − ∂Ω

∂V
= −

∑
α

(
∂εα
∂V

)
eβ(εα−µ) − ξ

≡ −
〈∑

α

∂εα
∂V

â†αâα

〉
GCE

= −
〈
∂Ĥ

∂V

〉
GCE

, (4.107)

where in the last equality we have introduced the partial derivative of Ĥ with respect to V , which
involves only the eigenvalues εα(V ) and should not be confused with the volume derivative of the
average energy (which would involve also to the occupation of each state, hence a contribution from an
entropic term): it is an iso-entropic derivative (recall the discussion we had in revisiting the canonical
ensemble from the point of view of thermodynamics).

Relationship between Ω, E, and p. Using ∂εk
∂V = −αd

εk
V , it is simple to show that:

− Ω

V

Euler≡ p(T, µ) = −
〈
∂Ĥ

∂V

〉
GCE

=
α

d

E

V
=⇒ −Ω = pV =

α

d
E(T, V, µ) . (4.108)

For non-relativistic particles, −Ω = pV = 2
dE. For the case of photons, a i.e., a linear dispersion

in d = 3, we have −Ω = pV = 1
3E. Physically, this means that the thermal radiation field

exerts pressure on the walls of the cavity in which it is enclosed. Notice that the pressure, being
intensive, cannot depend on the volume when the other two variables are intensive, hence we have
p(T, µ).
aYou can verify that the present grand-canonical formalism with µ = 0 gives back the same formulas we derived

in the canonical ensemble.

i

It is instructive to re-derive such non-trivial relationships via the density of states, through integration by
parts. Indeed, we can rewrite the grand-canonical potential as:

Ω =
ξ

β

∫ ∞
0

dε g(ε) log(1− ξe−β(ε−µ)) , (4.109)

where g(ε) =
∑
α δ(ε − εα) is the density of states. 37 Consider now the integral of the density of states

G(ε) =
∫ ε

0
dε′g(ε′) (i.e., the total number of states up to ε) and rewrite the integral by parts:

Ω =
ξ

β

[
G(ε) log(1− ξe−β(ε−µ))

∣∣∣∞
0
−
∫ ∞

0

dεG(ε)
ξβ

eβ(ε−µ) − ξ

]
= −

∫ ∞
0

dεG(ε)
1

eβ(ε−µ) − ξ
!
= − 1

αg + 1

∫ ∞
0

dε g(ε)
ε

eβ(ε−µ) − ξ
= −α

d
E(T, V, µ) . (4.110)

Notice that in the first step I have dropped the boundary term (assuming that the density of states extends
up to ∞), while in the last steps I have assumed a power-law scaling for g(ε) = Agε

αg which leads to
G(ε) = εg(ε)/(αg + 1).
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Figure 4.6.: Plot of the Fermi and Bose distribution functions, compared to the Maxwell-Boltzmann limiting
distributions to which both converge in the limit of large β(εα − µ).

4.6.1. Maxwell-Boltzmann limit

We would expect that there should be some classical limit in which the statistics of our quantum
particles should make no difference: after all the ideal classical gas laws should be recovered in some
limit. The crucial ingredient to take care is the statistics-related factor ξ. Let us look at Ω

Ω(T, V, µ) =
ξ

β

∑
α

log(1− ξe−β(εα−µ)) , (4.111)

from which all the thermodynamics follows. Observe that we can approximate the logarithm by its
lowest-order expansion if

e−β(εα−µ) � 1 ∀α =⇒ Ω =
ξ

β

∑
α

log(1− ξe−β(εα−µ)) ≈ −kBT
∑
α

e−β(εα−µ) ≡ ΩMB , (4.112)

an expression that is independent from the statistics. In the same limit

eβ(εα−µ) � 1 ∀α =⇒ N =
∑
α

1

eβ(εα−µ) − ξ
≈
∑
α

e−β(εα−µ) ≡ NMB , (4.113)

which we might express by saying that in this regime the Fermi/Bose distributions approach a common
limit:

e−β(εα−µ) � 1 ∀α =⇒ fF (εα − µ) ≈ fB(εα − µ) ≈ e−β(εα−µ) ≡ fMB(εα − µ) . (4.114)

This limiting distribution, and the regime in which it applies, see Fig. 4.6, is calledMaxwell-Boltzmann.

37Notice that we have omitted here the volume factor. Notice also that in principle there are issues associated with
Bose condensation in the lowest eigenvalue; in the end, those issues will not change the result we will derive, since
energy (and pressure) contribution of the Bose-condensed fraction is vanishingly small.
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The classical ideal gas. We now show that in the Maxwell-Boltzmann limit the classical ideal
gas equations of state are recovered. Indeed, looking at the pressure, we have:

− pV = Ω ≈ −(kBT )N =⇒ pV ≈ NkBT . (4.115)

We recover the classical ideal gas equation of state. For non-relativistic particles in d dimensions,
since Ω = − 2

dE, we also immediately get the other ideal-gas classical relationship:

E = −d
2

Ω ≈ d

2
NkBT .

i

Let us explore a bit more the regime in which our quantum gas becomes essentially classical. One
of our goals is to show that in this limit we recover the prescription on the hdN factor we used in the
classical partition function, and also the 1/N ! indistinguishability factor we have inserted in a rather
ad hoc fashion, to make the classical entropy nicely extensive.

One of the things that you should not be fooled by, is to assume that the classical limit corresponds
to high temperature (which is true) and hence you can take eβ(µ−εα) ≈ 1, which is wrong, because in
the Maxwell-Boltzmann limit the chemical potential µ turns out to be large and negative, as we will
now show, leading to eβ(µ−εα) � 1.

For definiteness, let us consider the usual free-particles with non-relativistic dispersion εk = ~2|k|2/(2m).
Accounting for a degeneracy factor gS related to the spin of the particles (gS = 2S + 1), the average
number of particles N in the Maxwell-Boltzmann limit is given by:

N ≈ gS
∑
k

e−β(εk−µ) ≈ gSeβµLd
∫

dk
(2π)d

e−βεk

= gSeβµV
∫

dp
(2π~)d

e−β
p2

2m = gSeβµ

Zcl
1︷ ︸︸ ︷∫

dq dp
hd

e−βHcl(q,p)

= gSeβµV
(

2πmkBT

h2

) d
2

= gSeβµ
V

λdT
.

(4.116)

In the last expression, we have performed the Gaussian integral and observed that this brings-in a
quantum-related length

λ2
T =

h2

2πmkBT
=⇒ ~2

2mλ2
T

=
kBT

4π
, (4.117)

known as thermal de-Broglie wavelength. The expression just above it suggests a relationship with the
classical single-particle partition function, with a conspicuous factor hd in the denominator. We can
rewrite the expression we have derived as:

eβµ ≈ NλdT
gSV

. (4.118)

But in the Maxwell-Boltzmann limit we must have eβ(µ−εk) � 1 ∀εk, hence:

eβµ � 1 =⇒ λdT � gS
V

N
=
gS
n
,

where n = N/V is the density.
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The classical limit. Hence, the classical limit requires that T is large enough so that the
thermal de-Broglie wavelength is much smaller than the average inter-particle separation:

λdT � gS
V

N
=
gS
n
. (4.119)

Correspondingly the chemical potential must be large and negative:

µ ≈ −kBT log
gSV

NλdT
= −kBT log

gSV

N

(2πm

h2
kBT

) d
2

. (4.120)

We see that the classical limit requires a combination of high-T/low-density, or, better, a precise
relationship between the thermal length λT and the density.

i

We are not done yet. I promised we would understand the 1/N ! (Gibbs counting). To do that, we
have to get the canonical partition function, which is rather easy to extract in the Maxwell-Boltzmann
limit. Observe that −βΩMB = NMB = gSeβµZcl

1 , hence:

ZMB

GCE(T, V, µ) = e−βΩMB = egSeβµZcl
1 . (4.121)

Next, Taylor-expand the exponential ex with x = gSeβµZcl
1 to deduce that:

ZMB

GCE(T, V, µ) = egSeβµZcl
1 =

∞∑
N=0

eβµN
1

N !

(
gSZ

cl
1

)N︸ ︷︷ ︸
ZMB

CE

≡
∞∑
N=0

eβµNZMB

CE (T, V,N) . (4.122)

This leads us to the conclusion that in the Maxwell-Boltzmann limit, for free gas, we should use:

ZMB

CE (T, V,N) =
gNS
N !

(
Zcl

1

)N
=
gNS
N !

∫
dq1 · · · dqNdp1 · · · dpN

hdN
e−βHcl(q1···qN ,p1···pN ) , (4.123)

which coincides with our guess when gS = 1 (no spin degeneracy). 38

A word about the entropy of mixing and the Gibbs paradox, see for instance [5][Sec. 1.5]. As you
recall, this Gibbs counting 1/N ! makes the classical entropy nicely extensive. If you drop it, you would
find the paradox — known as Gibbs paradox— that mixing (by removing an internal wall) two identical
ideal gases at the same density and temperature leads to an increase in the total entropy. Notice that
mixing two different gases, or even the same gas but at two different densities and/or temperatures,
does lead to an increase of entropy, but this is not a paradox: indeed, mixing is irreversible. But
when the two gases are identical and in identical thermodynamic conditions, removing or inserting a
division wall is a perfectly reversible action. If you do the calculation without the Gibbs factor 1/N !

you would find an increase of entropy also in this reversible case.

We now move to the analysis of the low-temperature behaviour of quantum ideal gases, where
statistics plays a crucial role. We start with fermions.

38Obviously, this shows the validity of the Gibbs counting prescription only for free gas in a box. A similar exercise can
be repeated for free particles in a parabolic confining potential, and the result would be once again the one we have
stated. For general interacting quantum particles, the derivation of the classical limit is not that straightforward, as
far as I can see.
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4.6.2. The ideal Fermi gas

Let us start with the ideal Fermi gas. The grand-canonical potential is:

Ω = −kBT
∑
α

log(1 + e−β(εα−µ))

= −kBT V
∫ ∞
−∞

dε g(ε) log(1 + e−β(ε−µ)) , (4.124)

where we have defined as usual the density-of-states per unit volume:

g(ε) =
1

V

∑
α

δ(ε− εα) (4.125)

The total number of fermions is, recalling that fF (ε− µ) = 1
eβ(ε−µ)+1

:

N = −∂Ω

∂µ
=
∑
α

1

eβ(εα−µ) + 1
=

∑
α

fF (εα − µ)

= V

∫ ∞
−∞

dε g(ε) fF (ε− µ) . (4.126)

Inverting N(µ, T ). The grand-canonical ensemble was instrumental in doing the calculations,
but we would like to express physical quantities in terms N , or the density n = N

V , rather than µ.
So, we would like to invert this dependence and express µ(n, T ). We will do that at low-T only:
for general T , you need a numerical approach.

!

By considering the usual non-relativistic dispersion εk = ~2|k|2
2m , one can write:

g(ε) = gS
Ωd

(2π)d
1

2

(
2m

~2

) d
2

ε
d
2−1 , (4.127)

where gS = 2 corresponds to the spin-degeneracy factor for a spin-1/2 particle. We define the T = 0

chemical potential to be εF , the so-called Fermi energy. The Fermi function, observe, approaches
more and more a Heaviside distribution as we lower the temperature. So, at T = 0 we have:

µ(T = 0)
def
= εF and fF (εk − εF ) = Θ(εF − εk) = Θ(kF − |k|) ,

where Θ(x) is the Heaviside function and we have defined, for a spherically symmetric dispersion, the
Fermi momentum kF to be simply the value of |k| at which εkF = εF . In words: all energy levels
with εk < εF , or equivalently |k| < kF , are occupied with only one particle, according to the Pauli
principle; but we must also account for the spin-degeneracy factor gS = 2.

We now impose that zero-temperature the chemical potential, εF , is such as to fit all particles:

N = V

∫ εF

0

dε g(ε) = gS V
Ωd

(2π)d
1

d

(
2m

~2

) d
2

ε
d
2

F

= gS V
Ωd

(2π)d
1

d
kdF , (4.128)

where εF =
~2k2

F

2m . Notice that the expression in terms of kF is more general: any isotropic dispersion
ε|k| would be expressed in terms of kF in the same way:

N = gS V

∫
dk

(2π)d
θ(kF − |k|) = gS V

Ωd
(2π)d

∫ kF

0

dk kd−1 = gS V
Ωd

(2π)d
kdF
d
. (4.129)
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A useful expression is also the fact that:

g(εF ) = gS
Ωd

(2π)d
1

2

(
2m

~2

) d
2 ε

d
2

F

εF
=
d

2

n

εF
, (4.130)

where n = N/V is the density of particles.

These considerations fix the limiting behaviour of µ(T → 0) = εF : a curve for µ(T, n) will eventually,
starting from µ(0, n) = εF , reach the classical expression in Eq. (4.120), µ ≈ −kBT log gS

n ( 2πm
h2 kBT )

d
2 .

Let us see how to calculate the corrections to this T = 0 result. Consider the expressions for
N(T, V, µ) or E(T, V, µ):

N(T, V, µ) = V

∫ ∞
0

dε g(ε) fF (ε− µ)

E(T, V, µ) = V

∫ ∞
0

dε g(ε) ε fF (ε− µ) . (4.131)

More generally, one often encounters integrals of the form

I(T, µ) =

∫ ∞
−∞

dε fF (ε− µ) φ(ε) , (4.132)

for which one would like to obtain a low-temperature expansion. A general technique to do that is
provided by the Sommerfeld expansion.

The Sommerfeld expansion

Figure 4.7: The Fermi func-
tion fF (ε) = 1

eβε+1
and its

derivative, or rather −f ′F =

β eβε

(eβε+1)2
, for two values of the

temperature.

I will follow here the presentation by Arovas [1]. Notice that the derivative of the Fermi function
f ′F (ε)

f ′F (ε) = −β eβε

(eβε + 1)2
, (4.133)

is essentially a smoothed version of a Dirac delta function, since∫ ∞
−∞

dε f ′F (ε− µ) = fF (+∞)− fF (−∞) = −1 .
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Since we will soon integrate by parts our expression for I(T, µ), let us define the primitive function of
φ(ε):

Φ(ε) =

∫ ε

−∞
dε′ φ(ε′) . (4.134)

Since the boundary term can be easily argued to vanish, the integral in I(T, µ) can be rewritten as:

I(T, µ) = −
∫ ∞
−∞

dε f ′F (ε− µ) Φ(ε) = −
∫ ∞
−∞

dε f ′F (ε) Φ(ε+ µ) . (4.135)

Expand now Φ(ε+ µ) in powers of ε:

Φ(ε+ µ) =

∞∑
n=0

εn

n!

dnΦ(µ)

dµn
= eε

d
dµΦ(µ) . (4.136)

Hence we can rewrite, changing variable to x = βε and defining D̂ = kBT
d

dµ :

I(T, µ) = −
∫ ∞
−∞

dε f ′F (ε) eε
d

dµ Φ(µ) = β

∫ ∞
−∞

dε
eβε

(eβε + 1)2
eε

d
dµ Φ(µ)

=

∫ ∞
−∞

dx
ex

(ex + 1)(ex + 1)
exD̂ Φ(µ) =

∫ ∞
−∞

dx
1

(ex + 1)(e−x + 1)
exD̂ Φ(µ)

=

[
1 +

π2

6
D̂2 +

7π4

360
D̂4 + · · ·

]
Φ(µ)

= Φ(µ) +
π2

6
(kBT )2 ∂

2Φ

∂µ2
+

7π4

360
(kBT )4 ∂

4Φ

∂µ4
+ · · ·

=

∫ µ

−∞
dε φ(ε) +

π2

6
(kBT )2 ∂φ

∂µ
+

7π4

360
(kBT )4 ∂

3φ

∂µ3
+ · · · . (4.137)

A few comments are in order. The fact that only even powers of D̂ contribute is very simple since the
remaining integrand is even in x. The integrals over x can be performed by the method of residues,
the poles being given by the Fermi function, and one can even give an explicit expression for the
integral of the D̂ operator, see [1][Eq. 5.234 on page 224]. 39

The low-T behaviour of a Fermi gas

Let us apply the Sommerfeld expansion to the density n = N/V , where φ(ε) = g(ε). Then we can
write:

n =
N

V
=

∫ µ

−∞
dε g(ε) +

π2

6
(kBT )2g′(µ) + · · ·

Taking then µ = εF + δµ and looking for the leading-order in T for the corrections δµ we can finally
write:

n =

∫ εF

−∞
dε g(ε)︸ ︷︷ ︸
n

+g(εF )δµ+
π2

6
(kBT )2g′(εF ) + · · · ,

39If you define

OS(D̂) =

∫ ∞
−∞

dx
exD̂

(ex + 1)(e−x + 1)
= (2πi)

∞∑
n=0

Res
ezD̂

(ez + 1)(e−z + 1)

∣∣∣∣
zn=i(2n+1)π

,

a simple application of the residue theorem leads to the expression:

OS(D̂) =
πD̂

sin(πD̂)
=

1

1− 1
3!

(πD̂)2 + 1
5!

(πD̂)4 + · · ·
= 1 +

π2

6
D̂2 +

7π4

360
D̂4 + · · · .
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which finally leads to: 40

δµ = −π
2

6
(kBT )2 g

′(εF )

g(εF )
+ · · · = −π

2

12

(kBT )2

εF
+ · · · , (4.138)

where the last expression applies to a d = 3 dimensional non-relativistic free Fermi gas.

Consider now the energy E(T, V, µ). Here the function to be considered is φ(ε) = εg(ε). Hence we
have:

E

V
=

∫ µ

−∞
dε εg(ε) +

π2

6
(kBT )2 ∂

∂µ

(
µg(µ)

)
+ · · ·

=

∫ µ

−∞
dε εg(ε) +

π2

6
(kBT )2

(
g(µ) + µg′(µ)

)
+ · · ·

=

∫ εF

−∞
dε εg(ε)︸ ︷︷ ︸
εgs

+���
��εF g(εF )δµ +

π2

6
(kBT )2

(
g(εF ) +���

�
εF g
′(εF )

)
+ · · ·

= εgs +
π2

6
(kBT )2g(εF ) + · · · (4.139)

Let us turn to the pressure. Given the fact that Ω = −E/(αg + 1) = −2E/d we can write:

p = −Ω

V
=

2

d

E

V
=

2

d

[
εgs +

π2

6
(kBT )2g(εF ) + · · ·

]
(4.140)

an expression that smoothly goes towards the Maxwell-Boltzmann limit p ≈ nkBT for large T .

Finally, let us consider the entropy and the specific heat. Observe that the previous expression
provides Ω as a function of T and N , and not µ. Hence, you should refrain from taking the derivative
with respect to T to calculate S. Rather start again from an expression in which µ appears, see
Eq. (4.139):

Ω(T, V, µ) = −2

d
V

[∫ µ

−∞
dε εg(ε) +

π2

6
(kBT )2

(
g(µ) + µg′(µ)

)
+ · · ·

]
. (4.141)

and calculate:

S(T, V, µ) = −∂Ω

∂T
=

2

d
V

[
π2

3
k2
BT
(
g(µ) + µg′(µ)

)
+ · · ·

]
=

2

d
V
π2

3
k2
BT

[
��
�g(εF ) +

(d
2
− �1
)
g(εF )

]
+ · · ·

= V
π2

3
k2
BTg(εF ) + · · · (4.142)

which is also the low-T expression for S(T, V,N). From the entropy we can calculate the constant-
volume specific heat:

Cv
V

=
T

V

∂S

∂T

∣∣∣∣
V,N

=
π2

3
k2
BTg(εF ) + · · · = γT + · · ·

γ =
π2

3
k2
Bg(εF ) =

π2

3
k2
B

d

2

n

εF
. (4.143)

Notice that this predicts a linear in T specific heat for metals at low T .41

40If g(ε) = g(εF )(ε/εF )αg with αg = (d− 2)/2 then you immediately deduce that g′(εF )/g(εF ) = αg/εF .
41This contribution is usually much smaller than the phonon contribution (proportional to T 3), with the possible

exception of heavy fermion systems.
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The low-temperature behaviour of fermionic interacting systems is usually treated in the so-called
Fermi Liquid Theory, see for instance the book by Nozières or the lecture notes by M. Fabrizio.

Concerning the Pauli paramagnetic susceptibility, see for instance [1][Sec. 5.8.8]:

χ =
∂M

∂H

∣∣∣∣
T,V,N

= µ2
Bg(εF ) . (4.144)

A possible exercise concerns the Landau diamagnetic contribution to the magnetic susceptibility, see
for instance [1][Sec. 5.8.9].

4.6.3. The ideal Bose gas

Very nice treatments are given by Arovas [1] and Pathria [5]. Pathria, in particular, gives a nice
discussion (see his Appendix F) of a technique to calculate the grand-canonical density of particles
of a Bose gas by directly tackling the exact relevant sums through the Poisson’s summation formula
and related mathematical identities. Let us start from the expression for the density of particles of
an ideal Bose gas:

n(T, µ) =
N

V
= − 1

V

∂Ω

∂µ
=
∂p

∂µ
=

1

V

∑
α

1

eβ(εα−µ) − 1
≡ nsum(T, µ) .

For a gas consisting of free non-relativistic bosons in a d-dimensional box of volume V = Ld the εα
would be the usual εk = ~2k2/(2m) and k = (2π/L)(n1, · · · , nd) if, for instance, we assume periodic
boundary conditions. The mimimum eigenvalue is hence ε0 = 0, separated from the next levels by a
splitting ∆E = h2/(2mL2) ∼ 1/V 2/d. If µ < 0 (and finite), hence the fugacity z = eβµ < 1, and all
the individual terms in the sum contribute

1

V

1

eβ(εα−µ) − 1
<

1

V

1

e−βµ − 1
=

1

V

z

1− z
∼ 1

V
.

It is reasonable to expect that the sum of these small but very dense 42 contributions can be captured
very well by approximating the sum with an integral, with the usual density of states technique. But
we should be aware that it might happen that z gets so close to 1 (or, equivalently, that µ→ 0−) in
such a way that contribution from the lowest eigenvalue ε0 = 0

N0

V
=

1

V

1

e−βµ − 1
=

1

V

z

1− z
,

could become finite (i.e., N0 ∝ V ), and we would completely miss it when we transform the sum into
an integral. Indeed, you realize that

lim
µ→ε−0

nsum(T, µ) = +∞ ,

a very nice feature, since it allows to find a value of µ for any fixed density n you might want to
allocate to the different eigenstates. So, let us tentatively transform the sum into an integral

nint(T, µ) =

∫ ∞
0

dε
g(ε)

eβ(ε−µ) − 1
=

Ag
βαg+1

∫ ∞
0

dx
xαg

z−1ex − 1
, (4.145)

42For 4He particles in a box of side L = 1 cm, the typical splitting is

~2

2mea2
B

4π2 me

4mp

(aB
L

)2
∼ 10−17 eV ∼ 10−13 K/kB .

Hence, if you are summing a function whose typical scale of variation is much larger than the previous extra-tiny
splitting, it is legitimate to substitute the sum with an integral. The catch is that the Bose distribution diverges for
ε→ 0 when µ→ 0−, hence the previous conclusion is risky. Indeed, it fails when Bose-condensation occurs.
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where the notation “int” reminds us that this is only the regular (smooth) part of the sum obtained
from the integral of the density of states, ignoring the possibly important contribution from a massive
occupation of the lowest energy eigenvalue. In the final expression we have assumed a standard power-
law form for the density of states g(ε) = Agε

αg , where αg = d/2− 1 for free non-relativistic particles,
and transformed the integral by rescaling the variables to take out the temperature dependence. Notice
that for µ < ε0 = 0, the singularity in the integral is entirely due to g(ε), and is usually integrable (for
instance, g(ε) ∼ 1/

√
ε in d = 1). If you increase z towards 1− (or, equivalently, µ→ 0−) this integral

increases. Let us try to understand what happens if I set z = 1 inside the integral, which gives the
maximum value that nint(T, µ) can reach at fixed T :

nint(T, µ) < ncr(T ) ≡ nint(T, 0
−) =

Ag
βαg+1

∫ ∞
0

dx
xαg

ex − 1
. (4.146)

Here the issue is the singularity of the integrand close to x = 0, with the Bose distribution function
contributing a crucial factor 1/x. The density of states gives a factor xd/2−1 so that the integrand,
close to x→ 0, is:

∼ x d2−1 1

x
∼ x−1+ d−2

2 =


x−

3
2 d = 1 =⇒ divergent

x−1 d = 2 =⇒ divergent
x−

1
2 d = 3 =⇒ finite

.

Hence we realize that nint(T, µ) is bounded by a finite value of ncr(T ) in d = 3, while ncr =∞ in d ≤ 2.
But being bound by a finite value means that I cannot find a chemical potential if the density of the
gas happens to be n > ncr(T ). You realize that this is not a nice property of our grand-canonical
approach: I can give you a high-enough density n such that all the states I have accounted for by the
density of states integral would not be able to accommodate all of the particles, even if I set µ = 0−,
which is the maximum value a Bose system can tolerate! Luckily, this is not a disaster at all, it is
simply a pitfall of our approach of transforming a sum into an integral: we missed completely the
ability that the system has to massively occupy the lowest-eigenvalue ε0. Indeed, the original sum
does diverge when z → 1:

lim
µ→0−

nsum(T, µ) = lim
µ→0−

1

V

∑
α

1

eβ(εα−µ) − 1
= +∞ ,

whence whatever is the value of n, and the temperature T , I can always find a µ suitably close to 0−

such that n = nsum(T, µ). Before “amending” the previous replacement of nsum → nint, to correctly
describe Bose condensation, let us calculate the relevant integrals in a more precise fashion (although
the main ingredients are already there and the essence of what we said does not change). Indeed, the

Figure 4.8.: The Poly-logarithm function Lis(z) for s = 1
2
, 3

2
, 5

2
. Figure taken from Arovas [1].

integral appearing in Eq. (4.145) can be given an analytic expression in terms of the Poly-logarithmic43

43Pathria calls them the Bose-Einstein functions, and denotes them by gν(z), see Eq. 10 in Sec. 7.1.
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functions (see Fig. 4.8)

Lis(z) ≡
1

Γ(s)

∫ ∞
0

dx
xs−1

z−1ex − 1
=

∞∑
k=1

zk

ks
, (4.147)

essentially a generalisation of the Riemann zeta-function ζ(s), to which it reduces for z = 1, Lis(1) ≡
ζ(s). The algebra leading to this power-law expansion is quite simple. 44 Since ξ(s) is finite for
s > 1, while it diverges for s ≤ 1, you conclude that the same occurs to Lis(z) for z → 1−. Using the
expression for the density of states of non-relativistic particles, including a possible spin-degeneracy
factor gS, we get:

nint(T, µ) =
Ag

βαg+1
Γ(αg + 1) Liαg+1(z) = gS λ

−d
T Li d

2
(z)

ncr(T ) ≡ nint(T, 0
−) = gS λ

−d
T Li d

2
(1−) = gS λ

−d
T ζ(d2 ) = gS

(
2πmkBT

h2

) d
2

ζ(d2 )

. (4.148)

The crucial ingredient to watch for is the finite Riemann zeta function ζ( 3
2 ) ≈ 2.612. Hence, in d = 3,

given a certain density n we will not be able to find a suitable chemical potential to describe it when
T < Tc where the critical temperature Tc is given by:

ncr(Tc) = gS

(
2πmkBTc

h2

) 3
2

ζ( 3
2 ) ≡ n =⇒ kBTc =

2π~2

m

(
n

gSζ( 3
2 )

) 2
3

. (4.149)

Allowing for the correct density when d ≥ 3. So, the solution in d = 3 can be written as
follows:

n = nint(T, µ) = gS

(
2πmkBT

h2

) 3
2

Li 3
2
(z) for T > Tc

n = n0(T ) + gS

(
2πmkBT

h2

) 3
2

ζ( 3
2 ) for T < Tc

. (4.150)

Observe that the first equation is in the grand-canonical spirit: given n and T > Tc you should
find the appropriate µ(T, n) that gives nint(T, µ(T, n)) ≡ n. The second equation is essentially
“canonical”, in the sense that we have set µ = 0− and, given n, we postulate that n0(T ) is finite
— hence N0 = V n0(T ) is a massive extensive number — in such a way as to allow the particles
that do not fit in the regular part “outside the condensate”. The same would hold for any d > 3,
where the Riemann zeta function ζ(d2 ) is finite.

i

We get (by difference) that the density of particles that “condense” in the lowest eigenvalue ε0 is:

n0(T )

n
= 1− 1

n
gS

(
2πmkBT

h2

) 3
2

ζ( 3
2 ) ≡ 1−

(
T

Tc

) 3
2

. (4.151)

Notice that the occupation of the lowest eigenvalue is macroscopic below the transition temperature,
which amounts to a chemical potential which is infinitesimally close to 0−:

N0 = V n0 =
1

z−1 − 1
=⇒ z = eβµ =

1

1 + 1
N0

=⇒ µ ≈ −kBT
N0
→ 0− .

44Simply expand the function inside the integral, after a simple rewriting, using the usual geometric series:∫ ∞
0

dx
xs−1

z−1ex − 1
=

∫ ∞
0

dxxs−1 ze−x

1− ze−x
=

∞∑
k=1

zk
∫ ∞

0
dx xs−1e−kx =

∞∑
k=1

zk

ks

∫ ∞
0

dt ts−1e−t︸ ︷︷ ︸
Γ(s)

.
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No condensation is predicted for d ≤ 2, because ζ(d2 ), and hence ncr, are infinite. The condensation
transition in d = 3 leaves a distinct feature in all thermodynamical quantities as T approaches Tc.
We should stress, however, that the bosons in the condensate do not contribute to Ω, p, or E. The
calculation of all these thermodynamical quantities (p, Cv) is in principle straightforward but in
practice a bit tedious. You find plenty of details of these derivations for instance in [5][Chap.7]. I
simply collect here a few useful graphs, taken from [5] and [1].

Figure 4.9.: Various thermodynamical quantities for the Bose-Einstein condensation of free non-relatistic
particles in d = 3. Figures taken from Pathria [5].

Figure 4.10.: Left: Specific heat of liquid 4He in the vicinity of the λ-transition. Data from M. J. Buckingham
and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961). Inset
at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68, 174518 (2003) performed in zero gravity
earth orbit, to within ∆T = 2 nK of the transition. Right: pT phase diagram of 4He. Figures, and left caption,
from Arovas [1].

A remarkable similarity exists between these findings and the low-temperature physics of the queen
of all bosonic particle fluids, 4He, which becomes liquid at T < 4.2K and superfluid at a temperature
T < 2.17K (at atmosferic pressure). The similarity, first pointed out by F. London in the late 1930s,
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45 is in some respects not perfect, because interactions are known to be important in 4He, leading to a
fraction of condensate of only a few percent even at the lowest temperatures. 46 Fig. 4.10 below shows
the remarkable λ-transition specific-heat that the fluid shows when it becomes superfluid. Close to it,
the pT phase diagram of 4He.

4.7. Bose-Einstein condensation in trapped cold atomic gases

Einstein’s prediction of Bose condensation was finally realized through a series of remarkable ex-
periments with trapped ultracold atomic gases, which led to the Noble prize in physics for Cornell,
Wieman and Ketterle in 2001. 47 To achieve condensation, they had to achieve temperatures of the
order of nK, by magneto-optical traps (MOTs), followed by evaporative cooling in a magnetic trap.
The first important step involves Doppler laser cooling, which brings the atomic cloud to temperatures
in the µK range. The second step involves evaporative cooling of the atoms in a magnetic harmonic
trap created by a certain combination of uniform and quadrupolar magnetic fields. Here are a few
details.

Figure 4.11: Time-of-flight images
from the first observation of Bose-
Einstein condensation in a dilute vapour
of 87Rb by Anderson et al. (1995) at
temperatures just above and below the
phase transition temperature.

Laser Doppler cooling — and also optical molasses (Nobel prize to Chu and Cohen-Tannoudji in
1997) — involves a rather simple idea. One uses three orthogonal counter-propagating laser beams
that are slightly off-resonance to one of the transition lines ∆E of the atoms we are trying to cool
down, more precisely ~ω < ∆E, where ω is the frequency of the laser beam. A stationary atom
would therefore not absorb the photons of the beam. An atom moving with a certain velocity v would
however see a Doppler-shifted photon: blue-shifted if the photon comes from the direction opposing
the velocity v. This will lead atoms to absorb photons from the direction in which they move, receiving
an extra momentum by the photon, hence reducing their velocity. The photon is then re-emitted in all
possible directions: hence, on average, the original velocity in a certain definite direction is decreased.
The limiting T which you can reach by this mechanism is essentially set by the final back-kick that
an atom gets when re-emitting the photon, which is called the recoil limit. If ~k is the momentum of
the photon emitted (and the momentum that a rest-atom would get in emitting it), we can estimate:

~k =
~ω
c
≈ ∆E

c
=⇒ kBTeff ≈

1

2m

(
~ω
c

)2

∼ 1µK ,

45London took the density of liquid Helium n = 2.2×1022cm−3, a massm = 6.65×10−27kg, and calculated Tc = 3.16K,
remarkably close to the Helium λ-point.

46In more technical terms, a free Bose gas shows full Bose condensation in the zero-momentum lowest-energy single-
particle state, but would not display a superfluidity response, because interactions are important for that, as the
Bogoljubov theory shows. Viceversa, a bosonic system in low dimensions might show superfluidity without having
an actual “condensate fraction”.

47Cornell and Wieman achieved Bose condensation of Rb87, while Ketterle used Na23, both in 1995.
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for the relevant spectral lines of Rb 48 or Na atoms.

To cool below the µK range, one route is to turn off the lasers and make use of traps made of
spatially-varying magnetic fields and evaporative cooling. Notice that the atoms are neutral, but they
possess a magnetic moment µ— emerging from the hyperfine interaction and given by the sum of the
electronic angular momentum J and the nuclear angular momentum I —, hence there is a Zeeman
−µ · B energy contribution. For instance, the ground state of 87Rb has total angular momentum
(electronic and nuclear) F = 1.

If the magnetic field varies in space, then atoms with their magnetic moment anti-aligned to the
field will try to go towards regions of low |B| to reduce their energy: they are called low-field seeking
atoms.

A crucial fact that one should keep in mind is that the magnetic field strength |B| can have no
maximum, but it can have a minimum. To understand that, observe that there is a theorem of
electrostatics, called Earnshaws theorem, which states that a charged body under the action of an
electric field alone cannot be at rest in stable equilibrium. This is a consequence of the Laplace
equation of electrostatics and the property of electric potentials with zero Laplacian: they cannot
have a maximum or a minimum.

But magnetic fields add a twist to the story, in that respect. One can show that |B(x)|2 can have
minima in space, which provide attractive potential wells for the low-field seeking atoms with anti-
aligned magnetic moments. Indeed, not only we have that ∇ ·B = 0 (in general) but also, in absence
of currents, ∇×B = 0. Hence we have that:

∇× (∇×B) = ∇(∇ ·B)−∇2B = −∇2B ≡ 0 =⇒ ∇2Bi = 0 ,

which is true for all components Bi of the magnetic field. Consider now Bz. Since ∇2Bz = 0 we can
apply Green’s theorem 49 to show that Bz(xc) at any point xc is equal to the average of Bz(x) on a
sphere S of radius R around xc:

Bz(xc) =
1

4πR2

∫
S

Bz(x) . (4.152)

As a consequence, it is simple to show, by contradiction 50 that |B(x)|2 cannot have a maximum. On
the contrary, nothing forbids that |B(x)|2 has a minimum at some point xc. 51 There are several
48Detailed numbers for 87Rb are given by Steck. Very quickly, 87Rb has a nuclear spin I = 3

2
and a ground state 5

2S 1
2
which eventually has a total angular moment F = J + I with F = 1. Above, there is a close in energy F = 2

state. Further up, around ~ω ≈ 1.6 eV above, there are multiplets originating from 5 2P 1
2
, with F = 1, 2, and from

5 2P 3
2
, with F = 0, 1, 2, 3.

49Green’s theorem states that: ∫
V

(φ∇2ψ − ψ∇2φ) dx =

∫
S=∂V

(φ∇ψ − ψ∇φ) · dS .

Applying this to ψ = Bz and φ = 1
|x| , and using that ∇2 1

|x| = −4πδ(x), it is simple to prove the average theorem.
50Assume that xc = 0 is such a maximum. Let B(0) = ẑBz(0) with Bz(0) > 0, without loss of generality. Then write

B(x) = B(0) + δB(x) and calculate

|B(x)|2 − |B(0)|2 = |δB(x)|2 + 2B(0) · δB(x) = |δB(x)|2 + 2Bz(0)δBz(x) .

In order for it to be a maximum, we should have Bz(0)δBz(x) < −|δB(x)|2 < 0 around xc = 0, hence δBz(x) < 0

since Bz(0) > 0. But, by Laplace’s average theorem, Bz(0) > 0 must equal its average on any sphere around xc = 0,
hence:

0 = δBz(0) =
1

4πR2

∫
S
δBz(x) ,

which implies that δBz(x) must average to zero on such a sphere, hence definitely δBz(x) will attain positive and
negative values around xc = 0.

51Indeed, taking xc = 0 and defining δB(x) = B(x)−B(0), we should have

|B(x)|2 − |B(0)|2 = |δB(x)|2 + 2B(0) · δB(x) = |δB(x)|2 + 2Bz(0)δBz(x) ≥ 0 ,

which is perfectly possible.
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possible solutions where |B(x)|2 shows a minimum, as it is simple to realize. Take for instance a
quadrupolar B-field of the form B(x) = Cxx x̂ + Cyy ŷ + Czz ẑ with Cx + Cy + Cz = 0 so as to have
∇ ·B = 0. One such choice 52 would be to take Cz = 2Bq and Cx = Cy = −Bq, resulting in

B(x) = Bq

(
2z ẑ− (x x̂ + y ŷ)

)
=⇒ |B(x)|2 = B2

q

(
4z2 + (x2 + y2)

)
. (4.153)

To summarize, it is possible to realize magnetic field arrangements such that |B(x)|2 has a minimum in
space. In some arrangements, time-varying magnetic fields are also used, like in the TOP quadrupolar
trap used in the original Nobel prize-winning experiments on Rb atoms. The details of the trap
configurations are beyond the scope of our discussion: quite many possibilities are there, with their
tricks of the trade.

All in all, it suffices here to say that experimentalists have been able to create very cool clouds of
many thousands of neutral bosonic atoms in traps that, close to their minimum for and for a limited
energy range — set by the evaporative cooling process 53 —, can be thought of as harmonic:

Veff(x, y, z) =
m

2

(
ω2

1x
2 + ω2

2y
2 + ω2

3z
2
)
. (4.154)

The potential will saturate sufficiently away from the minimum, which implies that atoms with a
sufficiently large velocity with actually escape from the minimum well: as mentioned above, such a
process is called evaporative cooling. In typical magnetic traps, ωi ∼ 2πf with f ∼ 100Hz, which
corresponds to an energy ~ωi ∼ 4.8 · 10−9K. The spectrum of the harmonically trapped atoms will be
given by:

εn1n2n3
=

~
2

(ω1 + ω2 + ω3)︸ ︷︷ ︸
ε0

+~ω · n , (4.155)

where ε0 is the minimum eigenvalue. This should be contrasted with the free-particle 3d parabolic
dispersion

εn1n2n3
=

~2

2m

(
2π

L

)2

(n2
1 + n2

2 + n2
3) . (4.156)

As you know, the 3d parabolic dispersion corresponds to a density of states g3d(ε) ∼
√
ε, which is

such that a transition at finite T is possible. Correspondingly, for the harmonic potential well, we can
define the associated density of states to be

gharm(ε) =
∑
n
δ(ε− ε0 − ~ω · n) . (4.157)

I will now argue that, provided you neglect the fine-structure of this function, which is legitimate if T
is higher than the typical separation between the various Dirac’s deltas making it, kBT � ~ωi, you
can approximately show that

gsmooth
harm (ε) ≈ 1

2(~ω0)3
(ε− ε0)2 + · · · , (4.158)

where ω3
0 ≡

∏
i ωi.

52Another possible solution is a combination of a uniform field along ẑ with a linear quadrupolar field in the xy-plane:

B(x) = B0ẑ +B⊥(xx̂− yŷ) =⇒ |B(x)|2 = B2
0 +B2

⊥
(
x2 + y2

)
.

53The radio-frequency driven evaporative cooling mechanism used to achieve nK temperatures is based on a simple
ingredient: due to the Zeeman coupling, the energy difference between a trapped F = 1,mF = −1 Rb atom, for
instance, and the untrapped mF = 0,+1 atom depends on the distance of the atom from the trap centre. By setting
a certain radio-frequency drive ωrf you can provoke transitions between mF = −1 that have too large a velocity,
visiting regions of the trap too far from the centre, and the untrapped states: after the transition, the untrapped
atoms leave the trap and the average kinetic energy of the atomic cloud decreases. This is similar to blowing on a
cup of hot tea.
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Remember the harmonic oscillator DOS? If you recall, we already encountered something
similar when discussing the density of states of linearly dispersing modes ωk = v|k|, like for
phonons or photons. This was giving rise to T 3 corrections in the specific heat.

i

To show this, consider the Laplace transform of the density of states. Setting ε0 → 0 we can write:

ĝ(β) =

∫ ∞
0

dε e−βε
∑
n
δ(ε− ~ω · n) =

∑
n

e−~βω·n =

3∏
i=1

∞∑
ni=0

e−~βωini

=

3∏
i=1

1

1− e−~βωi
. (4.159)

Consider now the Laplace transform for small β, which will capture the large-ε scale behaviour of
gharm(ε). It is simple to show that

ĝ(β) ≈ 1

β3(~ω0)3
,

where ω3
0 =

∏
i ωi. It is also straightforward to verify that the Laplace transform of g(ε) = Aε2 is

indeed given, by repeated integration by parts, by:

ĝ(β) = A

∫ ∞
0

dε e−βεε2 =
2A

β3
,

which justifies Eq. (4.158).

Returning to our general analysis of the Bose condensation, we see that an harmonic trap is essen-
tially equivalent to g(ε) ≈ Agε

αg with αg = 2 and Ag = 1
2(~ω0)3 . Effectively, this is like having free

non-relativistic bosons but in d = 6 dimensions! From Eq. (4.148) we, therefore, conclude (notice that
in the present case there are no V factors) that:

Nint(T, µ) ≈ Ag
β3

Γ(3) Li3(z) =

(
kBT

~ω0

)3

Li3(z)

Ncr(T ) ≈
(
kBT

~ω0

)3

ζ(3)

. (4.160)

The last expression defines the transition temperature Tc as that for which Ncr(Tc) = N , which gives,
for N ∼ 2× 104:

kBTc = ~ω0

(
N

ζ(3)

) 1
3

≈ 25.5 ~ω0 (4.161)

where we used ζ(3) ≈ 1.202. If we consider the typical value ~ω0 ∼ 4.8nK, this gives kBT0 ∼ 170nK,
which justifies that approximation kBT � ~ωi used in deriving the smoothed harmonic density of
states in Eq. (4.158).

4.8. Problems

Problem 4.1. Obtain the classical expressions for E, S, Cv and F for a one-dimensional harmonic
oscillator starting directly from the classical partition function

ZCE =

∫
dxdp

h
e−βH ,

by performing the simple Gaussian integrals required. Verify that that the expressions obtained
coincide with the asymptotic form of the corresponding quantum expressions in the appropriate limit
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kBT � ~ω.
[Hint: you should pay attention to the correct expansion of the occupation number 〈n̂〉: you should obtain a
constant term which precisely cancel the zero-point motion term 1

2
in the energy.]

Problem 4.2. For the one-dimensional harmonic oscillator, perform a Legendre transform from F (T )

to E(S). Can you calculate the micro-canonical entropy S(E)? Try to do this problem for both the
quantum and the classical case.

Problem 4.3. In general, if you have a classical probability distribution P (x) and a classical observ-
able A(x), the full probability distribution of the observable values is defined as:

ProbA(A) =

∫
dx P (x) δ(A(x)−A) . (4.162)

Consider now the classical canonical ensemble for the Harmonic oscillator, where x = (x, p) and

P (x) = ρCE(x) =
e−βH

Z
.

Try to calculate the probability distribution for the energy ProbH(E) (the observable being H(x)),
for the position Probx(x), for the momentum Probp(p), for the kinetic energy ProbK(K) and for the
potential energy ProbV (V ).

Problem 4.4. Verify that the Heisenberg operator corresponding to Ŷ (x) is given by:

Ŷ (x, t) =
∑
m

ψm(x) Q̂m(t) =
∑
m

√
~

2Mωm
ψm(x)

(
e−iωmtân + eiωmtâ†n

)
.

Calculate also the corresponding Π̂(x, t) and verify that

Π̂(x, t) = µ0∂tŶ (x, t) .

Finally, verify that Ŷ (x, t) satisfies the same wave equation as Y (x, t).

Problem 4.5. Try to calculate the average squared fluctuations of a string

1

L

∫ L

0

dx 〈Ŷ 2(x, t)〉 ,

at temperature T and at T = 0. Anything remarkable to observe?

Problem 4.6. Repeat the quantisation procedure we have adopted assuming that the string obeys
periodic boundary conditions in [0, L]. Working with ordinary plane waves, you should be able to
express everything in terms of â†k with k = 2πn/L. Pay due attention to the fact that you want to
express a real field Ŷ (x). Calculate the equal-time space-correlation function 〈Ŷ (x, t)Ŷ (x′, t)〉 and the
equal-space time-correlation function 〈Ŷ (x, t)Ŷ (x, t′)〉, both at T = 0 and at finite T . Try to see what
happens to the large |x− x′| or |t− t′| behaviours in the limit L→∞.

Problem 4.7. Show that in the Maxwell-Boltzmann limit the entropy of the gas is:

SMB(T, V, µ) = kBNMB

(
2 + d

d
− βµ

)
.

This adds some insight on the reason why the chemical potential has to be large and negative in that
limit. Re-express the entropy in terms of (E, V,N), to recover the result we have derived long ago for
the classical ideal gas entropy.
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5. Models and phase transitions

We start here with a survey of some of the traditional basic topics of a statistical mechanics course.
To start with, we will need to discuss a few general facts:

Models) There is an emphasis on models which emerges clearly from glancing at any book on the
subject. Why? We know pretty well how to write a very detailed Hamiltonian to describe, for
instance, a condensed matter system, but we rarely adventure into the horrible experience of
keeping track of all ingredients, and we resort to simplified models.

Phase transitions) The existence of phase transitions is quite clear on the experimental side and
also from the thermodynamical point of view. But, how this basic fact emerges when you do
statistical mechanics?

Universality) Many properties, close to phase transitions, seem to depend very little on details of
the model: some universal features emerge, depending on the dimensionality of the space in
which the model is defined, and on some symmetry properties of the basic degrees of freedom
appearing.

Order parameters and correlations) We will see how a local order parameter is defined, and how its
correlations are expected to behave.

5.1. Why models?

As mentioned, in condensed matter we know pretty well the Hamiltonian governing a system of
atoms, with their nuclei and electrons. Yet, we resort to models, because any exact treatment of such
a complex many-body problem is hopeless.

One common instance of such an idealization is the problem of a strongly correlated system, where
the independent particle approximation fails. A typical model that emerges in such a case is the
Hubbard model.

The Hubbard model. You consider a lattice — for instance, a cubic lattice in d-dimensions
withN = Ld sitesR = a

∑d
j=1 njej , where nj = 0, · · ·L−1, ej are the usual unit vectors in the di-

rection j, and a the lattice constant — and a single localized orbital (technically, a Wannier orbital,
to ensure orthogonality) φR(x) sitting at each lattice site. You define the creation/annihilation
operator accordingly and write the Hamiltonian as:

Ĥ = −th
∑
〈R,R′〉

∑
σ=↑,↓

(
ĉ†R,σ ĉR′,σ + H.c.

)
+ U

∑
R

n̂
R,↑n̂R,↓ . (5.1)

Here th is the hopping (overlap) integral between two “neighbouring” Wannier orbitals, and U is
the so-called “Hubbard” repulsion. To fully specify the model you have to tell me the density of
electrons you want.

i

At half-filling, when Ne = N (or n = 1), and for large U the kinetic term is strongly suppressed
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because doubly-occupied sites cost large energy. All states of the form:

|{σR}〉 =

N∏
R

ĉ†R,σR
|0〉 ,

do not pay any repulsion penalty U . But there is a large degeneracy, 2N , associated with the spin.
You can do a form of degenerate perturbation theory to get the effective Hamiltonian which emerges
for large U .

The result can be grasped from a simple two-site Hubbard model calculation. There is a total of
six two-electron states that you can form in such a case:{

ĉ†1,↑ĉ
†
2,↑|0〉, ĉ†1,↓ĉ

†
2,↓|0〉, ĉ†1,↑ĉ

†
2,↓|0〉, ĉ†1,↓ĉ

†
2,↑|0〉, ĉ†1,↑ĉ

†
1,↓|0〉, ĉ†2,↑ĉ

†
2,↓|0〉

}
.

Here is the 6× 6 matrix for the Hubbard model in such a basis:

ĉ†1,↑ĉ
†
2,↑|0〉 ĉ†1,↓ĉ

†
2,↓|0〉 ĉ†1,↑ĉ

†
2,↓|0〉 ĉ†1,↓ĉ

†
2,↑|0〉 ĉ†1,↑ĉ

†
1,↓|0〉 ĉ†2,↑ĉ

†
2,↓|0〉

ĉ†1,↑ĉ
†
2,↑|0〉 0 0 0 0 0 0

ĉ†1,↓ĉ
†
2,↓|0〉 0 0 0 0 0 0

ĉ†1,↑ĉ
†
2,↓|0〉 0 0 0 0 −th −th

ĉ†1,↓ĉ
†
2,↑|0〉 0 0 0 0 +th +th

ĉ†1,↑ĉ
†
1,↓|0〉 0 0 −th +th U 0

ĉ†2,↑ĉ
†
2,↓|0〉 0 0 −th +th 0 U

Observe that due to the combinations of +th and−th — in turn, due to the fermionic anti-commutation
relationships, only the singlet state

|Ψs〉 =
1√
2

(
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ
†
2,↑

)
|0〉

is effectively coupled to a symmetric doubly-occupied state

|Ψd,+〉 =
1√
2

(
ĉ†1,↑ĉ

†
1,↓ + ĉ†2,↑ĉ

†
2,↓

)
|0〉 ,

while the triplet states (with energy 0) and the anti-symmetric doubly-occupied state |Ψd,−〉 (with
energy U) are totally decoupled. The Hamiltonian restricted to the 2× 2 space {|Ψs〉, |Ψd,+〉} is:(

0 −2th
−2th U

)
=⇒ λ± =

U ±
√
U2 + 16t2h
2

. (5.2)

If U � th, to lowest-order in th/U , the ground state is a singlet state with energy Es = −4t2/U , while
the triplet states are at energy Et = 0. Further up, at energy U and U + 4t2h/U are the two doubly
occupied states.

This simple exercise suggests that, within the low-energy subspace of singly-occupied states, the
combined effect of hopping to doubly occupied virtual states, leads to an effective spin Hamiltonian

Ĥeff =
4t2

U

(
Ŝ1 · Ŝ2 −

1

4

)
which favours singlets, while leaving triplets at zero-energy.

Remarkably, this toy problem leads to a general result that you might derive by setting up a proper
second-order degenerate perturbation theory.
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The Heisenberg model. The effective Hamiltonian for the spin-degrees of freedom of a large-U
half-filled Hubbard model is given by:

Ĥ = J
∑
〈R,R′〉

(
ŜR · ŜR′ −

1

4

)
, (5.3)

where J = 4t2h/U and ŜR = 1
2 σ̂R are spin-1/2 operators, with σ̂R the Pauli matrices at site R.

Hence spin singlets emerge, out of hopping and repulsive interactions, via a mechanism that is
known as antiferromagnetic super-exchange.

i

This is the isotropic version of a model that we can write, for an arbitrary spin S ≥ 1
2 , neglecting

the unimportant shift 1/4, as:

Ĥgeneral−XYZ =
∑
〈R,R′〉

(
JxxRR′ Ŝ

x
RŜxR′ + Jyy

RR′ Ŝ
y
RŜy

R′ + JzzRR′ Ŝ
z
RŜzR′

)
−
∑
R

hR · ŜR . (5.4)

Here ŜαR with α = x, y, z are spin-S angular momentum operators at each lattice site R. For S = 1/2,
and with appropriate choice of the couplings, Jxx

RR′ = Jyy
RR′ = J and Jzz

RR′ = J∆, we get for instance
the so-called XXZ Heisenberg model:

ĤXXZ = J
∑
〈R,R′〉

(
ŜxRŜxR′ + ŜyRŜy

R′ + ∆ ŜzRŜzR′
)
. (5.5)

For ∆ = 1 we recover the fully isotropic antiferromagnetic Heisenberg model — also denoted often
as XXX —, while for ∆ = 0 we have the so-called XY (or planar) model. For ∆ = −1 we have a
ferromagnetic isotropic Heisenberg model. 1

Still with S = 1/2 and with zz-couplings only we get the Ising model in transverse-field, which we
write for convenience directly in terms of the Pauli operators as:

ĤIsing = −
∑
〈R,R′〉

JRR′ σ̂
z
Rσ̂

z
R′ −

∑
R

h
‖
Rσ̂

z
R −

∑
R

h⊥R σ̂
x
R . (5.6)

Symmetries. The symmetries of the previous models can be remarkably different. Let us concentrate
here on internal symmetries of models that are otherwise translationally invariant, for instance, due
to the uniform couplings and periodic boundary conditions.

SU(2) - The isotropic Heisenberg model

ĤXXX = J
∑
〈R,R′〉

(
ŜxRŜxR′ + ŜyRŜy

R′ + ŜzRŜzR′
)

= J
∑
〈R,R′〉

ŜR · ŜR′ , (5.7)

for either sign of J , admits arbitrary SU(2) uniform spin rotations, associated to the fact that
the total spin Ŝtot is conserved. More precisely, if Ŝtot =

∑
R
ŜR is the total spin, then a

uniform spin rotation by an angle θ around the direction n is associated to a unitary operator
Ûn,θ = e−

i
~ θn·Ŝtot which transforms each spin as a “vector”, i.e.,

Ûn,θ ŜαR Û
†
n,θ = e−iθn·Ŝtot ŜαR eiθn·Ŝtot =

∑
α′

Rα,α′ Ŝ
α′

R α, α′ = x, y, z (or 1, 2, 3) (5.8)

1Incidentally, the sign in front of the xx and yy terms can be reversed by a simple unitary transformation on all lattices
that are bipartite, meaning that you can sub-divide the lattice into two sub-lattices, call them A and B, such that spins
in sub-lattice A interact with their neighbours which belong to sub-lattice B. Hyper-cubic lattices are bipartite, while
the triangular lattice is not. Non-bipartite lattices give rise to geometrically frustrated antiferromagnetic models, as
a rule. The transformation that changes the sign of the xx and yy terms is a rotation around the z-axis by an angle
π on one of the two sub-lattices.
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where R = R(n, θ) is the real orthogonal 3× 3 matrix describing the rotation in ordinary space.
2 Evidently, the scalar product ŜR · ŜR′ is left unchanged by the rotation, and therefore ĤXXX

commutes with Ûn,θ = e−
i
~ θn·Ŝtot for all n and all θ. Hence ĤXXX commutes with all components

of the total spin. This implies that ĤXXX, Ŝ2
tot and Ŝztot form a set of three commuting operators.

SU(1) - For the planar XY model

ĤXY = J
∑
〈R,R′〉

(
ŜxRŜxR′ + ŜyRŜy

R′

)
, (5.9)

spin-rotations Ûz,θ = e−
i
~ θŜ

z
tot around the z-axis are symmetries, i.e., only Ŝztot commutes with

ĤXY.

Z2 - Finally, for the transverse-field Ising model (TFIM) in absence of longitudinal fields

ĤTFIM = −
∑
〈R,R′〉

JRR′ σ̂
z
Rσ̂

z
R′ −

∑
R

h⊥R σ̂
x
R , (5.10)

evidently a π rotation in spin-space around the x-axis associated to the unitary operator

e−i
π
2

∑
R σ̂xR = (−i)N

∏
R

σ̂xR (5.11)

commutes with the Hamiltonian, since σ̂xσ̂zσ̂x = −σ̂z but the interaction term contains pairs of
σ̂z, hence the two minus signs cancel. This symmetry is known as Z2, and the group is discrete
and made of only two elements, {1, ÛZ2

=
∏

R
σ̂xR}.

5.2. Why phase transitions?

The existence of phase transitions is quite clear experimentally. Equally clear is from a thermody-
namic point of view, where phase transitions emerge from singularities in some derivatives (first- or
higher-order) of the thermodynamic potentials. But where do singularities come from in statistical
mechanics?

Consider for simplicity a spin system on a lattice with N sites, for instance, the transverse field
Ising model:

ĤIsing = −
∑
〈R,R′〉

JRR′ σ̂
z
Rσ̂

z
R′ −

∑
R

h
‖
Rσ̂

z
R −

∑
R

h⊥R σ̂
x
R . (5.12)

The Hilbert space is 2N -dimensional, and the partition function is a finite sum of terms:

Z =
∑
α

e−βEα =⇒ F = −kBT log
(∑

α

e−βEα
)
, (5.13)

2R(n, θ) can be regarded as the “defining representation” of SO(3), the group of rotations in three-dimensions. You
can write:

R(n, θ) = e−iθn·L with [Lα,Lβ ] = iεαβγLγ ,

where Lα=x,y,z are the three 3× 3 Hermitean matrices

Lx =

 0 0 0

0 0 −i
0 i 0

 Ly =

 0 0 i

0 0 0

−i 0 0

 Lz =

 0 −i 0

i 0 0

0 0 0

 .

Observe that the same representation can be given in terms of real antisymmetric generators of the algebra of the
group, given by Lα = −iLα such that [Lα,Lβ ] = εαβγLγ . For reference,

R(z, θ) = e−iθLz = eθLz =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
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where α labels the 2N energy eigenstates of ĤIsing. Evidently, Z is analytic in all the parameters
of the model. But the free-energy F = −kBT logZ also cannot have singularities, since log z is an
analytic function of z away from the branch-cut Rez < 0. Hence, for any finite N the free-energy
depends analytically on all the parameters, and no singularities are present.

Reinforcing on this argument, suppose we consider a model in absence of longitudinal fields, say
the TFIM, which we know to be Z2 symmetric. This means that ÛZ2

=
∏

R
σ̂xR commutes with ĤTFIM

and with the associated Gibbs density matrix ρ̂CE, i.e., ÛZ2
ρ̂CEÛ

†
Z2

= ρ̂CE. Now consider the average
of σ̂zR. Since ÛZ2

σ̂zRÛ
†
Z2

= −σ̂zR you immediately deduce that

〈σ̂zR〉 = Tr
(
ρ̂CEσ̂

z
R

)
= Tr

(
ÛZ2

ρ̂CEσ̂
z
RÛ
†
Z2

)
= Tr

(
ÛZ2

ρ̂CEÛ
†
Z2
ÛZ2

σ̂zRÛ
†
Z2

)
= −〈σ̂zR〉 . (5.14)

Hence, by symmetry, 〈σ̂zR〉 = 0.

Figure 5.1: A quantum particle in a double-
well symmetric potential. The ground state
(blue) is an even function, superposition of the
two states on the two wells. The first excited
state (red) is an odd function. As the barrier
increases to infinity, the states in the two wells
are effectively disconnected (and degenerate).

Does this imply that no spontaneous magnetization can exist in the ground state of the Ising
model? No. Indeed, if we turn off any transverse field, and consider a simple ferromagnetic model
with all JR,R′ = J we know that there are two classical ground state, totally degenerate in energy,
with spins perfectly aligned: either all spins are up |Ψ↑〉 = | ↑, · · · , ↑〉, or down |Ψ↓〉 = | ↓, · · · , ↓〉.
Their energy is Egs = −JNz/2 where z is the number of nearest-neighbour. Observe that these are
not Z2-eigenstates. Indeed, the correct common eigenstates of the classical Ising model together with
the symmetry ÛZ2

are

|Ψ±〉 =
1√
2

(
|↑, · · · , ↑〉 ± |↓, · · · , ↓〉

)
with ÛZ2

|Ψ±〉 = ±|Ψ±〉 , (5.15)

and you can immediately verify that indeed these are still degenerate, with energy Egs = −JNz/2,
and as prescribed by our symmetry-based “proof”

〈Ψ±|σ̂zR|Ψ±〉 = 0 , (5.16)

for either sign of the superposition. The symmetric states |Ψ±〉 are quantum superpositions of two
macroscopically distinct broken-symmetry states |Ψ↑〉 and |Ψ↓〉. 3 This is at variance with the situa-
tion typically encountered in quantum mechanics for a single particle, for instance, where symmetries
are not broken. Take for instance a double-well potential, as in Fig. 5.1, where the symmetry would
be parity: the ground state is even (blue curve) and separated by a gap from the first excited odd state
(red curve, partially covered by the ground state). You do not make superpositions of these states
which break the parity symmetry. But the analogy with symmetry breaking in statistical mechanics
emerges when you consider a barrier that becomes infinitely large: at that point, the gap between the
3In quantum information, you would call |Ψ±〉 cat states, in analogy with the quantum state of Schrödinger’s cat, in
a quantum superposition, the poor animal, of two macroscopically distinct states of being dead or alive.
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two symmetric states becomes exponentially small and, to all practical purposes, a particle sitting
close to one of the two minima (broken-symmetry state) would not be able to tunnel to the other
minimum.

You might object that the situation just discussed is very special: it is classical, and this perfect
degeneracy would hold even for a system of a few spins. But indeed, a similar scenario holds even
in presence of a transverse field h⊥, and there you would discover that the degeneracy between |Ψ+〉
and |Ψ−〉 is not exact. Due to the Perron-Frobenius theorem, which we will meet again, later on, you
can prove that a state |Ψ+〉 with all positive components on the computational basis of the Hilbert
space is the unique ground state. The other symmetric state |Ψ−〉, however, turns out to be split by
a quantity which is exponentially small in the number of spins N , hence the two are asymptotically
degenerate for N → ∞. For a very large system, you can still form symmetry-breaking states out of
this quasi-degenerate doublet of symmetric states. Figs. 5.2-5.3 illustrate these facts for a small TFIM
chain with N = 14 sites, whose spectrum is determined by exact diagonalisation.

Figure 5.2: The spectrum of the TFIM for
N = 14 sites versus the transverse field h⊥. Ob-
serve that the classical ground states for h⊥ = 0

evolve into two states, separated by a clear gap
for h⊥/J > 1, which they merge together for
h⊥/J < 1, since they are separated by an ex-
ponentially small gap for large N .

Figure 5.3: The spectrum of the TFIM for
N = 14 sites at h⊥/J = 0.1 versus the longitu-
dinal field h‖. Observe that the “almost doubly
degenerate” ground state is Zeeman-split by the
longitudinal field: the two broken-symmetry
states are in this way clearly identified.

Singularities emerge in the thermodynamic limit. The mystery is solved by the fact
that singularities emerge from the thermodynamic limit N →∞. The correct magnetization, for
instance, would come out upon adding a small longitudinal field h which is sent to 0 after the
thermodynamic limit is taken:

〈σ̂zR〉0 = lim
h→0

lim
N→∞

〈σ̂zR〉 6= 0 . (5.17)

i

Fully-connected Ising model. As a work-horse to better understand the spontaneous breaking of
the Z2 symmetry that emerges in the thermodynamical limit, let us consider a solvable classical Ising
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model: the fully connected Ising ferromagnet, essentially an infinite coordination model which presents
features that are “mean-field-like”, as we will discuss later on.

The model is defined by j = 1 · · ·N spins (we assume N even), and every spin σ̂zj = ±1 interacts
ferromagnetically with every other spin σ̂zj′ . Including for simplicity a constant term with j′ = j, we
would write the Hamiltonian as:

Ĥ = − J

2N

N∑
j,j′=1

σ̂zj′ σ̂
z
j − h

N∑
j=1

σ̂zj = − J

2N

( N∑
j=1

σ̂zj

)2

− h
N∑
j=1

σ̂zj . (5.18)

The fully-connected character of the model implies that the energy depends on the spin configuration
σ = (σ1, · · · , σN ) only through its magnetisation M =

∑
j σj = N+ −N−, where N± are the number

of spins ±1, with N = N+ +N1. Evidently, M can have N + 1 values, from +N down to −N in steps
of 2: M = N − 2k with k = 0, · · ·N . All configurations σ with the same M have the same energy

EM = − J

2N
M2 − hM ,

and therefore the same Gibbs equilibrium probability.

Figure 5.4.: The free-energy of the fully connected Ising ferromagnet. Temperatures are kBT/J =

4, 2, 0.7, 0.5, 0 from top to bottom curves. Left panel for h = 0, right panel for h/J = 0.1.

We can organize the partition function sum as follows:

e−βF = Z =
∑
σ

e−βEσ =
∑
M

∑
σ

δM,
∑
j σj

e−βEM

=
∑
M

(
N

N+

)
e−βEM =

∑
M

e−βF (M,T ) , (5.19)

where we noticed that the number of configurations with given M is simply given by a binomial
coefficient, and introduced a constrained-magnetization free-energy F (M,T ), given by

F (M,T ) = − 1

β
log

(
N

N+

)
e−βEM = EM − kBT log

N !

N+!(N −N+)!
. (5.20)

Interestingly, if I ask you what is the probability of observing a given value of M , you would write:

P eq(M) =
∑
σ

P eq
σ δM,

∑
j σj

=
1

Z
e−βEM

∑
σ

δM,
∑
j σj

=
1

Z
e−βEM

(
N

N+

)
≡ 1

Z
e−βF (M,T ) . (5.21)

So, F (M,T ) gives information about the equilibrium probability distribution of the magnetization.
The partition function cancels if you consider ratios, for instance:

P eq(M)

P eq(M = 0)
= e−β

(
F (M,T )−F (0,T )

)
. (5.22)
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Figure 5.5.: The ratio of the probability distribution P (m)/P (0) for the fully connected Ising ferromagnet.
Two curves are shown: a black one, for h = 0, and a blue one for the value of h shown in each panel. Here
N = 1000.

Using the Stirling approximation logN ! ≈ N logN −N + log
√

2πN , and introducing the magneti-
sation density m = M/N , you would conclude that F (M,T ) ≈ Nf(m,T )− kBT log

√
πN(1−m2)/2

where the second (sub-extensive) term is relatively unimportant, while the first extensive term defines
the free-energy-per-spin f(m,T ), which is given by:

f(m,T ) = −J
2
m2 − hm− kBT

(
− 1−m

2
log

1−m
2
− 1 +m

2
log

1 +m

2

)
, (5.23)

and shown in Fig. 5.4. By analyzing the behaviour of f(m,T ) we easily discover that for large T
the entropic term wins and the probability distribution P eq(m) is peaked at m = 0, while 4 for
T < Tc = J/kB the probability distribution has two peaks ±mT , for h = 0, with mT → 1 for T → 0.

For low T , since the free-energy difference between m = ±mT and m = 0 (where the barrier is) is
extensive, you would never visit the barrier at m = 0 by starting from one of the minima at ±mT , for
large N . Fig. 5.5 shows the ratio P eq(m)/P eq(0) for T = J/kB = Tc and T = 0.8J/kB < Tc, and for
various (small) fields h. Even more clear is how the ratios of probabilities of being in the two broken
symmetry peaks for T < Tc behaves at finite field:

P eq(+mT )

P eq(−mT )
= e−2βhmTN , (5.24)

since all contributions apart from the field-term are even in m.

Exercise 5.1. Evaluate the free-energy per site f(h) = F (h)/N for various values of N , say N = 102

to N = 106 by calculating numerically, with python for instance, the full partition sum. Plot the
result versus h and carefully consider what happens for increasing N . For T > Tc = J/kB you should
find that f(h) = −kBT log 2− 1

2χh
2 + · · · where χ = 1/kB(T −Tc), hence a parabola with a coefficient

that diverges for T → T+
c . For T < Tc you will find that the parabolic behaviour is truly confined

4To determine Tc, expand the entropic term close to m = 0, using log(1 + x) = x− x2/2 + · · · , without forgetting the
quadratic piece. You would discover that the free-energy behaves as −kBT log(2) + (kBT − J)m2/2− hm for small
m.
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to very small h at finite N , and quickly develops a “cusp-like” feature close to h = 0 which becomes
a true discontinuity in the derivative at h = 0 for N → ∞. We will see later that m = −∂f∂h : think
about our symmetry-based proof leading to m = 0, and you will realize that the proper limit to take
leads either to the right or to the left derivative in h = 0, and you get it by adding a small infinitesimal
field, as discussed before.

Broken-symmetry at finite T . Before ending this discussion, let us consider the question: does the
symmetry breaking that we found in the ground state of the one-dimensional Ising model survive at
finite T? The answer is no: in one-dimension, symmetry breaking and the associated spontaneous
magnetization is killed by any arbitrarily small T . To appreciate the reason for that, a clear mani-
festation of a battle between energy and entropy won by the latter, observe the excitations visible in
Fig. 5.2 at E = −10J (for h⊥ = 0) and at regular intervals of +4J above that: they are excitations
created by the so-called domain walls between the two broken-symmetry states. In one dimension,
domain walls live in individual links and cost an energy 2J each, as a ferromagnetic bond with en-
ergy −J is transformed into an anti-ferromagnetic bond with energy +J . For instance, the lowest
excitations in a PBC system are obtained by creating two domain walls:

|↑ · · · ↑↓↓ · · · ↓↑ · · · ↑〉 .

and cost extra energy +4J . But the two domain walls can stay anywhere along the chain: there are(
N
2

)
similar configurations, thus contributing a lot to the entropy of the system. If you have 2K domain

walls, their energy cost is 4KJ , hence linear in K, but the number of configurations
(
N
2K

)
explodes

exponentially. 5 All in all, a simple calculation shows that the free energy is lowered by creating a
certain density of domain walls, as soon as T > 0. Correspondingly, the spontaneous magnetization
at T > 0 vanishes.

The battle between energy and entropy, however, is not always won by entropy. In two dimensions,
for instance, a domain wall is a closed curve surrounding an island of reversed spins into a larger
region of opposite spin. If you call P the perimeter of the curve, the energy cost of the wall is 2JP ,
hence it increases linearly with P . A very nice argument put forward by Rudolph Peierls, which you
can read in Arovas (Sec. 6.2.5 and 7.8.2), shows that there is a region of temperatures T > 0 where
the magnetization persists.

Figure 5.6: The Peierls’ argument to
show that the two-dimensional Ising
model has a robust broken-symmetry
phase surviving at finite T < Tc. The
figure, taken from Arovas, poses the
problem of how to estimate the differ-
ence in probability for the central spin
being ↑= + with respect to being ↓= −,
in a large system with boundary condi-
tions set to +, a device alternative to the
small longitudinal field trick to test for
broken symmetry.

5Obviously, the number of configurations starts to decline when 2K > N/2. When 2K = N , there is a domain
wall on each link and the configuration is unique (apart from an overall flip): the antiferromagnetic arrangement
|↑↓↑↓ · · · ↑↓↑↓〉.
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5.3. Local order parameter and its correlation function

Consider the (classical) Ising model with longitudinal fields only:

Ĥ = −
∑
〈R,R′〉

JRR′ σ̂
z
Rσ̂

z
R′ −

∑
R

hRσ̂
z
R . (5.25)

Let us start from the exact expressions for the derivatives of the (classical) partition function: 6

∂Z

∂hR

= β Tr[σ̂zRe−βĤ ] = βZ〈σ̂zR〉

∂2Z

∂hR∂hR′
= β2 Tr[σ̂zRσ̂

z
R′e
−βĤ ] = β2Z〈σ̂zRσ̂zR′〉

. (5.26)

Correlation functions. You see that

〈σ̂zR〉 = kBT
1

Z

∂Z

∂hR

= − ∂F

∂hR

〈σ̂zRσ̂zR′〉 = (kBT )2 1

Z

∂2Z

∂hR∂hR′
. (5.27)

Higher-order derivatives of the partition function Z with respect to the local fields — known as
“sources” — generate the correlation functions of the model. Interestingly, you might use such
a device to generate the correlation function of a model in absence of external fields, by setting
{hR = 0} after the derivatives have been taken.

i

We already discussed that, in the thermodynamic limit, the Z2 symmetry of the model for {hR = 0}
— whose averages we denote as 〈· · · 〉0 — might be spontaneously broken at sufficiently low tempera-
tures in a ferromagnetic Ising model — we assume here uniform “nearest-neighbor” couplings JRR′ ≡ J
—, making

〈σ̂zR〉0 = lim
h→0

lim
N→∞

〈σ̂zR〉 6= 0 . (5.28)

Such a non-vanishing 〈σ̂zR〉0 is known as local order parameter. When the symmetry is spontaneously
broken, the large-distance limit of the correlation function of the order-parameter tends exponentially
fast to the square of the local order parameter:

〈σ̂zRσ̂zR′〉0
|R−R

′|→∞−→ 〈σ̂zR〉0〈σ̂zR′〉0 +O(e−|R−R′|/ξ(T )) , (5.29)

where ξ(T ) is a temperature-dependent correlation length. This is true both in the broken symmetry
phase, where 〈σ̂zR〉0 6= 0, as well as in the high-temperature symmetric phase where 〈σ̂zR〉0 = 0. This
suggests that we might define the connected correlation functions as

Cconn

R,R′ = 〈σ̂zRσ̂zR′〉0 − 〈σ̂zR〉0〈σ̂zR′〉0 , (5.30)

which decay exponentially fast to zero both in the low-temperature and in the high-temperature phase.
We will see that a power-law behaviour emerges at Tc, where ξ(Tc) =∞ (in the thermodynamic limit).

You can show that the connected correlation functions are directly obtained by taking derivatives
with respect to external source fields hR of the logarithm of the partition function, or, equivalently,
the free energy. For instance:

∂

∂hR′

∂ logZ

∂hR

=
∂

∂hR′

1

Z

∂Z

∂hR

=
( ∂

∂hR′

1

Z

) ∂Z
∂hR

+
1

Z

∂

∂hR′

∂Z

∂hR

= − 1

Z2

∂Z

∂hR′

∂Z

∂hR

+
1

Z

∂2Z

∂hR′∂hR

= −β2〈σ̂zR′〉〈σ̂zR〉+ β2〈σ̂zRσ̂zR′〉 = β2Cconn

R,R′ . (5.31)

6Notice that in presence of a non-commuting transverse field, I should be more careful with my derivation, as the
different terms do not commute.
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Connected correlation functions. Since logZ = −βF , we conclude the second derivative of
the free-energy with respect to the source field provides directly the connected correlations:

Cconn

R,R′ = −kBT
∂2F

∂hR′∂hR

. (5.32)

Higher-order derivatives of F provide, similarly, connected correlations with more “fields” σ̂zR
appearing. Moreover, since mR := 〈σ̂zR〉 = − ∂F

∂hR
, we can also write:

χ
R,R′

def
=

∂mR

∂hR′
= − ∂2F

∂hR′∂hR

=
1

kBT
Cconn

R,R′ . (5.33)

i

The derivatives of the free-energy with respect to a source external field ∂F
∂hR

, ∂2F
∂hR∂hR′

, etc., are
called response functions. The fact that two-point response functions and connected correlations are
related in this way

Cconn

R,R′ = kBTχR,R′ , (5.34)

is strictly valid in equilibrium, and is an instance of a fluctuation-dissipation relationship. In particular,
the relationship is not guaranteed to hold once you do approximations, such as mean-field. We
will later see that connected correlations Cconn

R,R′ , when calculated directly in the simplest mean-field
approximation (Weiss mean-field) vanish, while a non-vanishing response function can be calculated
within mean-field.

5.4. Critical exponents

I exemplify here the various critical exponents that are typically encountered at a second-order phase
transition with a local order-parameter broken-symmetry low-temperature phase. For simplicity, I
consider here a translationally invariant classical ferromagnetic Ising model in a uniform longitudinal
field:

Ĥh = −J
∑
〈R,R′〉

σ̂zRσ̂
z
R′ − h

∑
R

σ̂zR . (5.35)

The model is Z2 symmetric for h = 0: recall that you can send σ̂zR → −σ̂zR (∀R) by a uniform spin
rotation by an angle π about the x-spin axis. The model is translationally invariant provided periodic
boundary conditions (PBC) are chosen. Recall also that 7

m(h = 0, T ) = 〈σ̂zR〉0 = − 1

N

∂F

∂h

∣∣∣∣
h=0

(5.36)

is the order parameter, independent of R. The first critical index tells us how m vanishes when
T → T−c , the critical temperature:

m(h = 0, T ) ∼

 (Tc − T )β T ≤ Tc

0 T > Tc

. (5.37)

This order-parameter critical index is traditionally denoted as β, not to be confused with 1/kBT .

The connected spin-spin correlation function Cconn

R,R′ depends, due to translational invariance, only
on the difference x = R′ −R. Furthermore, M. Fisher postulated that we could write for it a scaling
7Indeed, observe that

−
∂F

∂h

∣∣∣∣
h=0

=
∑
R

〈σ̂zR〉0 = Nm ,

due to translational invariance.
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Ansatz of the form:

Cconn

R,R+x := Cconn

x = 〈σ̂zxσ̂z0〉0 −m2 ∼ e−|x|/ξ(T )

|x/a|d−2+η
(5.38)

where the last expression is valid for |x| � a, the lattice spacing. Here d is the dimensionality of
the lattice, ξ(T ) is the correlation length, and η the anomalous exponent for correlations. 8 The
correlation length ξ(T ) is finite for T 6= Tc — hence connected correlations decay exponentially fast
for T 6= Tc — but diverges at Tc with a critical exponent ν

ξ(T ) ∼ 1

|T − Tc|ν
. (5.39)

Consequently, the connected correlations show a power-law behaviour at Tc:

Cconn

x
∣∣
Tc
∼ 1

|x/a|d−2+η
. (5.40)

Let us now consider the two-point response function, also known as susceptibility, often denoted as
χ. It tells us how m changes when a small h is turned on, in the present case uniformly, since hR′ = h.
The fluctuation-dissipation relation tells us that

χ =
∂m

∂h

∣∣∣∣
h=0

=
∑
R′

∂mR

∂hR′

∣∣∣∣
h=0

=
1

kBT

∑
x
Cconn

x . (5.41)

We could rewrite χ in terms of a lattice Fourier transform. Quite generally, for any fR defined on
a (Bravais) lattice we introduce:

f̂(q) ≡
∑
R

fR e−iq·R

fR ≡ 1

N

BZ∑
q
f̂(q) eiq·R N→∞−→ Ωc

∫
BZ

dq
(2π)d

f̂(q) eiq·R
, (5.42)

where Ωc denotes the volume of the direct-lattice (Wigner-Seitz) unit cell — here Ωc = ad for a
hypercubic lattice of spacing a in d dimensions —, and we have taken the limit N → ∞ in the last
expression. 9 Hence, if Cconn(q) denotes the Fourier transform of Cconn

x , we immediately conclude that

χ =
∂m

∂h

∣∣∣∣
h=0

=
1

kBT

∑
x
Cconn

x =
1

kBT
Cconn(q = 0) . (5.44)

To understand how χ diverges as T → Tc and in the thermodynamic limit, we directly transform the
sum over x into an integral∑

x
Cconn

x ∼
∫

dx
ad

e−|x|/ξ(T )

|x/a|d−2+η
∼ (ξ/a)2−η

∫
dy

e−|y|

|y|d−2+η
∝ (ξ/a)2−η ,

8We will argue later on, when discussing mean-field, about the reason for such a power-law prefactor and the anomalous
exponent.

9Very often, in condensed matter, one adopts a slightly different (and more symmetric) convention for the lattice
Fourier (Bloch-Wannier) transform: 

f̂q ≡
1
√
N

∑
R
fR e−iq·R

fR ≡
1
√
N

BZ∑
q
f̂q eiq·R

, (5.43)

which is optimal if you want to remain within a discrete and finite-N framework. If you want to go towards the
continuum limit, and take also N → ∞, then the equivalent definition in Eq. (5.42), which essentially implies a
rescaling f̂(q) ≡

√
Nf̂q, leads to a simpler N →∞ limit, with the sum over momenta directly transformed into an

integral on the Brillouin Zone.
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where only the large-x behaviour matters — for small x the connected correlations are perfectly regular
— and we rescaled variables to y = x/ξ. Hence, if ξ ∼ |T − Tc|−ν diverges at Tc with exponent ν, we
would predict that χ also diverges at Tc:

χ ∼ ξ2−η ∼ |T − Tc|−ν(2−η) ∼ |T − Tc|−γ with γ = ν(2− η) . (5.45)

This relationship, derived by Fisher, is known as hyperscaling. The scaling form of the connected
correlations in Eq. (5.38) implies, in terms of Fourier transforms, that one would write

Cconn(q) ∼ g(|q|ξ)
|q|2−η

, (5.46)

where the function g(z → ∞) = const, while g(z → 0) takes care of a finite value of Cconn(q → 0)

when ξ is finite.

To conclude, let me mention two further critical exponents. One tells us how the order parameter
grows if we turn on a small longitudinal field h at Tc:

m(h, Tc) ∼ |h|1/δ . (5.47)

The second tells us about the singularities of the specific heat:

cv(T ) = −T ∂
2f

∂T 2
∼ |T − Tc|−α . (5.48)

We will further discuss critical exponents when doing mean-field.

The exact d = 2 Ising critical exponents. Let me collect here, for reference, the exact results for
the critical exponents of the d = 2-dimensional Ising model, compared to the mean-field exponents
we will later derive.

Critical index Relation Exact d = 2-Ising Mean field

β m
∣∣
h=0
∼ (Tc − T )β β = 1

8 β = 1
2

η Cx
∣∣
Tc
∼ 1

|x|d−2+η
η = 1

4 η = 0

ν ξ ∼ 1

|T − Tc|ν
ν = 1 ν = 1

2

γ χ ∼ 1

|T − Tc|γ
γ = 7

4 γ = 1

δ m
∣∣
Tc
∼ |h|1/δ δ = 15 δ = 3

α Cv ∼
1

|T − Tc|α
α = 0 (log) α = 0 (jump)

(5.49)

5.5. Universality and the role of symmetry

The two main ingredients that determine most of the features of a model close to a phase transition
point — in particular, its critical exponents — are:

1) The spatial dimensionality of the lattice;

2) The symmetry — spatial, orientational, and internal — of the variables involved, although the
mere anisotropy of the lattice is usually not important.
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We already saw the role of the dimensionality in the Ising model case: in one-dimension broken-
symmetry is only in the ground state and dies for any T > 0, while in two dimensions a finite
magnetization persists for 0 < T ≤ Tc.

The fact that symmetry-breaking survives at finite T in two dimensions is deeply related to the
discrete nature of the Z2-symmetry of the Ising model in zero longitudinal field: for continuous
symmetries, things change remarkably.

To illustrate this, we consider an isotropic Heisenberg ferromagnet

Ĥ = −J
∑
〈R,R′〉

ŜR · ŜR′ − h
∑
R

ŜzR , (5.50)

where we have written the coupling to be translational invariant and to nearest-neighbor, for simplicity,
and with a minus sign in front, so that positive J now means a tendency to ferromagnetism. The
lattice is the usual hyper-cubic lattice for simplicity, with N sites and PBC. We have also added a
longitudinal field along the z-direction to play the trick of testing for a ferromagnetic state by sending
h→ 0 after the thermodynamic limit N →∞. In absence of h the system has a full SU(2) symmetry.

Once again, you could construct a symmetry-based “proof” — very similar to the one we gave for
the Ising case —, to show that 〈ŜzR〉0 = 0 for h = 0: you just observe that e−iπŜxtot changes sign to ŜzR
while commuting with the Hamiltonian and the Gibbs state.

Yet, we know that the ground state has maximum total spin S = N/2, and symmetry (for h = 0)
requires a 2S + 1 = N + 1 degenerate multiplet of states |S,M〉 with M = −S,−S + 1, · · ·S:

|S,M〉 =



|S, S〉 = |↑↑↑ · · · ↑〉

|S, S − 1〉 = Ŝ−tot|S, S〉 = 1√
N

(
|↓↑↑ · · · ↑〉+ |↑↓↑ · · · ↑〉+ · · ·+ |↑↑↑ · · · ↓〉

)
...

|S,−S〉 = |↓↓↓ · · · ↓〉

(5.51)

It is once again simple to argue that this ferromagnetic ground state breaks SU(2) symmetry: a small
(infinitesimal) h > 0 favours the |S, S〉 state over all the other states in the multiplet.

The question, now, is if symmetry-breaking survives at finite-T or not. Let us concentrate in
particular on the state |S, S − 1〉 with a single ↓. It is a uniform superposition of spin flips at any
possible sites of the lattice, like a q = 0 state in tight-binding. This suggests that we might invoke
the Fourier transform Ŝ−(q)

Ŝ−(q) ≡
∑
R

e−iq·R Ŝ−R , (5.52)

and consider the N states, all with magnetization M = S − 1, for all q ∈ BZ:

|ψq〉 =
1√
N

Ŝ−(q)|S, S〉 =
1√
N

∑
R

e−iq·R Ŝ−R |S, S〉 , (5.53)

with |ψq=0〉 = |S, S−1〉. Since the N states with a single spin-flip span the subspace with M = S−1,
and symmetry tells us that I can diagonalise the Hamiltonian in such a subspace, we consider the
matrix representing Ĥ in such a subspace. We quickly discover that the matrix is precisely of the
tight-binding form with hopping matrix elements −J/2 in each direction ±eα of the cubic lattice
(α = 1, · · · , d) and on-site energy Jd due to the cost a single spin flip with 2d neighbors. 10 The

10Notice that the Hamiltonian term on each link can be written as −J ŜzRŜz
R′ −

J
2

(Ŝ+
RŜ−

R′ + Ŝ−R Ŝ+
R′ ). The first term is

diagonal, and gives energy +J/4, compared to −J/4 in absence of flip, hence a cost +J/2. The second term is a
hopping term for the spin-flip, with matrix element −J/2.
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energy of such states — including now the longitudinal field penalty term — is

Eq − Egs = h+ Jd− J
d∑

α=1

cosq · eα = h+
J

2
a2q2 + · · · (5.54)

where the final expression follows from expanding the cosine term for small q. For q = 0 and h = 0

we recover the fact that |ψq=0〉 = |S, S − 1〉 is degenerate with |S, S〉.

Goldstone modes. The interesting fact that we learn from this tight-binding calculation is
that these “defects” are low-energy modes for q 6= 0: they are the Goldstone modes associated
to the breaking of continuous symmetry, in the present case SU(2), with an energy cost that
scales as q2 for q → 0. The external field h > 0 breaks the symmetry and makes the Goldstone
modes gapped for q → 0. This crucial ingredient kills symmetry-breaking at finite T in one and
two-dimensions, as proved by Mermin and Wagner.

i

5.5.1. Mermin-Wagner theorem

In 1966 Mermin and Wagner [31] wrote a Physical Review Letter entitled “Absence of ferromag-
netism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, a title that
might serve as an abstract: a continuous symmetry (spin isotropy) impedes order at finite tempera-
ture in one and two dimensions. To state what they proved, consider a Heisenberg model

Ĥ = −
∑
〈R,R′〉

JR−R′ ŜR · ŜR′ − h
∑
R

ŜzR , (5.55)

where we have written the coupling in translational invariant way, and with a minus sign in front,
so that positive J now mean a tendency to ferromagnetism. The lattice is, say, the usual hyper-
cubic lattice for simplicity, with N sites and PBC. We have also added a longitudinal field along
the z-direction to play the trick of testing for a ferromagnetic state by sending h → 0 after the
thermodynamic limit N →∞. Notice that:

1) The spin S is not necessarily S = 1/2: any spin could be considered.

2) The coupling JR is not necessarily restricted to nearest-neighbour: it is enough that JR has a finite
range, or more precisely that

C =
S(S + 1)

a2

∑
R

R2|JR| <∞ .

Next, define the candidate ferromagnetic order parameter

m =
1

N

〈∑
R

ŜzR
〉
, (5.56)

where the average is done in presence of the external field h.

Bogoliubov inequality. There is a very useful inequality first derived by Bogoliubov:

1

2
〈
{
Â, Â†

}
〉〈
[
[B̂, Ĥ], B̂†

]
〉 ≥ kBT

∣∣〈[B̂, Â]〉∣∣2 . (5.57)

A simple proof of it is given in Ref. [31].

i
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By using this Bogoliubov inequality, applied to Â = Ŝ−tot(−q) and B̂ = Ŝ+
tot(q), Mermin & Wagner

were able to derive the following inequality 11 for the candidate order parameter m [31][Eq. 12]:

m2 <
S(S + 1)

2kBTad
∫

BZ

dq
(2π)d

1

C(qa)2 + |hm|

d≤2,h→0−→ 0 , (5.58)

where the final step applies to d ≤ 2 where the integral on the denominator of the RHS diverges
(logarithmically in d = 2) for h → 0. A look at the integral shows the role of the Goldstone modes
appearing in the denominator, which provoke the divergence of the integral in d ≤ 2 when h→ 0.

5.6. Classical or quantum?

Part of the discussions we had so far — for instance, that referring to critical exponents — was refer-
ring to classical models. Other considerations — like the Mermin-Wagner theorem we just presented
— seem to rely on quantum mechanics. 12

The natural question is if and when quantum effects are crucial in the discussion. To illustrate the
concept, consider the translationally invariant two-dimensional Ising model in a transverse field:

ĤTFIM = −J
∑
〈R,R′〉

σ̂zRσ̂
z
R′ − h⊥

∑
R

σ̂xR , (5.59)

The phase diagram of this model has been studied with different techniques. Fig. 5.7 shows the phase
diagram obtained by RG in Ref. [32]. There is a line Tc(h⊥) separating the broken-symmetry phase
from the disordered state. For h⊥ = 0 the transition temperature Tc is that of the two-dimensional
classical Ising model solved exactly by Onsager: kBTc/J = 2/ sinh−1(1) ≈ 2.27. At zero temperature,
T = 0, there is a quantum phase transtion at h⊥c /J ≈ 3.09 separating the ordered ferromagnetic
broken-symmetry ground state from a disordered ground state for large h⊥. 13

h⊥/J

kBT/J

0 QCP

Broken symmetry ferromagnet Paramagnet

Figure 5.7: Sketch of the phase di-
agram of the transverse-field Ising
model in two-dimensions. At T = 0,
the quantum critical point (QCP) is
close to h⊥c /J ≈ 3.09, while for h⊥ =

0, Onsager’s solution gives kBTc/J =

2/ sinh−1(1) ≈ 2.27. For numerical
details, see Ref. [32].

You might ask yourself what are the critical exponents of the model all along the transition line
Tc(h

⊥). The perhaps surprising result is that the classical two-dimensional critical exponents apply
11Mermin and Wagner also show the absence of antiferromagnetism in the same setting. The only difference is the

definition of the candidate order parameter m, the staggered magnetization, and the fact that the probing field is
also staggered.

12Although, as pointed out by Mermin & Wagner, the proof holds for any spin S, and in principle, for very large S we
should tend to the classical limit, where quantum fluctuations of the spin are unimportant.

13For very large h⊥ the transverse field dominates, and all spin are aligned in the +x direction in spin space: the ground
state becomes, for h⊥ →∞

|+〉 =
∏
R

1
√

2

(
|↑R〉+ |↓R〉

)
,

separated by a gap 2h⊥ from the first excited state with a spin along −x.
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perfectly well even in presence of a transverse field h⊥ as long as Tc > 0: thermal fluctuations
dominate the critical region, and quantum effects are not important. The exception to this statement
is the quantum critical point, where the critical exponents change: they become those of the three-
dimensional classical Ising model. We will learn more about the correspondence between quantum
models in d-dimensions and classical models in d+1 in the next chapter, when we will discuss transfer
matrices and path-integral.

5.6.1. A zoo of models

Let me end this final section with a brief survey of other models that are often discussed in the
literature.

Potts models. Switching to the classical world, you can think of σR being a q-valued discrete variable,
σR = {1, 2, · · · q} with q ≥ 2, and write a Hamiltonian of the form: 14

HPotts = −
∑
〈R,R′〉

JR,R′δσR,σR′ −
∑
R

hRδσR,1 , with σR ∈ {1, · · · , q} . (5.60)

Classical spin models. For continuous variables, for instance a unit-length two-dimensional vector
Si = (cosφi, sinφi) forming an angle φi ∈ [0, 2π) with the x-direction on each site of an arbitrary
lattice, you could write an XY-model:

HXY = −
∑
〈R,R′〉

JR,R′ cos (φR − φR′)− h
∑
R

hR cosφR , with φR ∈ [0, 2π) . (5.61)

Notice that SR · SR′ = cos (φR − φR′), hence the interaction term is invariant by O(2) rotations,
while the external field breaks this invariance. We will have more to say about this model in d = 2-
dimension, where it shows a Kosterlitz-Thouless transition without a local order parameter: it is one
of the first instances of a model with topological objects — vortices — playing a role. Still, with
continuous spins, generalizations of the XY-model involve an n-dimensional unit vector S, leading to
the so-called O(n)-model:

HO(n) = −
∑
〈R,R′〉

JR,R′SR · SR′ . (5.62)

Clock models. A discrete variant of this planar-spin-vector model is the so-called p-state clock model,
where the angles φR are constrained to the p discrete values φR = 2πnR/p with nR = 1 · · · p:

Hp−clock = −
∑
〈R,R′〉

JR,R′ cos

(
2π

p
(nR − nR′)

)
, with nR ∈ {1, · · · , p} . (5.63)

14For q = 2, using the identity

δσ,σ′ =
1

2
(1 + σσ′) ,

you can rewrite the 2-state Potts model as an Ising model. For q > 2 the analogy with a corresponding q-Ising-spin
bilinear interaction Jijσiσj is lost. See Arovas 7.5.3.
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6. Transfer matrix and Path-Integral

In this chapter, we will deal with Ising spin systems. We will see how in principle you can write a
transfer matrix, in the classical case, to express the partition function. The transfer matrix, in turn,
can be rewritten as a quantum problem for a system with one dimension less in imaginary time. An
excellent reference for this subject is the review paper by Kogut [33][Sec. III-IV].

The transfer matrix itself is a practical technique to deal with many low-dimensional classical
problems, the analogue of doing exact diagonalisation in correlated lattice problems, but to get the
statistical mechanics properties, rather than the low-energy states. In the two-dimensional Ising case,
Onsager’s exact solution amounts to diagonalizing the exact transfer matrix of the problem to extract
all the important ingredients, in zero external field. We will also see how to write a path-integral
representation of a transverse-field quantum Ising problem.

6.1. Transfer matrix and classical-to-quantum mapping

One-dimensional classical Ising. To illustrate the idea of a transfer matrix in the simplest setting,
we consider a one-dimensional (d = 1) classical Ising ferromagnet with periodic-boundary conditions:

H[σ] = −J
N∑
j=1

σjσj+1 − h
N∑
j=1

σj , (6.1)

where σj = ±1 are the two eigenvalues of σ̂zj , and we have written H as a classical Hamiltonian
depending con the configuration σ = (σ1, · · · , σN ) of all spins. The partition function Z associated is
given by

Z(β) =

Configs∑
σ

e−βH[σ] =

N∑
j=1

∑
σj=±1

e−βH[σ] . (6.2)

Observe that we can write:

e−βH[σ] = e
∑N
j=1

(
βJσjσj+1+βhσj

)
=

N∏
j=1

eβJσjσj+1+βhσj =

N∏
j=1

〈σj+1|T|σj〉︷ ︸︸ ︷
eβJσjσj+1+βh(σj+σj+1)/2

= 〈σ1|T|σN 〉〈σN |T|σN−1〉 · · · 〈σ2|T|σ1〉 (6.3)

where we have identified a 2× 2 matrix, the transition matrix 1

〈σj+1|T|σj〉 =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
(6.4)

and rewritten the product by using the PBC condition σN+1 ≡ σ1. This immediately shows that the
partition function is the trace of a product of N transition matrices:

Z =
∑

σ1,··· ,σN

〈σ1|T|σN 〉〈σN |T|σN−1〉 · · · 〈σ2|T|σ1〉 = Tr TN . (6.5)

1Notice that we rewrite the longitudinal field term in a manner that is symmetric in (j, j + 1), so that the resulting
transfer matrix is symmetric.

153



Transfer matrix and Path-Integral (Lecture Notes by G.E. Santoro)

Z comes automatically if we calculate the two eigenvalues of 〈σj+1|T|σj〉. The calculation is elemen-
tary, for instance by noticing that:

T =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
= eβJ cosh(βh) 1 + eβJ sinh(βh) σ̂z + e−βJ σ̂x , (6.6)

from which you deduce that the two eigenvalues of T are:

λ± = eβJ cosh(βh)±
√

e2βJ sinh2(βh) + e−2βJ . (6.7)

The partition function Z = Tr TN = λN+ + λN− is exponentially dominated by the largest eigenvalue,
hence the free-energy per spin is given by:

f(T, h) = lim
N→∞

F

N
= −kBT log λ+ = −kBT log

(
eβJ cosh(βh) +

√
e2βJ sinh2(βh) + e−2βJ

)
. (6.8)

From the free-energy you can compute the spontaneous magnetization:

m(T, h) = −∂f
∂h

=
sinhβh√

sinh2 βh+ e−4βJ
. (6.9)

Symmetry-breaking at finite T is lost. Observe that m = sign(h) for T = 0 (β →∞). On
the contrary, for any finite T , the limit for h→ 0 of the magnetization vanishes:

m(T > 0) = lim
h→0

m(T, h) = lim
h→0

sinhβh√
sinh2 βh+ e−4βJ

= 0 . (6.10)

i

The zero-field (linear) susceptibility is also easy to calculate:

χ(T ) =
∂m

∂h

∣∣
h=0

=
1

kBT
e2J/(kBT ) . (6.11)

Observe that a Curie behaviour χ = 1
kBT

for free spins (J = 0) becomes an exponentially diverging
χ for J > 0 (ferromagnetic coupling) and an exponentially suppressed χ for J < 0 (antiferromagnetic
coupling).

Exercise 6.1. To calculate the spin-spin correlation function, show that you can write:

C1,n+1 = 〈σ̂z1 σ̂zn〉 =
1

Z
Tr
(

TN−nσ̂zTnσ̂z
)
, (6.12)

where 0 ≤ n ≤ N and the transfer matrix T is given by Eq. (6.6). Next, set h = 0, so that
T = eβJ1 + e−βJ σ̂x, write explicitly the spectral decomposition of T in terms of eigenvectors |±〉 =

1√
2

 1

−1

 of σ̂x:

T = λ+|+〉〈+|+ λ−|−〉〈−| , (6.13)

and calculate the relevant trace in this basis. Show that you get:

C1,n+1 =
λN−n+ λn− + λn+λ

N−n
−

λN+ + λN−

N→∞−→
(

tanh(βJ)
)n

= e−n log cotanh(βJ) . (6.14)

Two-dimensional classical Ising. We now move to the 2d Ising model with nearest-neighbour inter-
actions on a square lattice, leaving comments on the generalizations to the final discussion.

154



(Lecture Notes by G.E. Santoro) 6.1 Transfer matrix and classical-to-quantum mapping

PBC

Jx

Jy
σj

σj+1

〈σj+1|T |σj〉→

1

2

...

j

j + 1

...

Ny

1 2 . . . i i+ 1 . . . Nx

Figure 6.1: The 2-dimensional classical
Ising model on a square lattice. The system
has Nx × Ny sites, and PBC are enforced
in the y-direction: you can think of the sys-
tem as “living on a cylinder” with an axis
along the x-direction. Boundary conditions
along the x-direction are left unspecified:
they could be open, fixed, or periodic. In
the latter case, you might picture the system
as “living on a torus”. The blue lines high-
light the couplings Jx, connecting sites (i, j)

and (i + 1, j), and Jy, connecting (i, j) and
(i, j + 1). The shaded rectangle highlights
the Boltzmann weights included in the defi-
nition of the “transfer matrix” 〈σj+1|T|σj〉.

Consider an Ising model with couplings Jy and Jx along the y- and x-directions of a two-dimensional
square lattice. We assume the lattice to have Nx sites along x, and Ny sites along y, and we label
the sites with a pair of integers (i, j), where i = 1 · · ·Nx and j = 1 · · ·Ny. The number of sites is
N = NxNy. We write the (classical) spin Hamiltonian and its canonical partition function as:

H[σ] = −
Sites∑
i,j

(
Jxσi,jσi+1,j + Jyσi,jσi,j+1

)
− h

∑
i,j

σi,j

Z(β) =

Configs∑
σ

e−βH[σ] =

Sites∑
i,j

∑
σi,j=±1

e−βH[σ]

(6.15)

We assume that the boundary conditions are periodic (PBC) in the y-direction, i.e., σi,Ny+1 ≡ σi,1.
No assumption is made on the x-direction boundary conditions, which can be open or periodic. A
few notations are useful to simplify our writing. First, we denote by σj = (σ1,j , · · · , σNx,j) the
configuration of row j of our lattice. Evidently, σj runs over 2Nx possible row configurations. A
full configuration σ of the whole system can be seen as a collection of all its row configurations:
σ = (σ1, σ2, · · · , σNy ). The number of configurations σ is evidently (2Nx)Ny = 2N , hence the difficulty
in calculating the partition function. Consider now the following 2Nx × 2Nx matrix

〈σj+1|T|σj〉 = exp

(
β

Nx∑
i=1

(
Jyσi,jσi,j+1 +

Jx
2

(σi,jσi+1,j + σi,j+1σi+1,j+1) +
h

2
(σi,j + σi,j+1)

))
.

Observe that the matrix is real, symmetric and positive by construction

〈σj+1|T|σj〉 = 〈σj |T|σj+1〉 > 0 , (6.16)

the symmetry being due to our choice: we decided to include some Boltzmann weights in a symmetric
fashion, including only half of the weights in 〈σj+1|T|σj〉, with the understanding that the other half
should be taken care of by 〈σj+2|T|σj+1〉 and by 〈σj |T|σj−1〉. Indeed, you realize that if I take a
matrix product of all the T-matrices, I will include all the necessary Boltzmann weights appearing in
Z:

Z =
∑

σ1,··· ,σNy

〈σ1|T|σNy 〉 〈σNy |T|σNy−1〉 · · · 〈σj+1|T|σj〉 · · · 〈σ2|T|σ1〉 ≡ Tr TNy , (6.17)

where the trace emerges from the PBC choice of boundary conditions along the y-direction.
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Re{λ}

Im{λ}

λ00

Figure 6.2: The Perron-Frobenius theorem.
The red dot denotes λ0, the Perron root, which
is the maximum eigenvalue of T, real and posi-
tive. All other eigenvalues (smaller black dots)
stay within the circle of radius λ0 in the complex
plane. For the symmetric T considered here, all
other eigenvalues are real as well.

Since T is a positive real matrix — and even symmetric, by our construction —, we can use Perron-
Frobenius theorem, which guarantees that T has a unique (positive) eigenstate |λ0〉 with a maximum
eigenvalue λ0 — the so-called Perron root —, which is itself real and positive and greater than the
modulus of any other eigenvalue, λ0 > |λα>0|, in general complex, but in the present case real, because
T is symmetric. We can write, in terms of the eigenstates |λα〉 of T, the spectral decomposition of T

as:

T =

2Nx−1∑
α=0

λα|λα〉〈λα| =⇒ Z = Tr TNy =

2Nx−1∑
α=0

λNyα ,

where the last equation follows because TNy is easy to calculate on the basis of the eigenvectors of T,
and its trace, leading to Z is also simply the sum of all λNyα .

Exponential dominance of the Perron root. Let us denote the maximum eigenvalue of T

by λ0 ≡ e−εE0 . In the limit Ny →∞, the partition sum is exponentially dominated by λ0:

βF

Ny
= − 1

Ny
logZ

Ny→∞−→ − log λ0 = εE0 .

i

Now, let us switch to a quantum framework. We interpret the row configurations |σj〉 as the states
of a quantum spin-1/2 chain of Nx sites, |σj〉 −→ |σ1,j , σ2,j , · · · , σNx,j〉Q, or, omitting the j-index:

|σ〉 −→ |σ1, σ2, · · · , σNx〉Q
def
= |σ〉Q .

The latter is simply an eigenstate of all the Pauli spin operators σ̂zi :

σ̂zi |σ1, σ2, · · · , σNx〉Q = σi|σ1, σ2, · · · , σNx〉Q ,

technically the tensor product of all the σ̂zi spinor states for all i = 1 · · ·Nx. Correspondingly, we want
to find a quantum operator T̂Q which faithfully represents the matrix elements of T:

〈σ′|T|σ〉 = e
β

Nx∑
i=1

(
Jyσiσ

′
i +

Jx
2

(
σiσi+1 + σ′iσ

′
i+1

)
+
h

2
(σi + σ′i)

)
≡ Q〈σ′|T̂Q|σ〉Q . (6.18)
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The operator T̂Q is simple to construct: 2

T̂Q = e

β
2

Nx∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
︸ ︷︷ ︸

L

[
Nx∏
i=1

(
eβJy1i + e−βJy σ̂xi

)]
︸ ︷︷ ︸

C

e

β
2

Nx∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
︸ ︷︷ ︸

R

. (6.19)

Consider now the ingredient appearing in the central piece, which we want to rewrite as an exponential:(
eβJy1i + e−βJy σ̂xi

)
≡ C eΓσ̂xi ≡ C (1i cosh Γ + σ̂xi sinh Γ) ,

where we used (σ̂x)2n = 1, and (σ̂x)2n+1 = σ̂x in the second equality, to expand the exponential. To
find the constants C and Γ we write explicitly: C cosh Γ = eβJy

C sinh Γ = e−βJy
=⇒

 tanh Γ = e−2βJy

C2 = 2
sinh 2Γ

. (6.20)

With these definitions, we can write T̂Q, still exactly, as:

T̂Q = CNxe

β
2

Nx∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
e
Γ

Nx∑
i=1

σ̂xi
e

β
2

Nx∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
. (6.21)

Although exact, this expression is not nice: the three different terms do not commute and you cannot
rewrite T̂Q as the exponential of a single quantum Hamiltonian operator. Suppose, however, that the
coupling constants Jx and Jy are highly anisotropic.

The high-anisotropy limit. More precisely, we assume that:

High-anistropy limit:


βJx = εJ

βh = εh‖

Γ = εh⊥ =⇒ βJy = − 1
2 log tanh εh⊥

(6.22)

where ε (with dimensions of “time/~”) is “small”, and J , h‖, h⊥ (with dimensions of “energy”) are
suitable constants. More properly, the dimensionless combinations εJ , εh‖, and εh⊥ are assumed
to be small. These assumptions imply that when βJx is “small”, βJy = − 1

2 log tanh εh⊥ is “large”,
justifying the terminology “high-anisotropy limit”, when ε→ 0.

i

In terms of these quantities, let us now define two quantum operators:

Ĥz = −
Nx∑
i=1

(
Jσ̂zi σ̂

z
i+1 + h‖σ̂zi

)
and Ĥx = −h⊥

Nx∑
i=1

σ̂xi , (6.23)

such that the exact transfer matrix can be written as

T̂Q = CNx e−
ε
2 Ĥze−εĤxe−

ε
2 Ĥz . (6.24)

In high-anisotropy limit ε→ 0, the three exponentials can be combined by using the relationship

eεÂeεB̂ = eεÂ+εB̂+ ε2

2 [Â,B̂]+··· = eε(Â+B̂) +O(ε2) . (6.25)

2With the notations in underbrace, the part denoted by “R” takes care of e
β
2

∑Nx
i=1(Jxσiσi+1+hσi). Next, the action

of the central operator “C” assigns a weight eβJy to the diagonal element σ′i = σi and a weight e−βJy to the
off-diagonal element σ′i = −σi; at the same time, the configuration is changed |σ〉Q → |σ′〉Q. Finally, the action of

the left operator “L” gives the remaining weights e
β
2

∑Nx
i=1(Jxσ′iσ

′
i+1+hσ′i).
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The transfer matrix in the high-anisotropy limit. This leads us to our final expression:

T̂Q

ε→0' CNx e−εĤQ with ĤQ = −
Nx∑
i=1

(
Jσ̂zi σ̂

z
i+1 + h‖σ̂zi + h⊥σ̂xi

)
. (6.26)

So, in the high-anisotropy limit, the classical transfer matrix has been mapped onto the imaginary-
time a evolution operator of a quantum Ising chain in a transverse field h⊥. The y-direction of the
classical problem — for which we chose periodic boundary conditions — becomes the imaginary-
time direction of the quantum problem.

aThe usual real-time evolution operator e−itĤQ/~ becomes, under the substitution t→ −iτ , the imaginary-time
evolution operator e−τĤQ/~, very important in numerical Quantum Monte Carlo approaches and in statistical
mechanics, see [34].

i

Figure 6.3: Plot of
the critical coupling
βcJy = Jy/(kBTc) from
the 2d Onsager’s solution,
Eq. (6.29), compared to
the quantum-mapped
prediction of Eq. (6.40),
versus the anisotropy of
the lattice Jx/Jy. The
two predictions coincide.

Let us consider again the classical partition function. In the high-anisotropy limit, you rewrite it
as:

Z = Tr TNy ≡ Tr T̂
Ny
Q

ε→0' CN Tr e−NyεĤQ . (6.27)

Suppose now that ĤQ has a finite gap ∆E = E1 −E0 above its (non-degenerate) ground state energy
E0 = Nxe0. Then for large Ny we would write:

Z = e−βF
ε→0' CN e−NyεE0

(
1 + e−Nyε∆E + · · ·

)
≈ CN e−NyεE0 + · · · = CN e−Nεe0 + · · ·

Taking the logarithm and dividing by N = NyNx we conclude that:

βf = lim
N→∞

β
F

N
= − lim

N→∞

logZ

N

ε→0' ε e0 − logC . (6.28)

The constant C plays a minor role: it is simply an additive contribution to the free energy.

Singularities of f ←→ Singularities of e0. The important point is that we expect that the
singularities of f (in the thermodynamical limit) should be reflected by those of the ground state
energy (per spin) e0 of the quantum model.

i

Let us check this last prediction. In zero longitudinal field (h = 0 → h‖ = 0) and for uniform
couplings with PBC in both directions, the classical Ising model in d = 2 has been solved by Onsager,
who succeeded in “diagonalizing” the exact transfer matrix T.
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The 2d Ising model in zero longitudinal field. Onsager’s solution predicts that the 2d

Ising model in zero longitudinal field has a transition temperature Tc (where the free-energy f
shows singularities) given by:

sinh (2βcJx) sinh (2βcJy) = 1 . (6.29)

i

TFIM chain: fermionic mapping. The corresponding transverse-field quantum Ising chain in d = 1

(with PBC, and setting L = Nx)

ĤTFIM = −J
L∑
j=1

σ̂zj σ̂
z
j+1 − h⊥

L∑
j=1

σ̂xj , (6.30)

can be easily solved by mapping the spin-operators onto spinless fermion operators — through the
so-called Jordan-Wigner transformation 3 — leading to a simple quadratic fermion Hamiltonian:

ĤTFIM −→ Ĥ =

ABC∑
k>0

(
2(h⊥ − J cos k)

(
ĉ†k ĉk − ĉ−k ĉ†−k

)
− 2iJ sin k

(
ĉ†k ĉ†−k − ĉ−k ĉk

))

=

ABC∑
k>0

(ĉ†k , ĉ−k)

(
2(h⊥ − J cos k) −2Ji sin k

2Ji sin k −2(h⊥ − J cos k)

)(
ĉk

ĉ†−k

)
. (6.33)

Here k = (2n−1)π
L with n = 1 · · · L2 are positive k-vectors for fermions on a lattice with Antiperiodic

Boundary Conditions (ABC). The final form of the fermionic Hamiltonian highlights the 2× 2 nature
of the problem with particle annihilation (ĉk) and creation (ĉ†−k) linked together into fermionic Nambu
spinors, like in the BCS theory of superconductivity. Details will be studied later on, during a hands-on
specific short course. Here we just sketch the main results we need.

By solving the 2× 2 eigenvalue problem one can find two particle-hole symmetric bands εk± = ±εk
with

εk = 2J

√(
cos k − h⊥

J

)2

+ sin2 k ≥ 0 , (6.34)

and corresponding eigenvectors (uk± , vk±)T which determine new Bogoliubov fermionic operators 4

3For that purpose, I prefer to do a spin-rotation, writing first

ĤTFIM = −J
L∑
j=1

σ̂xj σ̂
x
j+1 − h⊥

L∑
j=1

σ̂zj ,

and then mapping spins into fermions using the Jordan-Wigner (non-local) transformation:
σ̂xj = K̂j (ĉ†j + ĉj)

σ̂yj = K̂j i(ĉ
†
j − ĉj)

σ̂zj = 1− 2n̂j

with K̂j =

j−1∏
j′=1

e
iπn̂

j′ . (6.31)

It is easy to show that some nearest-neighbor spin-spin σ̂xj σ̂
x
j+1 operators transform simply into quadratic fermionic

operators
σ̂xj σ̂

x
j+1 =

(
ĉ†j ĉj+1 + ĉ†j ĉ

†
j+1 + H.c.

)
. (6.32)

Unfortunately, a longitudinal field term involving a single σ̂xj cannot be translated into a simple local fermionic
operator.

4Define the shorthand zk = 2(h⊥ − J cos k) and yk = 2J sin k. For the positive energy eigenvector, we have:(
uk+

vk+

)
≡
(

uk
vk

)
=

1√
2εk(εk + zk)

(
εk + zk
iyk

)
, (6.35)

where we have introduced the shorthands uk = uk+ and vk = vk+. Note, in passing, that u−k = uk, while
v−k = −vk, since zk is even in k, while yk is odd. The negative-energy eigenvector (uk− , vk−)T is related to the
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Figure 6.4.: (a) The two bands ±εk plotted by varying the transverse field h⊥ in the range [0, 2]. (b-d)
The bands ±εk for three different transverse fields h⊥: (b) h⊥/J = 0.5 (inside the ferromagnetic region),
(c) h⊥/J = 1 (the critical point), (d) h⊥/J = 1.5 (inside the paramagnetic phase). Notice the remarkable
behaviour at h⊥ = h⊥c = J , clearly visible in panel (c): a gapless linear spectrum. Notice also how you can
hardly distinguish the bands of the two gapped phases in (b) and (d), although their topology is distinctly
different.

γ̂†k = uk ĉ†k + vk ĉ−k, in terms of which the fermionic Hamiltonian is perfectly diagonal:

Ĥ =

ABC∑
k>0

εk

(
γ̂†kγ̂k + γ̂†−kγ̂−k

)
+ E0 with E0 = −

ABC∑
k>0

εk . (6.37)

The ground state, with energy E0, can be shown to be given by the Bogoliubov vacuum 5

|∅γ〉ABC = |Ψ+〉 =

ABC∏
k>0

(
uk + vk ĉ†k ĉ†−k

)
|0〉 , (6.38)

where γ̂k|∅γ〉ABC = 0. The form of the two bands ±εk, as a function of k and for several values of h⊥

is noteworthy. Figure 6.4 shows plots that illustrate them.

The quantum critical point, where singularities of

e0 = lim
L→∞

E0

L
= −

∫ π

0

dk

2π
εk , (6.39)

are present, is easily found to be at (h⊥/J)c = 1. Indeed, if you look at the bands in Fig. 6.4 you
immediately see that they are very smooth for h⊥ 6= J (panels b and d), but develop a cusp for h⊥ = J

(panel c). This corresponds, in terms of Eq. (6.22), to 6

e−2βcJy = tanhβcJx . (6.40)

previous one by a simple transformation:(
uk−
vk−

)
=

(
−v∗k
u∗k

)
=

1√
2εk(εk + zk)

(
iyk

εk + zk

)
. (6.36)

5Incidentally, this is precisely the state |Ψ+〉 even under the Z2 symmetry previously discussed. The quasi-degenerate
state |Ψ−〉 lives in a different sector of the Hilbert space, with different (PBC) values of k.

6Simply notice that at the critical point you can identify εh⊥ with εJ = βJx.
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Remarkably, all exact critical exponents of the zero-field 2d Ising model are reproduced by the quantum
Ising chain. 7

Quantitatively, you might wonder how close the two predictions for Tc are, as a function of the
anisotropy of the couplings Jx/Jy (which should be “small” for the quantum mapping to be in principle
valid). The two results are shown in Fig. 6.3: if you can see only one curve, you are right. Rather
surprisingly, at least for me, Eq. (6.29)-(6.40) give precisely 8 the same Tc for all values of the anisotropy
Jx/Jy. To summarise, not only do we expect that our quantum problem will capture the singularities
of the classical model, but even quantitatively we get a perfect prediction for the critical couplings,
well beyond the high-anisotropy limit.

Generalisations. Generalisations are rather simple. If you follow the steps we have taken, you re-
alize that it was in no way crucial that the original classical Ising model was two-dimensional: any
(d+ 1) dimensional hyper-cubic lattice classical Ising model would be reduced to a corresponding d-
dimensional quantum Ising problem in a transverse field. The boundary conditions on the space-like
directions can be taken at will: only the direction that maps into the imaginary-time has to respect
PBC. Moreover, the different couplings might be different from site to site, as long as they remain the
same along the “time-direction”. 9

More in details, and as a way of summary, take a classical Ising model in, say, a hyper-cubic lattice
in (d+ 1)-dimensions, with the lattice sites denoted as

d∑
α=1

nαeα + nted+1 = R + nted+1 ≡ (R, nt) ,

where eα and ed+1 are lattice vectors in the corresponding directions, with nα = 1, · · ·Nα and nt =

1, · · ·Nt integers. Write the classical Ising model H as

H[σ] = −
Nt∑
nt=1

∑
〈R,R′〉

JsR,R′σR,ntσR′,nt −
Nt∑
nt=1

∑
R

J tR σR,ntσR,nt+1 −
Nt∑
nt=1

∑
R

hRσR,nt , (6.41)

with PBC along the “time-like” (d+ 1)-direction and general anisotropic two-spin interactions: Js
R,R′

along the “space-like directions” and J tR along the “time direction”. Let Ns = N1N2 · · ·Nd be the
number of sites in the first d “space-like” directions, and N = NsNt the total number of sites. Then,
you can write Z = Tr TNt with T a 2Ns × 2Ns positive, symmetric, transfer matrix, whose Perron’s
root exponentially dominates Z in the limit Nt →∞. Moreover, in the high-anisotropy limit where:

High-anistropy limit:


βJs

R,R′ = εJR,R′

βhR = εh
‖
R

e−2βJtR = tanh εh⊥R

(6.42)

the quantities on the RHS being uniformly small (formally in the limit ε → 0), you can write the
transfer matrix as a quantum operator of the form TQ −→ e−εĤQ with:

ĤQ = −
∑
〈R,R′〉

JR,R′ σ̂
z
Rσ̂

z
R′ −

∑
R

h
‖
Rσ̂

z
R −

∑
R

h⊥R σ̂
x
R . (6.43)

7We will see details of this in the hands-on short course. Interestingly, the Jordan-Wigner mapping is unable to
solve the 1d quantum Ising chain precisely in the case which Onsager’s solution cannot deal with: in presence of a
longitudinal field.

8If you call z = e−2βcJy , from the Onsager relation Eq. (6.29), solving a simple quadratic equation, you get:

z = e−2βcJy =

√
S2 + 4− 2

S
with S = 2 sinh(2βcJx) .

Straightforward algebra, using duplication formulas cosh(2βcJx) = cosh2(βcJx) + sinh2(βcJx) and sinh(2βcJx) =

2 sinh(βcJx) cosh(βcJx), leads then to the result stated in Eq. (6.40).
9In the (1+1)-dimensional example we treated explicitly, with sites denoted as (i, j), you could take Jx → Jxi , Jy → Jyi ,
and h→ hi, leading to a site-dependence of the transverse-field quantum Ising chain parameters Ji, h

‖
i and h⊥i .
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6.2. Path-integral representation of transverse-field Ising
models

We now follow essentially the inverse route to what we did in the previous section: we will try to
write the quantum partition function of a transverse-field Ising model (indeed, in any dimension and
with arbitrary couplings) in terms of a “classical partition sum”, as an illustration of how to write a
Suzuki-Trotter path-integral of a quantum problem. The steps are remarkably identical to those we
saw in the previous section, but repetita iuvant. So, consider a quantum Ising model in a transverse
field:

ĤQ = −
∑
〈R,R′〉

JR,R′ σ̂
z
Rσ̂

z
R′ −

∑
R

h
‖
Rσ̂

z
R︸ ︷︷ ︸

Ẑ

−
∑
R

h⊥R σ̂
x
R︸ ︷︷ ︸

X̂

= Ẑ + X̂ , (6.44)

where 〈R,R′〉 denotes, as usual, nearest-neighbour sites on the (rather arbitrary) lattice. As a short-
hand, I indicated the first term, diagonal in the basis of σ̂z by Ẑ — it will be our “potential energy”
— and the off-diagonal term involving σ̂x by X̂ — it will be our “kinetic energy operator”.

More general transverse-field models. The fact that we consider two-spin JR,R′ σ̂
z
Rσ̂

z
R′

interactions is for illustration purposes only. Indeed, you might repeat an identical construction
for an arbitrary model of the form:

ĤQ = Ẑ −
∑
R

h⊥R σ̂
x
R = Ẑ + X̂ , (6.45)

where Ẑ contains any number of σ̂zR. Later on, we will apply this to the Ising lattice gauge theory
in a transverse field, where Ẑ will consist of four spin σ̂z plaquette interactions.

i

We would like to calculate the finite temperature quantum partition function:

ZQ ≡ Tr e−βĤQ = Tr e−
β
Nt
ĤQ · · · e−

β
Nt
ĤQ︸ ︷︷ ︸

Nt times

=
∑
σ1

〈σ1| e−εĤQ · · · e−εĤQ︸ ︷︷ ︸
Nt times

|σ1〉 (6.46)

So far, we have an exact expression, since we have just rewritten the exponential as a product of Nt
identical terms without splitting the two non-commuting parts. The number Nt is called the Trotter
number or number of Trotter slices. Notice that for fixed finite β (i.e., at finite temperature T ), the
quantity appearing in the exponentials is now:

ε ≡ β

Nt
=

1

kBTNt
=

∆τ

~
. (6.47)

The last notation suggests that I can view ε as an arbitrarily small “imaginary time” ∆τ , by taking a
suitably large Nt. 10 And here comes the Suzuki-Trotter break-up of the exponential:

e−εĤQ = e−ε(Ẑ+X̂) = e−
ε
2 Ẑe−εX̂e−

ε
2 Ẑ +O(ε3) . (6.48)

This symmetric break-up is actually correct to order ε3, while a non-symmetric form would lead to
e−ε(Ẑ+X̂) = e−εẐe−εX̂ + O(ε2). Remarkably, under the trace the two break-ups are actually totally
equivalent. We now use Eq. (6.48) inside the trace expression Eq. (6.46), performing the trace by
summing over the σ̂z-eigenstates configurations |σ1〉 of the Hilbert space, and inserting appropriate
identities at all “time-slices” nt = 2 · · ·Nt, of the form∑

σnt

|σnt〉〈σnt | = 1 .

10Notice that ε reabsorbs a factor of ~.
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PBC

ε

τ/~

β

01

2

...

nt

nt + 1

|σnt〉

|σnt+1〉
〈σnt+1|e−εĤQ |σnt〉

...

Nt

1 2 . . . i . . . Nx

Figure 6.5: The quantum partition func-
tion, ZQ ≡ Tr e−βĤQ , expressed as

Tr
(
e−εĤQ

)Nt
. Here ε ≡ β/Nt will be as-

sumed to be “small”, so as to justify a Suzuki-
Trotter decomposition of the “imaginary-time
propagator” 〈σnt+1|e

−εĤQ |σnt〉. This eventu-
ally leads to the path-integral representation.

We end-up writing:

ZQ =
∑

σ1···σNt

(
〈σ1|e−

ε
2 Ẑe−εX̂e−

ε
2 Ẑ |σNt〉 · · · 〈σnt+1|e−

ε
2 Ẑe−εX̂e−

ε
2 Ẑ |σnt〉 · · ·

· · · 〈σ2|e−
ε
2 Ẑe−εX̂e−

ε
2 Ẑ |σ1〉

)
+ O(ε2) . (6.49)

The relevant matrix elements that we need to calculate are simple, since Ẑ is diagonal in the chosen
basis, and X̂ is a sum of commuting single-site σ̂xR. More explicitly:

〈σnt+1|e−
ε
2 Ẑe−εX̂e−

ε
2 Ẑ |σnt〉 = e−

ε
2 Ẑ(σnt+1) 〈σnt+1|e−εX̂ |σnt〉 e

− ε2 Ẑ(σnt
) .

In turn, the central piece can be explicitly written as:

〈σnt+1|e−εX̂ |σnt〉 = 〈σnt+1|
∏
R

eεh
⊥
Rσ̂

x
R |σnt〉 =

∏
R

〈σR,nt+1|eεh
⊥
Rσ̂

x
R |σR,nt〉

=
∏
R

〈σR,nt+1|
(

cosh (εh⊥R )1R + sinh (εh⊥R )σ̂xR
)
|σR,nt〉

=
∏
R

 cosh (εh⊥R ) if σR,nt+1 = σR,nt

sinh (εh⊥R ) if σR,nt+1 = −σR,nt

.

Let us manipulate it to make it easier to read. Remember that in the previous section we showed that

eKσ
′σ = 〈σ′|eK1 + e−K σ̂x|σ〉 = C〈σ′|eΓσ̂x |σ〉 with

{
K = − 1

2 log tanh Γ

C2 = 2
sinh 2Γ

.

Hence we can write (relabelling Γ→ εh⊥R ):

〈σnt+1|e−εX̂ |σnt〉 = e
∑

R(K⊥RσR,ntσR,nt+1−logCR) with

 K⊥R = − 1
2 log tanh

(
εh⊥R

)
C2

R = 2
sinh 2εh⊥R

.

(6.50)
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Path-integral representation of quantum Ising models in a transverse field. Given
a quantum Ising model in d-dimensions with ĤQ = Ẑ −

∑
R
h⊥R σ̂

x
R and Ẑ containing only σ̂z

operators, its path-integral amounts to following classical partition sum in (d + 1)-dimensions
with a classical effective action S[σ]

S[σ] = −ε
Nt∑
nt=1

Ẑ(σnt)−
Nt∑
nt=1

∑
R

K⊥R σR,ntσR,nt+1

ZQ = lim
Nt→∞

∑
σ1···σNt

e−S[σ1,··· ,σNt ] = lim
Nt→∞

∑
σ

e−S[σ]

.

Here Ẑ(σnt) is the eigenvalue of Ẑ on the classical configuration σnt at the “time-slice” nt, and
the relevant a transverse (time-like) dimensionless coupling K⊥R is ferromagnetic and is given by:

K⊥R = −1

2
log tanh

(
εh⊥R

)
> 0

ε =
∆τ

~
≡ β

Nt
=

1

kBTNt

. (6.51)

aObserve that the constant CR plays no major role in the path-integral, and has been omitted. It will cancel
anyway when considering expectation values.

i
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7. Mean field and Ginzburg-Landau

An exact solution of a non-trivial statistical mechanics model is a rare event, mostly confined to two-
dimensional (classical), or one-dimensional (quantum) models. See the excellent books by Mussardo
and by Baxter if you want to learn more about exactly solvable models.

Here I will discuss a general approximate approach that yields useful information on the phase
diagram you should expect for your model, although failing to quantitatively describe the behaviour
close to second-order critical points, at least for lattices in low dimensions. This approach is known as
mean field. It can be introduced in many ways. Here I present a useful variational approach leading
to a mean-field description.

7.1. Variational formulation of mean field

First of all, the canonical Helmholtz free-energy obeys a minimum principle, as you already know.
You can also show that a minimum principle allows getting the usual Gibbs-Boltzmann weights for
the canonical ensemble in the following way. Let {|φn〉} be a complete basis of eigenstates of the
Hamiltonian Ĥ of the system you are considering, with En the corresponding energy eigenvalues.
Consider a statistical ensemble defined by

ρ̂ =
∑
n

pn|φn〉〈φn| with
∑
n

pn = 1 . (7.1)

If can calculate E and S for this ensemble, viewed as functionals of the weights {pn}, as:

E[{pn}] = 〈Ĥ〉 = Tr[ρ̂Ĥ] =
∑
n

pnEn

S[{pn}] = −kB〈log ρ̂〉 = −kB Tr[ρ̂ log ρ̂] = −kB
∑
n

pn log pn

. (7.2)

One can show that the correct canonical free-energy F , with the standard Boltzmann weights pn =

e−βEn/Z, verifies the inequality
F ≤ E[{pn}]− TS[{pn}] , (7.3)

as you can immediately show by writing the Lagrange multiplier problem in presence of the constraint∑
n pn = 1. 1 But this is not all. You can also show that F is “minimal” with respect to any density

matrix ρ̂0, in particular for the Gibbs density matrix

ρ̂0 =
e−βĤ0

Tr e−βĤ0

,

1The functional to be minimized is:∑
n

pnEn + kBT
∑
n

pn log pn − λ(
∑
n

pn − 1) .

Setting to 0 the simple derivative with respect to pn, you immediately verify that the solution can be expressed in
the standard Gibbs-Boltzmann form:

pn =
e−βEn

Z
.
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corresponding to a different trial Hamiltonian Ĥ0.

Bogoliubov-Gibbs inequality.

F ≤ Tr
(
ρ̂0Ĥ

)
+ kBT Tr

(
ρ̂0 log ρ̂0

)
= 〈Ĥ〉0 − TS0 (7.4)

= F0 + 〈Ĥ − Ĥ0〉0 ,

where in the second form F0 = E0−TS0 = 〈Ĥ0〉0−TS0 is the free-energy corresponding to Ĥ0.

i

Incidentally, this inequality generalizes to finite T the well-known Rayleigh-Ritz variational inequal-
ity of quantum mechanics

Egs ≤ 〈Ĥ〉0 = Tr
(
Ĥρ̂0

)
,

which you typically meet for pure states ρ̂0 = |ψ〉〈ψ|, but it applies to any density matrix ρ̂0. Indeed,
for T → 0 you have:

Egs
T→0←− F ≤ 〈Ĥ〉0 − TS0

T→0−→ 〈Ĥ〉0 . (7.5)

To prove the Bogoliubov-Gibbs inequality, we will introduce the concept of quantum relative entropy,
which leads to another Gibbs inequality, very interesting on its own.

Relative entropy or quantum Kullback-Leibler divergence. Given two density matrices
ρ̂1 and ρ̂2, their quantum relative entropy is defined as:

S(ρ̂1||ρ̂2)
def
= Tr

(
ρ̂1(log ρ̂1 − log ρ̂2)

)
. (7.6)

It is the quantum analog of the classical Kullback-Leibler divergence

D(P1||P2) =

∫
dx P1(x) log

P1(x)

P2(x)
, (7.7)

where P1 and P2 are probability densities. Notice that both quantities are non-symmetric with
respect to their arguments. A crucial concept connected to the relative entropy is the Gibbs
inequality

S(ρ̂1||ρ̂2) ≥ 0 =⇒ −Tr ρ̂1 log ρ̂1 ≤ −Tr ρ̂1 log ρ̂2 . (7.8)

The inequality becomes an equality if and only if ρ̂1 = ρ̂2.

i

The Gibbs inequality is a consequence of a general Klein’s inequality, in turn connected to the
convexity preservation of the trace of positive operators. We will have more to say in later chapters.
Here, I just note that the proof is simple in the classical case, or equivalently when the two density
matrices have a common basis of eigenstates and differ just by the weights: ρ̂1 =

∑
n P

(1)
n |φn〉〈φn|

and ρ̂2 =
∑
n P

(2)
n |φn〉〈φn|. Indeed, using the concavity of log x and the fact that log x ≤ x − 1, you

easily show that:

Tr
(
ρ̂1(log ρ̂2 − log ρ̂1)

)
=

∑
n

(
P (1)
n log

P
(2)
n

P
(1)
n

)
≤

∑
n

(
P (1)
n

(P (2)
n

P
(1)
n

− 1
))

=
∑
n

(
P (2)
n − P (1)

n

)
= 0 . (7.9)

The Gibbs inequality immediately leads to a proof of the Bogoliubov-Gibbs inequality: it is enough
to take ρ̂1 = ρ̂0, the trial density matrix, and ρ̂2 = ρ̂CE, the Gibbs canonical ensemble associated to
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Ĥ. Here is the proof, which uses the fact that log ρ̂CE = −βĤ − logZCE and logZCE = −βF :

TS0 = −kBT Tr
(
ρ̂0 log ρ̂0

)
≤ −kBT Tr

(
ρ̂0 log ρ̂CE

)
= −kBT Tr

(
ρ̂0(−βĤ − logZCE)

)
= Tr

(
ρ̂0Ĥ

)
− F . (7.10)

An alternative proof of the Bogoliubov-Gibbs variational principle F ≤ 〈Ĥ〉0 − TS0, using a per-
turbative approach is given in Feynman’s statistical mechanics book, Sec. 2.11. The essence of the
proof is again a concavity argument. One considers an interpolating Hamiltonian

Ĥ(α) = Ĥ0 + α(Ĥ − Ĥ0) = Ĥ0 + αV̂ , (7.11)

such that Ĥ(0) ≡ Ĥ0 and Ĥ(1) ≡ Ĥ, with V̂ = Ĥ − Ĥ0, and sets up a perturbative expansion in
powers of αV̂ . For the free-energy the expansion would read:

F (α) = F0 + αF1 + α2F2 + · · · (7.12)

where F0 = E0 − TS0 = 〈Ĥ0〉0 − TS0 is the free-energy corresponding to Ĥ0, while F1, F2, etc.
are the Taylor coefficients of F (α). The perturbative calculation is rather easy to set up and carry

Figure 7.1: The concavity of F (α).
Figure taken from Feynman.

out. Use a basis of eigenstates of Ĥ0, i.e., Ĥ0|n〉 = εn|n〉, with unperturbed energies εn, and define
the shorthand for the matrix elements Vmn = 〈m|V̂ |n〉, and pn = e−βεn/Z0 to be the unperturbed
Boltzmann weights, where Z0 =

∑
n e
−βεn = e−βF0 is the unperturbed partition sum.

Exercise 7.1. Show, by an explicit calculation, that:

F1 = Tr[ρ̂0V̂ ] = 〈Ĥ − Ĥ0〉0 , (7.13)

while:

F2 = −1

2
eβF0

∑
m 6=n

e−βεm − e−βεn

εn − εm
|Vmn|2 −

β

2

(∑
n

pn|Vnn|2 −
(∑

n

pnVnn

)2
)

︸ ︷︷ ︸
≥0

≤ −1

2
eβF0

∑
m 6=n

e−βεm − e−βεn

εn − εm
|Vmn|2 ≤ 0 . (7.14)

In the previous derivation, we made use of the standard second-moment inequality 2 while the last
inequality follows by inspection.
2Simply recall that ∑

n

pn|Vnn|2 −
(∑

n

pnVnn
)2
≡
∑
n

pn

(
Vnn −

∑
m

pmVmm

)2

≥ 0 .
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The perturbative calculation just reported shows that F ′′(0) = 2F2 ≤ 0. An entirely identical
perturbative calculation, with the trick of setting up the expansion around an arbitrary point α in
terms of the (small) variable γ, by writing

Ĥ(α+ γ) = Ĥ(α) + γV̂ ,

shows that indeed
F ′′(α) ≤ 0 ∀α ∈ [0, 1] ,

which implies that the function F (α) is concave, i.e., it stays below its tangent in α = 0. By looking
at Fig 7.1 you realize that this immediately implies that

F = F (1) ≤ F0 + F1 = F0 + 〈Ĥ − Ĥ0〉0 ,

which is the second form of the Bogoliubov-Gibbs variational principle in Eq. (7.4).

Applications of Bogoliubov-Gibbs inequality. You can do a lot with the Bogoliubov-Gibbs varia-
tional principle. Hartree-Fock is an application of it, with Ĥ0 being the best (self-consistent) quadratic
Hamiltonian for a fermionic system. Ĥ0 can also be thought of as a self-consistent harmonic approx-
imation in other contexts. For spin systems, if you restrict Ĥ0 to be the sum of local fields on sites
or sum of terms on independent larger clusters, you recover the usual Weiss mean-field (see Section
below) and its improvements (Bethe-Peierls approximations).

7.1.1. The classical Ising model: Weiss mean-field

Consider the classical Ising model

Ĥ = −
∑
〈R,R′〉

JR,R′ σ̂
z
Rσ̂

z
R′ −

∑
R

hRσ̂
z
R , (7.15)

where R and R′ denote nearest-neighbour sites on a lattice or graph on which the model is defined.
We now apply the Bogoliubov-Gibbs variational principle with a very simple trial Hamiltonian Ĥ0

Ĥ0 = −
∑
R

h0
Rσ̂

z
R , (7.16)

where the various h0
R (in essence, effective magnetic fields) are used as variational parameters. This

amounts to saying that our Ansatz for the density matrix is site-factorised and given by: 3

ρ̂0 =
e−βĤ0

Tr e−βĤ0

=
∏
R

(1

2
1R +

mR

2
σ̂zR

)
with mR = tanh(βh0

R) , (7.17)

where the mR can be equivalently regarded as our set of variational parameters. Notice that this
choice leads to  〈σ̂zR〉0 = mR

〈σ̂zRσ̂zR′〉0 ≡ 〈σ̂zR〉0 〈σ̂zR′〉0 = mRmR′

.

Hence, as you see, the site-factorisation of the trial density matrix leads to ignoring correlations
between the spins! The variational free-energy, energy and entropy are given by:

Fvar[{mR}] = E[{mR}]− TS[{mR}]

E[{mR}] = Tr
(
ρ̂0Ĥ

)
= −

∑
〈R,R′〉

JR,R′mRmR′ −
∑
R

hRmR

S[{mR}] = −kB Tr
(
ρ̂0 log ρ̂0

)
= −kB

∑
R

[(
1 +mR

2

)
log

(
1 +mR

2

)
+

(
1−mR

2

)
log

(
1−mR

2

)]
3Recall that exσ̂

z
= 1 coshx+ σ̂z sinhx.
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Now we can set our variational parameters mR by requiring that ∂Fvar

∂mR
= 0. The calculation is simple,

since
0 =

∂Fvar

∂mR

= −
∑
R′

JR,R′mR′ − hR +
kBT

2
log

1 +mR

1−mR

,

from which it follows that

β
(∑

R′

JR,R′mR′ + hR

)
=

1

2
log

1 +mR

1−mR

≡ tanh−1(mR) ,

where the last equality follows easily from the hyperbolic tangent relationship:

tanh

(
1

2
log

1 + x

1− x

)
= x .

The mean-field equations. In conclusion, the variational parameters mR have to satisfy the
following mean-field equations

mR = tanh(β
∑
R′

JR,R′mR′ + βhR) . (7.18)

i

Suppose that our Ising system was an ordered ferromagnetic model with JR,R′ = J > 0 on all
nearest-neighbor bonds of a certain lattice with coordination z (i.e., each site has z nearest neighbors;
for a cubic lattice in d-dimensions, z = 2d) 4 and hR = h on all sites. Then, looking for solutions that
are uniform over all sites, mR = m, we can rewrite our mean-field equations as a single relationship
for m:

m = tanh(zβJm+ βh) . (7.19)

Let us consider first the case h = 0, where the previous equation reduces to m = tanh(zβJm) which
is easy to analyse graphically, as sketched in Fig. 7.2. m = 0 is always a (paramagnetic) solution of

Figure 7.2: The graphical solution of
the self-consistency mean-field equation
m = tanh(zβJm) for the magnetization m

of the homogeneous Ising model at h = 0.

the previous equation. If zβJ < 1, a simple inspection of the graph of tanh(zβJm) shows that m = 0

is the only solution. However, for βzJ > 1 two more solutions with ±m 6= 0 are allowed. Hence, the
transition occurs when the slope of tanh(zβJm) versus m is exactly 1:

βczJ = 1 =⇒ kBTc = zJ . (7.20)

This critical Tc signals the temperature below which a uniform magnetisation m(T ) 6= 0 is possible.
Indeed, if you rewrite your variational free-energy per spin f = F/N for a uniform m as:

f = −zJ
2
m2 − hm+ kBT

[(
1 +m

2

)
log

(
1 +m

2

)
+

(
1−m

2

)
log

(
1−m

2

)]
(7.21)

4More generally, we could express the result in terms of the q = 0 Fourier transform of JR,R′ , since Ĵ(0) =
∑
j JR,R′ .

For nearest-neighbor couplings only, Ĵ(0) = zJ .
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you easily realize that when T < Tc and h = 0 indeed the solution with m(T ) 6= 0 guarantees a lower
free-energy than the paramagnetic solution withm = 0, whose free-energy is f0 = −kBT log 2. Fig. 7.3
shows plots of ∆f = f(m)− f0 for values of T around Tc. To better understand the behaviour close

Figure 7.3.: The free-energy per spin ∆f = (f + kBT log 2)/(zJ) versus m, for several values of kBT/(zJ) =

T/Tc = 1.25, 1, 0.9, 0.8, 0.7 around the transition point in zero field h = 0 (left) and for a finite field h =

0.05(zJ) (right).

to the critical point, you can expand the logarithms appearing in the entropic contribution, obtaining:

f(m,h, T ) = −zJ
2
m2 − hm− kBT log 2 +

kBT

2
m2 +

kBT

12
m4 + · · ·

= −kBT log 2− hm+
(kBT − zJ)

2
m2 +

kBT

12
m4 + · · ·

≡ f0(T )− hm+
1

2
a(T )m2 +

1

4
b(T )m4 + · · · . (7.22)

This type of expansion is known as Landau expansion. Notice the characteristic quadratic term a(T )m2

with a(T ) = kB(T − Tc) which changes sign, becoming negative, for T < Tc, with the accompanying
positive fourth-order term b(T )m4. Notice also that the only odd power term is of first-order in m, and
originates from the energy contribution due to external field. To understand the vicinity of the critical
point we can directly use the Landau expansion of the variational free-energy. The battle between
the a(T )m2 term and the b(T )m4 ends-up giving a non-vanishing order parameter m(T < Tc) which
grows below Tc as 5

m(T < Tc) ' A(Tc − T )
1
2 . (7.23)

When the external field is non-zero, the mean-field solution has always m 6= 0. Exactly at Tc, the
Landau free-energy is f(m,h, Tc) = f0(T )− hm+ 1

4b(Tc)m
4 + · · · , hence setting to zero its derivative

immediately gives that the magnetisation will grow like

m(Tc, h) '
(

h

b(Tc)

) 1
3

∼ h 1
3 . (7.24)

Starting from high temperatures, you realize that above Tc and for small h 6 we have:

m(h, T ) =
h

kB(T − Tc)
+ · · · =⇒ χ =

∂m

∂h

∣∣∣
h=0

=
1

kB(T − Tc)
, (7.25)

5The derivative of the Landau free-energy can be written as
∂f

∂m
= m

(
a(T ) + b(T )m2 + · · ·

)
,

hence the ordered solution has
m2 = −

a(T )

b(T )
=

3(Tc − T )

T
.

6There the Landau free-energy is f(m,h, T > Tc) = f0(T )−hm+ kB
2

(T −Tc)m2 + · · · and the derivative immediately
gives m(h, T > Tc).
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where χ is the zero-field uniform susceptibility.

Finally, one can calculate the full mean-field free-energy in zero-field by solving form(T ) and writing

f(T ) ≡ f(m(T ), 0, T ) .

Armed with f(T ), we can calculate the specific heat (per spin)

cv = −T ∂
2f

∂T 2
.

For T > Tc we have m(T ) = 0 hence f(T > Tc) = −kBT log 2 and cv(T > Tc) = 0. For T . Tc we
find m2(T ) ≈ 3(Tc − T )/T hence

f(T . Tc) = −kBT log 2− 3

4
kB

(Tc − T )2

T
+ · · · ,

which leads to the prediction that cv jumps to 3
2kB for T . Tc in a discontinuous fashion. The full

curve for cv(T ) — which goes back to 0 for T → 0 — is more complicated, but it can be re-expressed
in terms of m(T ).

Exercise 7.2. Calculate cv(T ) in terms of m(T ) by differentiating twice f(m(T ), 0, T ) with respect
to T , using the chain rule and the fact that ∂f/∂m = 0. After having solved (numerically) for m(T ),
plot m(T ), f(T ) and cv(T ) versus T .

For a second-order critical point, you generally write that the order parameter grows like

m(T < Tc, h = 0) ∼ (Tc − T )β , (7.26)

the uniform susceptibility diverges like

χ(T ) =
∂m

∂h

∣∣∣
h=0
∼ |T − Tc|−γ , (7.27)

the critical point order parameter grows like

m(h, Tc) ∼ |h|1/δ , (7.28)

the specific heat diverges like
cv(T ) ∼ |T − Tc|−α , (7.29)

with critical exponents β, γ, δ, α that depend on dimensionality and the symmetry of the order
parameter — in brief, on what is known as the universality class of the problem — but not on
the other microscopic details of the model. Mean-field predicts β = 1

2 , γ = 1, δ = 3, and α = 0

(a jump discontinuity) but the exact exponents, for instance, of two-dimensional Ising model are
β = 1

8 , γ = 7
4 , δ = 15, α = 0 (a logarithmic divergence). More about this further below, and in our

general previous discussion, where we introduced the anomalous exponent η entering in the two-point
correlation function, and the exponent ν entering in the correlation length divergence, as well as their
hyperscaling relation γ = (2− η)ν.

The mean-field predictions tend to come closer and closer to the true critical results as the dimen-
sionality of the problem increases until mean-field becomes exact at and above the so-called upper
critical dimension. Depending on whether the symmetry of the order parameter is discrete or contin-
uous, there can also be a lower critical dimension at and below which no phase transition occurs at
finite T > 0. We have seen that when discussing the Mermin-Wagner theorem.
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7.1.2. Fluctuation-dissipation relationships and mean-field correlations

We already stressed the fact that, apparently, the site-factorised mean-field Ansatz for the density
matrix completely misses correlations between spins. Should we then abandon any hope of calculating
a reasonable expression for the spin-spin correlation function? The answer is a bit surprising: no.

Indeed, we discussed that the exact correlation function is related, in equilibrium, to a response
function, the susceptibility, see Eq. (5.33):

Cconn

R,R′ = kBTχR,R′ . (7.30)

As we saw, the connected correlations Cconn

R,R′ , when calculated directly from the trial density matrix,
vanish in mean-field. But the response functions χ

R,R′ can be calculated in mean-field, and they do
not vanish. Hence you can use this trick to extract our mean-field estimate for the spin-spin correlation
function. To carry out this calculation, let us start from our general mean-field equations (7.18):

mR = tanh(β
∑
R′

JR,R′mR′ + βhR) = β
∑
R′

JR,R′mR′ + βhR + · · · ,

where in the second step we assumed T > Tc, a small hR and mR also small — proportional to the
small external fields —, and expanded the hyperbolic tangent. This easily leads to:∑

R′

(
kBTδR,R′ − JR,R′

)
mR′ = hR + · · · . (7.31)

Let us now assume that JR,R′ = JR−R′ , translational invariant, where R are Bravais lattice sites,
and introduce the usual lattice Fourier transform for lattice functions fR:

f̂(q) ≡
∑
R

fR e−iq·R

fR ≡ 1

N

BZ∑
q
f̂(q) eiq·R N→∞−→ Ωc

∫
BZ

dq
(2π)d

f̂(q) eiq·R
, (7.32)

where Ωc denotes the volume of the direct-lattice (Wigner-Seitz) unit cell, and we have taken the
limit N →∞ in the last expression. Then the convolution in Eq. (7.31) is a simple product in Fourier
space:

(kBT − Ĵ(q))︸ ︷︷ ︸
χ̂−1(q)

m̂(q) = ĥ(q) =⇒ m̂(q) =
ĥ(q)

kBT − Ĵ(q)
≡ χ̂(q) ĥ(q) . (7.33)

Now we expand Ĵ(q) at small wave-vectors: 7

Ĵ(q) =
∑
R

JR e−iq·R =
∑
R

JR

(
1− iq ·R− 1

2
(q ·R)2 + · · ·

)
= Ĵ(0)

(
1− q2R2

∗ +O(q4)
)
, (7.34)

where we have assumed inversion symmetry, which makes the linear term disappear, and simplified
the quadratic term to: ∑

R

RαRβJR = δαβ
1

d

∑
R

R2JR

def
= δαβ2R2

∗

∑
R

JR .

7The expansion is particularly simple if we consider a cubic lattice with nearest-neighbour interactions only, for which

Ĵ(q) = 2J
∑
α

cos (qαa) = 2J
∑
α

(
1−

1

2
q2
αa

2 + · · ·
)

= zJ − Ja2q2 + · · ·
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The definition of R2
∗ introduced in the previous expression is essentially “the second moment” of the

couplings JR: for a cubic lattice in d dimensions with nearest-neighbor couplings only, one finds
R2
∗ = a2

2d . Substituting the expansion of Ĵ(q) in the expression for the susceptibility χ̂(q), recalling
that kBTc = Ĵ(0), we find:

χ̂(q) =
1

kBT − Ĵ(q)
=

1

kBT − Ĵ(0) + Ĵ(0)R2
∗q

2 +O(q4)

=
1

kB(T − Tc) + kBTcR2
∗q

2 +O(q4)

=
1

kBTcR2
∗

1

ξ−2 + q2 +O(q4)
, (7.35)

wherein the last expression we have introduced the correlation length

ξ = R∗

(
T − Tc
Tc

)− 1
2

. (7.36)

Ornstein-Zernike lorentzian form. This Lorentzian form of χ(q) is usually called Ornstein-
Zernike form (or approximation):

χ̂(q) =
A

ξ−2 + q2
. (7.37)

i

Recall that this derivation is valid only for T > Tc and small hR, which is the regime in which we were
able to expand the mean-field equations and write Eq. (7.31). (For T < Tc and small hR we should
expand the mean-field equations around a zero-field mR 6= 0.) Observe also that this expression for
χ̂(q) implies that (as previously derived from the uniform mean-field calculation):

χ̂(q = 0, T ) =
ξ2

kBTcR2
∗

=
1

kB(T − Tc)
. (7.38)

More generally, the theory of critical phenomena developed in the 1960-1970s tells us that the
correlation function diverges near Tc with an exponent ν

ξ(T ) ∼

 A+(T − Tc)−ν for T > Tc

A−(Tc − T )−ν for T < Tc

, (7.39)

where A± are non-universal prefactors. Mean-field predicts ν = 1/2. Similarly, the uniform suscep-
tibility is known to diverge in general with an exponent γ (again, in general with different prefactors
on the two sides of the transition):

χ(T ) ∼ |T − Tc|−γ . (7.40)

The Ornstein-Zernike Lorentzian form for χ(q, T ) would suggest that γ = 2ν, which turns out to be
incorrect. In general, as we saw, a hyperscaling relation applies

γ = (2− η)ν , (7.41)

where the exponent η— introduced in 1963 by M.E. Fisher — is known as anomalous scaling exponent:
it enters in the long-distance behaviour of the connected correlation function.

If you want to get the correlation function Cconn

R−R′ = kBTχR−R′ , you need to calculate the inverse
Fourier transform of χ̂(q). For a translationally invariant system with nearest-neighbour Ising in-
teractions on a d-dimensional cubic lattice, we might write the exact expression for the mean-field
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correlations as:

Cconn

R−R′ = kBTχR−R′ = kBT a
d

∫
BZ

dq
(2π)d

eiq·(R−R′)

kBT − Ĵ(q)

= kBT a
d

∫
BZ

dq
(2π)d

eiq·(R−R′)

kBT − 2J
∑
α cos (qαa)

. (7.42)

To calculate the correlations for large values of R −R′, we extend the integral to all qs — because
the large q contribution indeed is small, as the phase-factor oscillates wildly — and approximate the
denominator with its lowest-order terms, which should be the only ones important for the long-distance
behaviour in the near-critical region:

Cconn

R−R′ ≈
T

Tc

ad

R2
∗

∫
dq

(2π)d
eiq·(R−R′)

ξ−2 + q2
. (7.43)

The relevant integral which appears can then be written as:

G(x) =

∫
dq

(2π)d
eiq·x

ξ−2 + q2
, (7.44)

i.e., essentially (minus) the Green’s function 8 of the operator∇2−m2, with the identificationm = 1/ξ.
The integral can be computed analytically in d = 1 and d = 3, by the method of residues. In d = 1

and d = 3 we find: 
G1d(x) =

ξ

2
e−x/ξ

G3d(x) =
1

4π|x|
e−|x|/ξ

(7.45)

In d = 3 you recognize the usual screened Coulomb potential, which gives an innocuous 1/(4π|x|) at
exact criticality ξ → ∞. In d = 2 the angular integral involves a Bessel function, and the result is
more complicated. 9 Nevertheless, we see quite clearly that close to criticality, ξ → ∞, the integral
has a logarithmic divergence — from the q = 0 (infrared) region — and we can estimate

G2d(x) ∼ log

(
ξ

|x|

)
e−|x|/ξ .

The result for d = 2 (and that for d = 1 as well) is very unphysical: the correlation function at a given
finite distance |R −R′| should not diverge as T → Tc, i.e., when you send ξ → ∞. As a remedy for
this unphysical behaviour, M.E. Fisher proposed, in 1963, that the Ornstein-Zernike form should be
amendend, in the region |x| � ξ, with the anomalous scaling form for the correlations:

C(x) ∝ χ(x) ∼ e−|x|/ξ

|x|d−2+η
. (7.46)

An integral over space will now give a uniform susceptibility χ(q = 0, T ) diverging as:

χ(q = 0, T ) ∼
∫

dx
e−|x|/ξ

|x|d−2+η
∼ ξ2−η ∼ |T − Tc|−(2−η)ν ,

leading to the hyperscaling relation γ = (2− η)ν, as we already saw. For the 2d Ising model the exact
solution gives η = 1

4 , ν = 1, and γ = 7
4 , hence hyperscaling is satisfied. In mean-field, we get η = 0,

ν = 1
2 and γ = 1.

8The Green’s function
(∇2 −m2)G(x) = δ(x) ,

emerges in the Yukawa theory of massive mesons — essentially, ∇2−m2 is a time-independent Klein-Gordon equation
and m is the mass of the meson — or, equivalently, as the Poisson’s equation in the presence of screening of the
Coulomb potential, ξ = 1/m being the screening length.

9See Mussardo’s book, Sec. 7.4, for details.
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7.2. The Ginzburg-Landau description

The goal of this section is to justify the Ginzburg-Landau-Wilson expression of the free-energy
functional

F [m(x)] =

∫
dx
{
f0 +

1

2
am2 +

1

4
bm4 +

1

6
cm6 − hm+

1

2
κ(∇m)2 + · · ·

}
, (7.47)

wherem(x) is in general an n-component field, and h(x) possibly space-dependent: we will concentrate
in the following only in the n = 1 (scalar) field case, relevant to the Ising model.

This is the generalization of the constrained-magnetization free-energy which we previously wrote for
the fully-connected Ising ferromagnet, see Eq. (5.19). In principle, such a functional should restitute
the full correct partition function upon integration: 10

Z =

Configs∑
σ

e−βH[σ] =

∫
Dm(x) e−βF [m(x)] . (7.48)

Hence, you might be tempted to write a formal functional integral expression of the type:

Z =

Configs∑
σ

∫
Dm(x)

∑
R

δ(m(x)− σR) e−βH[σ] =

∫
Dm(x) e−βF [m(x)]

F [m(x)] = − 1

β
log

[
Configs∑
σ

∑
R

δ(m(x)− σR) e−βH[σ]

] , (7.49)

wherein the definition for Z we played the usual trick of inserting an integral with a δ-function. But
you immediately realize how hard it would be — even once you have given a meaning to the formal
expression for the δ(m(x)− σR) by a suitable coarse-graining in space — to calculate such restricted
partition sums. So, we go through to a different route, which we have also used in the fully-connected
Ising ferromagnet: the Gaussian integral transformation.

Consider again the partition function of the classical Ising model, written explicitly

Z =

Configs∑
σ

e−βH[σ] =

Configs∑
σ

eβ
∑
〈R,R′〉 JR,R′σRσR′+β

∑
R hRσR . (7.50)

The whole difficulty comes from the interactions present in the “quadratic terms”, which are only
“deceptively quadratic” since the relevant variables are discrete, σR = ±1, and not continuous variables
on which to integrate (like in a Gaussian integral). But here the very useful Gaussian identity comes
to rescue us: ∫ +∞

−∞

dy√
2πa

e−
y2

2a+sy = e
as2

2 , (7.51)

with a > 0 (otherwise, the Gaussian integral diverges), and s any variable (including a complex one).
This identity follows from the simple Gaussian integral by completing the square. 11 More generally,
for many variables, you can prove, by diagonalising and reducing to one-dimensional integrals, 12 the
following generalisation of the previous identity:

10The integrals appearing below are functional integrals, for which we will give a more precise definition later on, by
specifying the integration measure in the case of periodic functions in a finite volume V .

11If you need to get to e−
as2

2 , still with a > 0, you need to explicitly invoke complex numbers, setting s → is and
writing: ∫ +∞

−∞

dy
√

2πa
e−

y2

2a
+isy = e−

as2

2 ,

an identity that is also useful when you are dealing with Fourier transforms. Nevertheless, care should be exercised
when using such complex extensions in Quantum Monte Carlo, as they typically introduce severe sign-problems
(indeed, phase-problems).

12See derivation in Negele-Orland, Ref. [35].
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Gaussian identity. If A is a positive definite symmetric real N ×N matrix, then

1√
(2π)N det A

∫
dy e−

1
2yTA−1y+s·y = e

1
2 sT A s . (7.52)

Here we adopted a compact notation, writing for instance sTA s =
∑
jj′ sjAjj′sj′ and s · y =∑

j sjyj . Once again, the variables sj can be anything: for us, in a moment, they will be the
Ising discrete variables σR.

i

This is the strategy behind the so-called Hubbard-Stratonovich transformation introduced in the
late 1950s to similarly transform, in a many-body context, quartic interaction terms into quadratic
ones, at the expense of integrating over a fluctuating auxiliary field variable. More precisely, suppose
you have a fermionic Hubbard model

Ĥ =

K̂︷ ︸︸ ︷
−t
∑
〈jj′〉

∑
σ=↑,↓

(ĉ†jσ ĉj′σ + H.c.) +

V̂︷ ︸︸ ︷
U
∑
j

n̂j↑n̂j↓ = K̂ + V̂ , (7.53)

and you apply a Trotter decomposition to the imaginary time propagator:

e−∆τĤ = e−
∆τ
2 V̂ e−∆τK̂e−

∆τ
2 V̂ .

Then, the quartic term present in the interaction can be transformed, using n̂2
jσ = n̂jσ, as follows:

e−
∆τ
2 V̂ = e−

∆τU
2

∑
j n̂j↑n̂j↓ = e

∆τU
4

∑
j(n̂j↑−n̂j↓)

2

e−
∆τU

4

∑
j(n̂j↑+n̂j↓)

= e
∆τU

4

∑
j(n̂j↑−n̂j↓)

2

e−
∆τU

4 N̂ . (7.54)

Next, you rewrite, using a Gaussian identity:

e
g
2 (n̂j↑−n̂j↓)

2

=

∫ +∞

−∞

dxj√
2π

e−
1
2x

2
j e
√
g xj(n̂j↑−n̂j↓)

where g = ∆τU/2 > 0. Hence, the propagator involving the interaction term is now rewritten as:

e−
∆τ
2 V̂ = e−

∆τU
4 N̂

L∏
j=1

∫ +∞

−∞

dxj√
2π

e−
1
2x

2
j e
√
g xj(n̂j↑−n̂j↓) ,

which involves a much simpler quadratic fermion term, at the cost of having introduced, for every
lattice site, an auxiliary (real) variable xj over which we need to integrate. Notice how crucial it is
that g = ∆τU/2 > 0. 13 This procedure is at the root of Auxiliary Field QMC, as explained in the
course by Prof. Sorella.

Returning to our classical Ising case, let us ask: do we have a positive-definite matrix appearing in
the Ising weight of Eq. (7.50)? Observe that we can write: 14

β
∑
〈R,R′

JR,R′σRσR′ =
1

2

∑
R,R′

σRKR,R′σR′ −
1

2

∑
R

KR,R =
1

2
σTKσ − 1

2
Tr K ,

with
KR,R′ = βJR,R′ = KR′,R for R 6= R′ . (7.55)

13In the present case an even simpler discrete Gaussian identity can be used:

e
g
2

(n̂
j↑−n̂j↓)

2

=
1

2

∑
σj=±1

eλσj(n̂j↑−n̂j↓)

where coshλ = eg/2.
14Recall that 〈R,R′〉 is the prescription to sum over pairs with R

′ 6= R and only once.
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Since the diagonal elements KR,R do not appear in the original Ising weight, I have added and
subtracted them, with the last trace-term. Now, you might be tempted to think that, no, K is
not positive definite, because even for a nearest-neighbour ferromagnetic model in d = 1 you have
that K is given by:

K = βJ



0 1 0 · · · 0 1

1 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · 1 0 1

1 0 · · · 0 1 0


and you will immediately recognise that it has eigenvalues 2(βJ) cos (qa), with the usual wavevectors
q of one-dimensional PBC boundary conditions: this is essentially, the tight-binding exercise you have
repeatedly done. In general, there are negatives and positive eigenvalues. But, since the spectrum of
K is limited from below, I can always add — and this statement is now general — a suitable constant
on the diagonal of K such that all its eigenvalues become positive. This constant added to the diagonal
of K will be exactly cancelled by the Tr K term, hence I can freely do that and consider K to be positive
definite.

Hence, I will now proceed by using the Gaussian integral identity in Eq. (7.52), rewriting:

e
1
2σ

T Kσ =
1√

(2π)N det K

∫
dy e−

1
2yTK−1y+σ·y

=

√
det K
(2π)N

∫
dψ e−

1
2ψ

TKψ+σ·(Kψ) , (7.56)

where the second form is obtained by substituting y = Kψ and taking account of the Jacobian of
the transformation. 15 Here

∫
dy =

∫∏
R

dyR, and similarly
∫

dψ =
∫∏

R
dψR, and the integrals are

extended from −∞ to +∞. The two forms are equivalent, but we will use the second to deduce the
following expression for the partition function:

Z =

Configs∑
σ

e−
1
2 Tr K

√
det K
(2π)N

∫
dψ e−

1
2ψ

TKψ+σ·(Kψ+βh)

= e−
1
2 Tr K

√
det K
(2π)N

∫
dψ e−

1
2ψ

TKψ
∏
R

(
2 cosh

(∑
R′

KR,R′ψR′ + βhR

))
= e−S0

∫
dψ e−

1
2ψ

TKψ e
∑

R log cosh
(∑

R′ KR,R′ψR′+βhR

)
S0(T ) = −N log 2 +

N

2
log 2π +

1

2
(Tr K− log det K) . (7.57)

Notice that in the second line we have explicitly performed the sum over the configurations, since σ
now appears linearly in the exponential weight, expressing the result in terms of the hyperbolic cosine:

Configs∑
σ

eσ·(y+βh) =
∏
R

(
2 cosh(yR + βhR)

)
.

Hence we have expressed Z in terms of the ψ as the following multidimensional integral:

15Notice that:
yTK−1y = ψTKTK−1Kψ = ψTKψ ,

where we have used that KT = K. The Jacobian of the change of variables y = Kψ is:

dy = | det K| dψ = (det K) dψ ,

since K is positive definite.
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The functional integral for Z.

Z = e−S0

∫ [ N∏
R

dψR

]
e−S[ψ,h]

S[ψ,h] =
1

2
ψTKψ −

∑
R

log cosh
(∑

R′

KR,R′ψR′ + βhR

) . (7.58)

With these conventions, we still have an exact expression for the partition sum, and the prescrip-
tion for calculating the averages of observables is evidently:

〈
◦
〉

=
e−S0

Z

∫ [ N∏
R

dψR

]
e−S[ψ,h]

(
◦
)
. (7.59)

i

In a totally equivalent way, you might shift the external field from the hyperbolic cosine into the
quadratic term by setting Kφ = Kψ + βh, hence changing variables from ψ → φ = ψ + βK−1h.

An equivalent form of functional integral for Z.

Z = e−S0

∫ [ N∏
R

dφR

]
e−S̃[φ,h]

S̃[φ,h] = S[φ− βK−1h,h]

=
1

2

(
φTKφ− 2βφ · h + β2hTK−1h

)
−
∑
R

log cosh
(∑

R′

KR,R′φR′

) . (7.60)

i

Recall now that the average magnetisation 〈σR〉 can be obtained by a derivative of Z with respect
to hR. From the form of Z in Eq. (7.58) we immediately deduce that:

1

β

∂Z

∂hR

= e−S0

∫ [ N∏
R

dψR

]
e−S[ψ,h] tanh

(∑
R′

KR,R′ψR′ + βhR

)
. (7.61)

Interestingly, from the second form of Z in Eq. (7.60) we would deduce:

1

β

∂Z

∂hR

= e−S0

∫ [ N∏
R

dφR

]
e−S̃[φ,h]

(
φR − β

∑
R′

(K−1)R,R′hR′

)
= e−S0

∫ [ N∏
R

dψR

]
e−S[ψ,h] ψR , (7.62)

where in the second line we have shifted back our variables to ψ = φ− βK−1h.

The local order parameter. From comparing the two expressions in Eqs. (7.61)-(7.62) we
immediately conclude that the local order parameter is given by the average of the field ψR and
is also expressed as:

〈σR〉 =
1

βZ

∂Z

∂hR

=
〈
ψR

〉
=
〈

tanh
(∑

R′

KR,R′ψR′ + βhR

)〉
. (7.63)

i
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If you compare this expression to the mean-field relationship Eq. (7.18) which we report below

mR = tanh
(
β
∑
R′

JR,R′mR′ + βhR

)
,

you immediately realise — recalling that KR,R′ = βJR,R′ — that our exact Gaussian-integral relation-
ship reduces to the mean-field one when you approximate the average of the hyperbolic tangent of ψR′

with the hyperbolic tangent of the average of ψR′ :

mR = 〈ψR〉 =
〈

tanh
(∑

R′

KR,R′ψR′ + βhR

)〉
MF−→ tanh

(∑
R′

KR,R′〈ψR′〉+ βhR

)
.

So, the machinery we have built is in principle capable of going beyond mean-field systematically,
accounting for fluctuations, which are responsible for the modification of the mean-field critical ex-
ponents. To do so, however, we have to further massage our expressions to make them more “field-
theory-like”.

Shifting h to the quadratic term. As a first step, we use the functional form of Z in Eq. (7.60),
where the external field is in the quadratic term, by changing variables ψ → φ = ψ + βK−1h, which
we report here for convenience:

Z = e−S0

∫ [ N∏
R

dφR

]
e−S[φ,h]

S[φ,h] =
1

2
(φTKφ+ β2hTK−1h)− βh · φ −

∑
R

log cosh
(∑

R′

KR,R′φR′

) (7.64)

where we have omitted the tilde from S̃[φ,h], as we will do from now on.

Expanding the non-linear term. Next, we expand the non-linear term up to 4th order, and observe
that a quadratic term originates from this expansion:

log coshu =
1

2
u2 − 1

12
u4 +O(u6) .

Hence:

−
∑
R

log cosh
(∑

R′

KR,R′φR′

)
= −1

2

∑
R

(∑
R′

KR,R′φR′

)2

+
1

12

∑
R

(∑
R′

KR,R′φR′

)4

+ · · ·

Reassembling terms, 16 we can rewrite the action as:

S[φ,h] =
1

2
φT
(
K− K2

)
φ +

β2

2
hTK−1h − βh · φ + Snl[φ] , (7.65)

where the non-linear term starts with the following quartic contribution:

Snl[φ,h] =
1

12

∑
R

(∑
R′

KR,R′φR′

)4

+ · · · . (7.66)

16Observe that, due to the fact that K = KT:∑
R

(∑
R′

KR,R′φR′

)2
= φTK2φ .
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Fourier transform. We now exploit translational invariance — assuming we have a translationally
invariant Ising model on some Bravais lattice — to express quantities in momentum space, through
the usual lattice Fourier transform (see Eq. (7.32)):

φ(q) ≡
∑
R

φR e−iq·R

φR ≡ 1

N

BZ∑
q
φ(q) eiq·R N→∞−→ ad

∫
BZ

dq
(2π)d

φ(q) eiq·R
, (7.67)

where ad = Ωc denotes the volume of the direct-lattice (Wigner-Seitz) unit cell, and the last step
applies when we want to take the thermodynamic limit N →∞. 17 It is simple to show that

φTKφ =
∑
R,R′

φRKR,R′φR′ =
1

N2

BZ∑
q,q′

∑
R,R′

eiq·RKR,R′eiq
′·R′φ(q)φ(q′) =

1

N

BZ∑
q
K(q)φ(q)φ(−q)

N→∞−→ ad
∫

BZ

dq
(2π)d

K(q)φ(q)φ(−q) , (7.68)

where we have introduced the lattice Fourier transform of the interaction matrix:
KR,R′ ≡

1

N

BZ∑
q
K(q) eiq·(R−R′) N→∞−→ ad

∫
BZ

dq
(2π)d

K(q) eiq·(R−R′)

K(q) ≡
∑
R

K0,R e−iq·R
. (7.69)

Similarly, one can transform the other quadratic term:

φTK2φ =
1

N

BZ∑
q
|K(q)|2 φ(q)φ(−q)

N→∞−→ ad
∫

BZ

dq
(2π)d

|K(q)|2 φ(q)φ(−q) , (7.70)

the linear field term: 18

∑
R

hRφR =
1

N

BZ∑
q
φ(q)h(−q)

N→∞−→ ad
∫

BZ

dq
(2π)d

φ(q)h(−q) . (7.72)

and the quartic term:

∑
R

(∑
R′

KR,R′φR′

)4

=
1

N3

BZ∑
q1,q2,q

K4(q1,q2,q)φ(q2 − q)φ(q1 + q)φ(q1)φ(q2)

N→∞−→ a3d

∫
BZ

dq1dq2dq
(2π)3d

K4(q1,q2,q)φ(q2 − q)φ(q1 + q)φ(q1)φ(q2) , (7.73)

where the 4th-order coupling reads:

K4(q1,q2,q) = K(q2 − q)K(q1 + q)K(q1)K(q2) . (7.74)

Long-wavelength expansion. Recall that the small q expansion of the interaction matrix reads:

K(q) = K(0)(1−R2
∗q

2 + · · · ) with K(0) = zβJ =
T 0
c

T
, (7.75)

17Notice the asymmetric factors of 1/N , which are indeed ideal if you want to take that limit.
18For the quadratic field term you get:

hTK−1h =
1

N

BZ∑
q
K−1(q)h(q)h(−q)

N→∞−→ ad
∫

BZ

dq
(2π)d

K−1(q)h(q)h(−q) , (7.71)
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where T 0
c = zJ/kB is the mean-field prediction for the critical temperature. Setting K(q)→ K(0) is

safe in the quartic term: technically, the q-corrections will be irrelevant in the RG sense.

Some care has to be devoted to the expansion of the quadratic-φ term, where the q2 contributions do
not cancel in the calculation of K(q)−|K(q)|2, generating a surviving q2-term that can be interpreted
as the Fourier transform of the squared gradient (∇φ)2:

K(q)− |K(q)|2 −→ a(T ) + κ(T ) q2 · · · (7.76)

where the coefficient a(T ) ∝ (T − T 0
c ) changes sign and becomes negative below T 0

c . 19

Fourier space integrals. By switching to Fourier transforms, we have also to modify the
integral, previously an N -dimensional real integral

∏
R

dφR. Recall that there are N q-vectors
in the BZ, but φ(−q) = φ∗(q). Hence in principle, we should integrate on only half of the wave-
vectors, but with complex φ(q). Nevertheless, extending the integral to all q in the BZ can just
be accounted for by an overall factor of 2, which is irrelevant when calculating averages. The
second aspect has to do with the notation. We will denote the complex integral as follows∫

dz∗dz f(z)
def
=

∫
dxdy f(x+ iy) ,

so that, for instance, the basic Gaussian integral (with a > 0) is now:∫
dz∗dz e−z

∗az =

∫
dxdy e−a(x2+y2) =

π

a
, (7.77)

which generalises, for a general positive definite Hermitean a matrix A to:∫ N∏
i=1

[
dz∗i dzi

]
e−z†A z =

πN

det(A)
. (7.78)

aIt is enough that A has a positive definite Hermitean part.

i

The φ4 action in momentum space. What we have obtained is, essentially, a φ4 field theory,
which can be tackled with field-theoretical RG techniques.

Z = e−S0(T )

∫ [ BZ∏
q

dφ∗(q)dφ(q)
]
e−S[φ,h]

S[φ,h] = S2[φ] + Sh[φ,h] + Snl[φ]

S2[φ] =
1

2
ad
∫

BZ

dq
(2π)d

φ∗(q)
(
a(T ) + κ(T ) q2

)
φ(q)

Sh[φ,h] = −βad
∫

BZ

dq
(2π)d

φ(q)h(−q) + β2ad
∫

BZ

dq
(2π)d

K−1(q)h(q)h(−q)

Snl[φ] =
λ

4
a3d

∫
BZ

dq1dq2dq
(2π)3d

φ(q2 − q)φ(q1 + q)φ(q1)φ(q2) + · · ·

.

with λ = K4(0)/3.

i

19You get:

a(T ) =
T 0
c (T − T 0

c )

T 2
and κ(T ) = R2

∗
T 0
c (2T 0

c − T )

T 2
.
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7.3. Problems

Problem 7.1. Carry out a mean-field calculation for the q-state Potts model. Write your variational
density matrix as:

ρ̂0 =
∏
R

(
xδσR,1 +

1− x
q − 1

(1− δσR,1)

)
,

where x is a variational parameter (x = q−1 corresponds to all states being equally probable, while
x > q−1 signals order, with a preference for σR = 1). Do a Landau expansion, and show that for q > 2

the transition is of first order.

Problem 7.2. Carry out a mean-field calculation for the classical XY model.

Problem 7.3. The fully-connected quantum Ising ferromagnet. Consider the fully-connected
Ising model with j = 1 · · ·N spins in presence of a transverse field term:

Ĥ = − J

2N

( N∑
j=1

σ̂zj

)2

− h⊥
N∑
j=1

σ̂xj . (7.79)

Assume N even.

1) Introduce now the total spin operator Ŝ = 1
2

∑
j σ̂j , and express Ĥ in terms of Ŝz and Ŝx.

Does the model commute with the (squared) total spin operator Ŝ2? What is the maximum
allowed value of the total spin quantum number S? How many states belong to the subspace of
maximum spin?

2) How would you represent the Hamiltonian as a matrix in the subspace of maximum spin? What
is the dimension of such a matrix?

3) Diagonalise the Hamiltonian in the subsector of maximum spin. Find the quantum critical point
h⊥c /J .

Problem 7.4. The p-spin fully connected classical Ising ferromagnet. As a generalisation of
the classical fully-connected Ising ferromagnet, consider its p-spin version:

H = − J

2Np−1

 N∑
j=1

σj

p

= −JN
2

 1

N

N∑
j=1

σj

p

, (7.80)

with integer p ≥ 2.

1) By using the same considerations as in the p = 2 case, show that the free-energy density of the
model can be written as:

f(m,T ) ≈ −J
2
mp − kBT

2
[2 log 2− (1−m) log(1−m)− (1 +m) log(1 +m)] .

A plot of the free energy density for several values of the temperature is reported in Fig. 7.4.

2) The absolute minimum of the free energy is the average equilibrium magnetization 〈m〉, which
is the order parameter of the phase transition: for T > Tc, 〈m〉 = 0 and the system is in the
disordered paramagnetic phase, while for T < Tc, 〈m〉 6= 0 and the phase is ferromagnetic.
Calculate numerically, by minimizing Eq. 7.81, Tc for p = 3 and p = 5.

Answer: Tc(p=3)≈0.74 , Tc(p=5)≈0.725 .
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Figure 7.4.: Free energy density, versus magnetization, of the classical system for p = 3, at temperature
above, equal and below Tc. Notice the position of the barrier mB and its height ∆f for a value of the
temperature T < Tc, and the presence of the ferromagnetic unstable minimum even for T > Tc.

3) An interesting feature of the classical free energy is that for p > 2 it has a minimum in m = 0 for
any finite temperature T , meaning that the paramagnetic state survives as a metastable state
down to T → 0. Compute the height of the barrier

∆f(T ) = f(mB , T )− f(0, T ) .

Since we are looking at the free energy density, it follows that the barrier is extensive in the
system size N . 20

Answer: You should get: ∆f(T )= J
2 (p−1)( 2T

Jp )
p

p−2 .

Problem 7.5. Mean-field for the transverse-field Ising model. Consider the transverse-field
Ising model

ĤTFIM = −J
∑
〈R,R′〉

σ̂zRσ̂
z
R′ − h⊥

∑
R

σ̂xR . (7.81)

Make a mean-field variational Ansatz of the factorized form:

Ĥ0 = −
∑
R

h0
R · σ̂R , (7.82)

where the various h0
R (effective magnetic fields, but now vectors) are used as variational parameters.

Our Ansatz for the density matrix is site-factorised and given by: 21

ρ̂0 =
e−βĤ0

Tr e−βĤ0

=
∏
R

1

2

(
1R + mR · σ̂R

)
with mR =

h0
R

|h0
R|

tanh(β|h0
R|) , (7.83)

where the mR can be equivalently regarded as our set of variational parameters. Write the mean-field
equations and determine the phase diagram as a function of T and h⊥.

20If the system is in the paramagnetic metastable phase, with T < Tc, the probability of overcoming this extensive
free-energy barrier will be roughly given by e−βN∆f = e−γ(T )N , which is indeed exponentially suppressed for large
N , with a temperature-dependent rate γ(T ) = ∆f(T )/T which vanishes only at T = 0.

21Recall that if |n| = 1, then ean·σ̂ = 1 cosh a+ n · σ̂ sinh a.

183





Part II.

Selected topics

185





8. The XY model in two dimensions

The purpose of this chapter is to give you an overview of a very important two-dimensional classical
model, the XY or planar model, where no local order parameter exists — essentially, due to the
continuous rotational symmetry and a classical version of the Marmin-Wagner theorem — and yet
there is a remarkable phase transition: the Kosterlitz-Thouless transition, with a whole line of critical
points where the correlation exponent changes continuously.

I will cover, this year, only the introductory material of Sec. 8.1, leaving the remaining material
to your self-study, if interested. This material shows how deeply connected is this problem to many
other interesting two-dimensional models — including discrete height models and the Coulomb gas
problem — arriving at a point from which, in principle, one could set up an RG analysis. Reference
for this chapter is the review paper by Kogut [33].

8.1. General and preliminary considerations

The classical XY model. Given classical planar spins, i.e., two-dimensional vectors of unit
length Sx at each site x of a square lattice, the classical Hamiltonian is given by:

HXY = −J
∑
〈x,x′〉

(
Sx · Sx′ − 1

)
= J

∑
x

∑
ν=1,2

(
1− cos(θx+eν − θx)

)
. (8.1)

Here 〈x,x′〉 denotes a sum over nearest-neighbor lattice sites, x′ = x + eν with e1 = a(1, 0) and
e2 = a(0, 1). The second expression follows from the standard parameterisation of a unit vector

Sx = (cos θx, sin θx) . (8.2)

The partition function is:

ZXY =

∫ 2π

0

[∏
x

dθx
2π

]
e−βHXY[{θx}] . (8.3)

We assume a system with N = L2 lattice sites with periodic boundary conditions (PBC).

i

The most important physical quantities we will need to calculate is the spin-spin correlation function
for two distant points x1 and x2:

〈Sx1 · Sx2〉 = 〈cos(θx1 − θx2)〉 =
1

2

(〈
ei(θx1

−θx2
)
〉

+ cc
)
. (8.4)

Two-point correlation function. The crucial average we will need is therefore:

〈
ei(θx1

−θx2
)
〉

=
1

ZXY

∫ 2π

0

[∏
x

dθx
2π

]
ei(θx1

−θx2
) e−βHXY[{θx}] . (8.5)

i
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e1

e2

x x + e1

x + e2

1 L· · ·1

...

L Figure 8.1: The XY model. An L×L
square lattice is shown, with periodic
boundary conditions: the dashed bor-
ders should be identified with the oppo-
site border, making the geometry that
a torus. The two nearest-neighbor vec-
tors e1 and e2 are shown in blue. At
each lattice site x a planar spin (classi-
cal unit vector on the plane) is uniquely
given by the angle θx formed with the x-
axis: Sx = (cos θx, sin θx). Three spins
at nearest-neighbor sites x, x + e1 and
x+e2 are shown as thick red arrows (all
other spins are omitted for clarity).

The ground state has all spins aligned in a given (arbitrary) direction, which we can fix by convention
to be θx = 0. It is useful to introduce the discrete lattice “derivative”

∆νθx = θx+eν − θx , (8.6)

which appear in the argument of the cosine function in HXY.

It is quite natural to think that at small T the configurations dominating in the partition function
are those for which ∆νθx are small, and that it would be legitimate, at low T , to approximate HXY

with the so-called spin-wave term

HXY

low−T−→ Hsw =
J

2

∑
x

∑
ν=1,2

(∆νθx)2 , (8.7)

where now θx ∈ R. This spin-wave approximation does violence to the 2π-periodicity in ∆νθx of the
original HXY, but it has the advantage of being easily solvable.

Discrete Laplacian. The discrete Laplacian operator can be defined as:
Lx,x′ =

∑
ν=1,2

(
δx′,x+eν + δx′,x−eν − 2δx′,x

)
∑
x′

Lx,x′θx′ =
∑
ν=1,2

(
θx+eν + θx−eν − 2θx

) . (8.8)

In terms of the discrete Laplacian we can rewrite:∑
x

∑
ν=1,2

(∆νθx)2 = −
∑
x,x′

θx Lx,x′ θx′ , (8.9)

in close analogy with the standard integration by parts rule
∫

dx |∇ψ|2 = −
∫

dxψ∗∇2ψ used
when transforming the kinetic energy in quantum mechanics.

i

Hence, we see that the spin-wave partition function involves gaussian integrals provided the domain
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Figure 8.2: The XY model.
A spin-wave excitation. Here
θx = A cos( π

3a
x), with x = (x, y),

and A = 0.3.

of θx is extended to the whole real axis:

Zsw[K] =

∫ +∞

−∞

[∏
x

dθx

]
e−βHsw[{θx}] =

∫ +∞

−∞

[∏
x

dθx

]
e−

K
2

∑
x,x′ θx (−Lx,x′ ) θx′ , (8.10)

where K = βJ is the dimensionless coupling. Correspondingly, the two-point correlator reads:

〈
ei(θx1

−θx2
)
〉

sw
=

1

Zsw

∫ +∞

−∞

[∏
x

dθx

]
ei(θx1

−θx2
) e−

K
2

∑
x,x′ θx (−Lx,x′ ) θx′ . (8.11)

We rewrite here the gaussian integral identity we will need to use, see Eq. (7.52) or (7.56), for
convenience:

Gaussian integral identity. If A is a positive definite symmetric real N ×N matrix defined
on the lattice, then ∫ +∞

−∞

[∏
x

dθx

]
ef·θe−

1
2θ

T A θ =

√
(2π)N

det A
e

1
2 fT A−1 f , (8.12)

where f · θ =
∑

x fxθx, and θ
T Aθ =

∑
x,x′ θxAx,x′θx′ . All prefactors cancel in calculating the

averages:

〈ef·θ〉 def
=

∫ +∞
−∞

[∏
x dθx

]
ef·θe−

1
2θ

T A θ∫ +∞
−∞

[∏
x dθx

]
e− 1

2θ
T A θ

= e
1
2 fT A−1 f . (8.13)

i

Within the spin-wave approximation, we need gaussian integrals which involve the (positive definite)
matrix

Ax,x′ = K(−L)x,x′ with K = βJ . (8.14)

189



The XY model in two dimensions (Lecture Notes by G.E. Santoro)

The Green’s function. To carry out the calculation, we need to invert the discrete Laplacian,
in terms of what is known as the lattice Green’s function, or propagator:∑

x′′
(−L)x,x′′Gx′′,x′ = δx,x′ =⇒ (A−1)x,x′ = K−1 Gx,x′ . (8.15)

i

The actual inversion is best performed in Fourier transform, exploiting translational invariance and
convolutions. The lattice Fourier transform of Gx,x′ = Gx−x′ is defined, as usual: 1

G(q) ≡
∑
x

Gx,0 e−iq·x

Gx,0 =
1

N

BZ∑
q

G(q) eiq·x
, (8.16)

and similarly for the lattice Laplacian

L(q) =
∑
x

Lx,0 e−iq·x =
∑
ν=1,2

2(cosq · eν − 1) . (8.17)

Notice that L(q = 0) = 0. Moreover, the Fourier transform of the convolution implied by the matrix
inversion, L(q) G(q) = −1, gives: 2

G(q 6= 0) = − 1

L(q)
=

1

4− 2 cosq · e1 − 2 cosq · e2
. (8.19)

Green’s function of Poisson’s equation on the continuum. Probably more familiar to you is the
concept of Green’s function for differential operators on the continuum. Certainly familiar from
electrostatics, and relevant in this context, is the Green’s function associated with the Laplacian
operator, simply a singular solution of the associated inhomogeneous (Poisson’s) equation with a
Dirac’s delta function: 3

∇2G(x) = −δ(x) =⇒ Ĝ(q) =
1

|q|2
. (8.21)

Here Ĝ(q) denotes the Fourier transform of G(x), obtained immediately by Fourier transforming the
differential equation in real space. In three dimensions this gives the well-known Coulomb potential:

G(x) =

∫
d3q

(2π)3

eiq·x

|q|2
=

1

4π|x|
in 3d . (8.22)

In two dimensions, however, which is the case we are interested in, the same Ĝ(q) leads to a logarithmic
Coulomb potential:

G(x) =

∫
d2q

(2π)2

eiq·x

|q|2
= − 1

2π
log |x| in 2d . (8.23)

1Here q = 2π
La

(n1, n2) are wave-vectors in the first Brillouin Zone (BZ) of the reciprocal lattice: N = L2 of them, since
ni = 0, · · · , L− 1.

2The fact that G(q) is formally divergent for q = 0 forces us to some extra care in the Fourier expressions in Eq. (8.16).
We will see below that the quantity Gx,0 − G0,0 is perfectly well defined, although the individual terms are not,
since:

Gx,0 −G0,0 =
1

N

BZ∑
q

G(q) (eiq·x − 1) . (8.18)

3Once the Green’s function is known, you can determine the solution of any inhomogeneous equation. In the Poisson’s
equation of electrostatics ∇2ϕ(x) = −ε−1

0 ρ(x), since ρ(x) =
∫

dx′ρ(x′)δ(x− x′) knowing that, in three dimensions
the solution of ∇2G(x) = −δ(x) is G(x) = 1

4π|x| immediately gives the solution for a general ρ(x):

ϕ(x) =
1

4πε0

∫
dx′

ρ(x′)
|x− x′|

. (8.20)

190



(Lecture Notes by G.E. Santoro) 8.1 General and preliminary considerations

For a direct proof of this, observe the interesting fact that f(z) = log z = log r + iθ is analytic with
a branch cut at Re z ∈ (−∞, 0]. Hence, both its real part log r = log |x| and its imaginary part
θ = arctan y/x are harmonic functions (solutions of the Laplace equation) away from the branch cut.
Interestingly:

∇ log |x| = x
|x|2

and ∇θ =
1

|x|2
(−y, x) . (8.24)

You can easily convince yourself that

∇2 log |x| = 2πδ(x) and ∇2θ = 0 . (8.25)

The phase θ appearing in z = reiθ will play an important role later on when discussing vortices.

Low-T spin-spin correlations. Returning to our problem of calculating the long-distance behaviour
of spin-spin correlations, take x2 = x and x1 = 0, assuming x to be distant from the origin, hence
|x| � a. To calculate 〈ei(θx−θ0)〉sw, we set fx′ = i(δx′,x − δx′,0) in Eq. (8.13), obtaining:

〈ei(θx−θ0)〉sw = e
1
K (Gx,0−G0,0) . (8.26)

We now aim at calculating the large |x| behaviour of this correlation function, assuming that a �
|x| � La. A continuum approximation is therefore very reasonable. From Eq. (8.19) we would get

G(q→ 0)→ 1

|q|2a2
. (8.27)

Hence, we recovered the Fourier transform of a Coulomb potential in two-dimensions. This suggests
that:

Gx,0 −G0,0 ' −
1

2π
log(|x|/a) + const for a� |x| � La . (8.28)

Using this, we finally obtain:

〈ei(θx−θ0)〉sw ' e−
1

2πK log(|x|/a) =

(
a

|x|

) 1
2πK

for a� |x| � La . (8.29)

Spin-wave calculation of spin-spin correlations. Summarising, based on the spin-wave
approximation we expect that at low temperatures the spin-spin correlations decay as a power-law
with a temperature dependent exponent η(T ):

〈Sx · S0〉sw '
(
a

|x|

)η(T )

with η(T ) =
1

2πK
=
kBT

2πJ
. (8.30)

i

High-T behaviour. On the other hand, the high-T expansion suggests that spin-spin correlations
should decay exponentially in |x| for sufficiently large T . To show this, consider the calculation of

〈ei(θx−θ0)〉 =
1

Z

∫ 2π

0

[∏
x

dθx
2π

]
ei(θx−θ0)

∏
x′

∏
ν=1,2

e−K
(

1−cos(θx′+eν−θx′ )
)
. (8.31)

For high-T , K = βJ is small, hence we can expand the exponential and write:∏
x′

∏
ν=1,2

eK cos(θx′+eν−θx′ ) =
∏
x′

∏
ν=1,2

(1 +K cos(θx′+eν − θx′) + · · · ) .
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Take now, for simplicity of notation, x = ne1. Since
∫ 2π

0
dθx
2π eiθx = 0, the first (largest) term in the

product which gives a non vanishing contribution must contain a whole string of e−i(θx′+e1
−θx′ ) joining

the two points x = ne1 and x = 0:∫ 2π

0

[∏
x

dθx
2π

]
ei(θne1−θ0)

n−1∏
j=0

(
K

ei(θje1
−θ(j+1)e1

) + c.c.

2

)
=
Kn

2n
.

Hence we conclude that for large-T :

〈ei(θne1
−θ0)〉high−T ≈ e−n log(2/K) . (8.32)

Spin-spin correlations at high-T . Summarizing, at high-T we have:

〈ei(θx−θ0)〉high−T ' e−|x|/ξ(T ) with ξ(T ) =
1

log 2/K
=

1

log(2kBT/J)
. (8.33)

This suggests that two distinct phases must exist. But the low-temperature phase is not charac-
terized by the usual local order parameter, since 〈Sx〉 = 0, consistently with the Mermin-Wagner
theorem, which forbids order at finite T in two dimensions, due to the continuous rotational
symmetry.

i

Figure 8.3: The XY model. A vortex excita-
tion centred in the middle of a square plaquette,
rather than in the origin. See text for details.

The role of vortices. Let us add some interesting physical insight that Kosterlitz and Thouless put
forward in 1973. One important aspect of the low-temperature picture that the spin-wave approxima-
tion completely misses is the possibility of singular (vortex) solution of the Laplace equation, Im log z,
with a definite winding around the origin. 4 More specifically, let x = (x, y) be seen as a complex

4It is easy to realise that, for instance the function Im log zp = p arctan(y/x) = θp(x) has a gradient which whirls
around the origin:

∇θp(x) = p

(
−y

x2 + y2
,

x

x2 + y2

)
=⇒


∇2θp = 0∮
γr

∇θp · dl = 2πp
. (8.34)

A vortex corresponds to p = 1, the anti-vortex to p = −1. One can show that ∇ ∧∇θp = 2πpδ(x), similarly to the
magnetic field generated by a very long and thin solenoid in the origin.
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variable z = x + iy = reiθ with r =
√
x2 + y2 and θ(x) = arctan(y/x), and take at each point x a

unit vector Sx orthogonal to x, hence forming an angle θx = θ(x) + π
2 with the x-axis, as shown in

Fig. 8.3. Interestingly, from θ(x) = arctan(y/x) you deduce

∇θ(x) =

(
−y

x2 + y2
,

x

x2 + y2

)
=⇒ |∇θ(x)|2 =

1

|x|2
. (8.35)

Notice that ∇θ(x) is reminiscent of the vector potential associated with a very long thin solenoid
orthogonal to the plane in the origin. To estimate the energy cost of such a vortex configuration
observe that: ∑

ν

(1− Sx · Sx+eν ) ≈ 1

2

∑
ν

|∆νθx|2 ∼
1

2
|∇θ(x)|2 =

1

2

1

|x|2
,

where we substituted the finite difference derivative with a continuum derivative and used Eq. (8.35).
Hence a total contribution of a vortex to the “action” (energy) can be estimated, in the continuum
limit, to be:

H[θvortex] ≈ J

2

∫ La

a

d2x |∇θvortex|2 =
J

2

∫ La

a

d2x
1

|x|2
= πJ logL . (8.36)

One might erroneously think that since this energy diverges for L → ∞, vortex contributions can
be effectively neglected. But Kosterlitz and Thouless argue, on the contrary, as follows. Let us
estimate the free-energy contribution due to vortex configurations, taking into account that there is
a configurational entropy Svortex = kB logL2 associated with the fact that you can put the centre of
the vortex in any of the L2 sites of the lattice. Indeed, you can estimate the extra contribution to the
partition function as follows:

Zvortex =

1−vortex∑
Config

e−βH[θvortex] = L2e−βH[θvortex] = e−β(H[θvortex]−kBT logL2) ≡ e−βFvortex (8.37)

where:
Fvortex = H[θvortex]− TSvortex = πJ logL− kBT logL2 = (πJ − 2kBT ) logL . (8.38)

This simple estimate shows a remarkable fact: vortices can be neglected only if (πJ − 2kBT ) > 0,
while for

kBT > kBTc =
πJ

2
, (8.39)

you expect that, since Fvortex → −∞ for L→∞, entropy drives a proliferation of vortices! Remarkably,
this picture is quite faithful, as more detailed calculations show.

Figure 8.4: The XY model. A vortex-antivortex
bound state. The vortex (red circle) is centered at
(−3/2, 3/2), the antivortex (blue circle) at (3/2,−3/2).
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The Kosterlitz-Thouless picture of the two phases of the XY model. At low-T the
spin wave theory is essentially correct. Spin-spin correlations have a power-law decay with a
temperature-dependent correlation exponent

〈Sx · S0〉 '
(
a

|x|

)η(T )

with η(T ) =
kBT

2πJ
≤ η(Tc) =

1

4
. (8.40)

Free vortices do not exist, although bound states of vortex-antivortex do exist, they do not
disorder the system efficiently. As T increases, the vortex-antivortex bound states get larger and
larger, until at Tc they unbind, disordering the system for T > Tc, with exponentially decaying
spin-spin correlations:

〈Sx · S0〉 ' e−|x|/ξ(T ) for T > Tc =
πJ

2kB
. (8.41)

The critical temperature is such that:

kBTc =
πJ

2
−→ η(Tc) =

1

4
. (8.42)

Alternatively, βcJ = 2/π. For T > Tc one might say that the state is a vortex condensate of
“indefinite global vorticity”.

i

8.2. From the Villain model to the Coulomb gas

The crucial term appearing in the partition function reads (recall K = βJ):

e−βHXY[{θx}] =
∏
x

∏
ν=1,2

e−K
(

1−cos(θx+eν−θx)
)
. (8.43)

On each link of the dual lattice associated to the two points (x,x+eν) we do have a periodic function
of the form eK cos(∆νθx) for which we can use a Fourier series expansion:

eK cos θ =
∑
n∈Z

einθIn(K)

In(K) =

∫ π

−π

dθ

2π
e−inθ eK cos θ . (8.44)

Indeed, the Fourier component In(K) is a special function: the n-th Bessel function of imaginary
argument, also known as modified Bessel function. 5

In the limit in which K is large, the function eK cos θ has a large maximum, equal to eK , at all
θ = 2πm with m ∈ Z, and one way to keep track of the periodicity in θ is to expand as usual
cos θ = 1− 1

2θ
2 + · · · in the exponent but to “periodically replicate” the resulting Gaussian as follows:

eK cos θ −→ eK
∑
m∈Z

e−
K
2 (θ−2πm)2

. (8.45)

5The integral representation of the ordinary Bessel’s function Jn(x) is

Jn(x) =

∫ π

−π

dθ

2π
einθe−ix sin θ = in

∫ π

−π

dθ

2π
einθe−ix cos θ

The modified Bessel function is defined as:

In(x) = i−nJn(ix) =

∫ π

−π

dθ

2π
einθex cos θ .
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This is an approximation — akin in some way to the spin-wave approximation —, which is quite
good for sufficiently large K, and with the extra advantage that you do no violence to the periodicity.
But there is another route to obtaining an expression for eK cos θ when K is large, which follows
directly from the Fourier series in terms of the modified Bessel’s function, once you realize what is the
asymptotic expression for In(K) valid for large K.

Exercise 8.1. The large x asymptotic expansion of In(x). Consider the integral representation
of In(x), which we report here:

In(x) =

∫ π

−π

dθ

2π
e−inθ ex cos θ .

Observe that the maximum of the integrand in In(x) is for θ = 0, and this dominates the integral
for large x. Expand the cosine and argue, by performing the Gaussian integral that emerges, that for
large x the asymptotic expansion of In(x) is given by:

In(x) ≈ 1√
2πx

ex−
n2

2x for x� 1 . (8.46)

By inserting this asymptotic expansion of In(K), valid for large K, into the exact Fourier series
representation you would write that:

eK cos θ −→ eK√
2πK

∑
n∈Z

e−
n2

2K+inθ for large K . (8.47)

It is remarkable that these two seemingly different approximations of eK cos θ for large K indeed
coincide. To appreciate this fact, and its consequences, we need to introduce an important tool that
we will use repeatedly: the Dirac-comb identity and the associated Poisson’s summation formula.

Poisson’s summation formula. We are all very used to the Dirac’s identity

δ(x) =

∫ ∞
−∞

dk

2π
eikx =

∫ ∞
−∞

dk e2πikx .

Quite amusingly, if the integral over k is substituted by a sum at integer values k = 2πm the
Dirac’s delta on the left hand side gets periodically repeated and the so-called Dirac-comb (or
periodic delta-function) identity emerges:∑

n∈Z

δ(x− n) =
∑
m∈Z

e2πimx . (8.48)

This identity, upon integrating over an arbitrary function g(x), leads to the remarkable Poisson’s
summation formula: ∑

n∈Z

g(n) =
∑
m∈Z

∫ ∞
−∞

dx e2πimxg(x) , (8.49)

which relates the sum of the function evaluated at integers n with a sum of the Fourier components
at k = 2πm of the same function.

i

Let us now apply Poisson’s summation formula to a Gaussian function

g(x) =
1√

2πKV

e−
x2

2KV
−ixθ

.

195



The XY model in two dimensions (Lecture Notes by G.E. Santoro)

We get:

1√
2πKV

∑
n∈Z

e−
n2

2KV
−inθ

=
∑
m∈Z

∫ ∞
−∞

dx
1√

2πKV

e−
x2

2KV
+ix(2πm−θ)

=
∑
m∈Z

e−
KV
2 (θ−2πm)2

, (8.50)

where the second line follows by performing the Gaussian integral. 6

The Villain’s identity. By changing n→ −n we rewrite the identity we just derived as:∑
m∈Z

e−
KV
2 (θ−2πm)2

=
1√

2πKV

∑
n∈Z

e−
n2

2KV
+inθ (8.52)

=
1√

2πKV

(
1 + 2

∞∑
n=1

e−
n2

2KV cosnθ
)
.

This identity is valid for all values of KV. We will mostly use it in the first form, but the second
is also inspiring.

i

In particular, taking KV = K � 1, we see that the two large-K expressions for eK cos θ in Eq. (8.45)
and (8.47) indeed coincide. But we can do more. Suppose that you assume KV to be small, KV � 1,
rather than large. Then, the sum over n on the RHS of the identity in Eq. (8.52) can be effectively
cut-off to values of n = ±1. We then have, for the RHS:

1√
2πKV

(1 + 2e−
1

2KV cos θ + · · · ) ≈ 1√
2πKV

e2e
− 1

2KV cos θ .

By setting

K = 2 e−
1

2KV � 2 =⇒ KV =
1

2 log 2/K
,

you realise that K is small when KV � 1, and that the Villain’s identity suggests an expression of
the form:

eK cos θ ≈
√

2πKV

∑
m∈Z

e−
KV
2 (θ−2πm)2

for small K .

Hence, remarkably, a periodic Gaussian expression seems to be appropriate even whenK is small. This
led Villain, in 1975, to introduce a model where eK cos θ is always approximated with a periodically
repeated Gaussian.

6Recall the fundamental gaussian integral

∫ ∞
−∞

dx
√

2πa
e−

x2

2a
+ikx = e−

a
2
k2
. (8.51)
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The Villain’s approximation. Villain proposed to modify the XY-model term as follows

e−K(1−cos θ) −→ RV

√
2πKV

∑
m∈Z

e−
KV
2 (θ−2πm)2

= RV

∑
n∈Z

e−
n2

2KV
+inθ

, (8.53)

where RV and KV are both functions of K, chosen as to best approximate the original term, and
the second equivalent form follows from the identity in Eq. (8.52). It turns out that the choice:

KV =
1

2 log I0(K)/I1(K)

RV = e−KI0(K)

(8.54)

nicely interpolates between the large-K and small-K limits we have seen before.

i

The Villain model. Adopting the Villain’s periodic Gaussian approximation, we trade the exact XY
term by a new model, known as the Villain’s model, which we can write in two equivalent ways. The
first is a periodic gaussian form, where we introduce an integer value variable mx,ν ∈ Z on each link
of the dual lattice and write the partition function as:

ZV =
(
RV

√
2πKV

)2N ∑
{mx,ν∈Z}

∫ 2π

0

[∏
x

dθx
2π

](
e−

KV
2

∑
x
∑
ν=1,2(∆νθx−2πmx,ν)2

)
. (8.55)

The second form, equivalent by the identity in Eq. (8.52), requires again an integer valued variable
nx,ν ∈ Z for every link of the dual lattice, and writes the partition function as

ZV = R2N
V

∫ 2π

0

[∏
x

dθx
2π

](∏
x

∏
ν=1,2

∑
nx,ν∈Z

einx,ν(∆νθx)e−
1

2KV
n2
x,ν

)

= R2N
V

∫ 2π

0

[∏
x

dθx
2π

]( ∑
{nx,ν∈Z}

ei
∑

x
∑
ν nx,ν(∆νθx)e−

1
2KV

∑
x
∑
ν n

2
x,ν

)
. (8.56)

This second form is the one we will adopt to proceed with a series of further mappings which
are very instructive. Observe indeed that θx appears linearly in the exponential. Let us rewrite, by
changing variables, the discrete equivalent of “integration by parts”:∑

x

∑
ν

nx,ν(∆νθx) =
∑
x

∑
ν

nx,ν(θx+eν − θx) =
∑
x

∑
ν

(nx−eν ,ν − nx,ν) θx

= −
∑
x

∑
ν

(∆̄νnx,ν) θx , (8.57)

where ∆̄νnx,ν = nx,ν − nx−eν ,ν is a “backward” finite difference. Hence, the integral over θx simply
imposes a local conservation law for the link integer variables nx,ν :∫ 2π

0

dθx
2π

ei
∑
ν ∆̄νnx,nu θx = δ∑

ν ∆̄νnx,nu,0 ,

a constraint which is essentially a discrete version of a “zero-flux condition” for the integer vector field
(nx,1, nx,2): ∑

ν

∆̄νnx,ν = nx,1 − nx−e1,1 + nx,2 − nx−e2,2 ≡ 0 ∀x . (8.58)
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One way to implement the constraint is to represent the link variables nx,ν in terms of discrete
derivatives of an integer valued height variable hx sitting at the lattice sites, as follows: 7 nx,1 = ∆2hx

nx,2 = −∆1hx

=⇒
∑
ν

n2
x,ν =

∑
ν

(∆νhx)2 . (8.60)

The Villain model mapped into a discrete height problem. This series of transformations
allows us to rewrite the Villain partition function as

ZV = R2N
V

∫ 2π

0

[∏
x

dθx
2π

]( ∑
{nx,ν∈Z}

ei
∑

x
∑
ν nx,ν(∆νθx)e−

1
2KV

∑
x
∑
ν n

2
x,ν

)
= R2N

V

∑
{hx∈Z}

e−
1

2KV

∑
x
∑
ν(∆νhx)2

−→ ZDG =
∑
{hx∈Z}

e−
1

2KV

∑
x
∑
ν=1,2(∆νhx)2

. (8.61)

The model we have arrived at is known as discrete Gaussian model, a discrete-height model
introduced to describe the roughening transition of solid surfaces, studied by Chiu & Weeks in
1976. Notice the crucially important integer constraints for the height variables hx.

i

The integer constraints on hx are hard to deal with. But we can bypass them at the cost of re-
introducing integrals, using once again Poisson’s summation formula. This would allow us to write
the discrete Gaussian model in three equivalent forms:

ZDG =
∑
{hx∈Z}

e−
1

2KV

∑
x
∑
ν=1,2(∆νhx)2

=
∑
{mx∈Z}

∫ ∞
−∞

[∏
x

dφx

]
e2πi

∑
xmxφx e−

1
2KV

∑
x
∑
ν=1,2(∆νφx)2

= Zsw(K−1
V )

∑
{mx∈Z}

e−2π2KV
∑

x,x′ mxGx,x′mx′ . (8.62)

The third remarkable expression — obtained by performing the Gaussian integrals over φx in exactly
the same way as we did when studying the spin-wave approximation to the original XY model —,
involves the so-called Coulomb gas partition function. The Gx,x′ which appears is once again the
discrete lattice propagator associated to the discrete Laplacian in two dimensions.

7More formally, defining nx,ν =
∑
ν′ εν,ν′∆ν′hx, with 1 = ε1,2 = −ε2,1 antisymmetric, you can easily see that:∑

ν

∆νnx,ν =
∑
ν,ν′

εν,ν′∆ν∆ν′hx = 0 . (8.59)

Observe however that the “zero-flux condition”∑
ν

∆̄νnx,ν
def
=
∑
ν

(nx−eν ,ν − nx,ν) =
∑
ν

∆νnx−eν ,ν = 0 ,

is slightly different in form from the zero-divergence condition∑
ν

∆νnx,ν = 0 .

Details can be found in Kleinert’s book on Gauge fields in Condensed Matter physics, Vol. II, Chap. 4.

198



(Lecture Notes by G.E. Santoro) 8.3 Epilogue: The RG in momentum space

Summary so far. Starting from the periodic-gaussian approximation to the XY model, i.e.,
the Villain’s model, we have proceeded through a series of exact mappings:

ZV −→ ZDG −→ ZCG =
∑
{mx∈Z}

∫ ∞
−∞

[∏
x

dφx

]
e2πi

∑
xmxφx e−

1
2KV

∑
x
∑
ν=1,2(∆νφx)2

, (8.63)

where the last step follows by applying the Poisson’s summation formula to the discrete heights
model. The final Coulomb gas form, by performing the Gaussian integral over the φx, can be
also expressed as:

ZCG = Zsw(K−1
V )

∑
{mx∈Z}

e−2π2KV
∑

x,x′ mxGx,x′mx′ . (8.64)

i

8.3. Epilogue: The RG in momentum space

The Coulomb gas form is the ideal starting point for a field-theoretical analysis based on the
Renormalization Group (RG). The idea is to move to momentum space, integrate out an outer shell
of the largest momenta, to obtain equations for the renormalized model parameters. The story is
described in some detail in Kogut [33]. It might be an instructive seminar assignment for the final
exam.
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9. Ising lattice gauge theory and beyond

We have discussed broken symmetry in statistical mechanics, and the idea of a local order pa-
rameter: a symmetric Hamiltonian can give rise to states which are effectively disconnected in the
thermodynamic limit, and break the symmetry. This can happen in the ground state and, for suffi-
ciently large spatial dimensions, even at finite temperature. We have discussed already that this is
at variance with the situation typically encountered in quantum mechanics for few-particle systems,
where symmetries are not broken. A paradigmatic example is a particle in a double-well potential,
have a look again at Fig. 5.1, where the Hamiltonian is parity symmetric, and the ground state is even
and separated by a gap from the first excited odd state. As discussed, the analogy with symmetry
breaking in statistical mechanics emerges when you consider a barrier that becomes infinitely large:
the gap between the two symmetric states would become exponentially small and, to all practical
purposes, a particle sitting close to one of the two minima (broken-symmetry state) would not be able
to tunnel to the other minimum.

In this chapter, we will discuss models — gauge theories 1 — which display a new type of symmetry,
a local symmetry, which cannot be spontaneously broken, much in the same way as parity is not broken
for the finite double-well in quantum mechanics. As a consequence, phases in these models cannot be
distinguished by local order parameters, which vanish due to symmetry. Topology and ground state
degeneracy will be one of the leitmotivs of the story we are going to tell. In some sense, the planar
XY model in two dimensions is nice anticipation of some of these ingredients, like the absence of a
local order parameter, and the role of topology and vortex-antivortex unbinding. But we will see that
there is more to that. The main reference for this chapter is the review paper by Kogut [33]. Very
instructive are also the videos of the lectures given at ICTP by Xie Chen (Caltech) Lecture 1, Lecture
2.

9.1. Wegner’s idea: a model with a local (gauge) symmetry

To exemplify the general discussion, take a square lattice, with nearest-neighbor lattice vectors
e1 = a(1, 0) and e2 = a(0, 1). The vertices of the square lattices are denoted by x: each is connected
to d = 2 neighbors, x + e1 and x + e2, by d = 2 links, on the edges of the plaquette defined by the
four vertices x, x + e1, x + e1 + e2, x + e2, and with center at x∗, see Fig. 9.1.

1To all practical purposes the word “gauge theory” will be used here to mean “a theory with a local symmetry”
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Link and plaquette notation. We will use the following shorthand notation for the links:

x,±1←→ (x,x± e1) x,±2←→ (x,x± e2) . (9.1)

Notice that the same unoriented link can be labelled in two ways, for instance x,−1 ≡ x− e1, 1.
With this notation, the four links around the plaquette at x∗, see Fig. 9.1, would be denoted as:

`1 = x, 1 `2 = x + e1, 2 `3 = x + e1 + e2,−1 `4 = x + e2,−2 . (9.2)

Correspondingly, we define the product of four σ̂z operators sitting at those links as:

Ẑx∗ = σ̂z`1 σ̂
z
`2 σ̂

z
`3 σ̂

z
`4 . (9.3)

i

x
`1

x + e1

x + e2
`3 x + e1 + e2

`2`4 x∗

Figure 9.1: A portion of a square lattice, with a pla-
quette highlighted in red (the meaning of the arrows
will be clarified later on). Spins are sitting on the edges
of the lattice, denoted by circles. The centre of the pla-
quette is denoted as x∗.

The spins are now placed on the four links around each plaquette, and you write the model as a
four spin interaction:

Ĥ = −J
∑
x
σ̂z`1 σ̂

z
`2 σ̂

z
`3 σ̂

z
`4 = −J

∑
x∗

Ẑx∗ . (9.4)

Consider now the following operator Ĝx, defined at each internal vertex x of the lattice as:

Ĝx = σ̂xx,1σ̂
x
x,2σ̂

x
x,−1σ̂

x
x,−2 =⇒ Ĝxσ̂

z
x,νĜx = −σ̂zx,ν ν = ±1,±2 , (9.5)

where we used σ̂xσ̂zσ̂x = −σ̂z. In words: Ĝx flips all spins on the links touching x.

Internal, boundary, and corner vertices. When periodic boundary conditions (PBC) are
chosen, all vertices are “internal”, and they have 4 links. We will discuss later on the case of open
boundary conditions (OBC), where 4 vertices sit at the corners, and have stars with two links
only, while the other boundary vertices have stars with three links. Correspondingly, the operator
Ĝx has a reduced number of σ̂x.

!

It is easy to prove that Ĝx commutes with Ĥ for all x: 2

[Ĝx, Ĥ] = 0 ∀x . (9.6)
2To prove this, observe that Ĝ2

x = 1, so that we need to show ĜxĤĜx = Ĥ. Take now a plaquette term in the
Hamiltonian: if x does not touch that plaquette, the commutation is trivial. The only non-trivial commutation
occurs when x is any of the vertices of the plaquette. But then, since σ̂xσ̂z σ̂x = −σ̂z , you flip exactly two spins on
the edges of the plaquette, and the two minus signs produce an overall +1.
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The set of links touching x, which enter in the definition of Ĝx is defined as the “star” at x:

star(x) =
{
` = x,±ν with ν = 1, 2 | ` ∈ lattice

}
=⇒ Ĝx =

∏
`∈star(x)

σ̂x` . (9.7)

This definition works in principle also for the possible boundary sites of systems with OBC, as we will
illustrate further below.

x
x, 1x,−1

x, 2

x,−2

Figure 9.2: An internal vertex at x and the four neighboring links in
a d = 2 dimensional (square) lattice, defining the star(x). The operator
Ĝx = σ̂xx,1σ̂

x
x,2σ̂

x
x,−1σ̂

x
x,−2 flips the four spins sitting at the blue circles on

the links that enter x.

One thing we need to discuss is the boundary conditions on the lattice. One standard choice is
periodic boundary conditions (PBC), as illustrated in Fig. 9.3 (left). An alternative choice, breaking
translational symmetry, is open boundary conditions (OBC), illustrated in Fig. 9.3 (right). We will
later discuss the important role of boundary conditions concerning the topological aspects of the model
and ground-state degeneracy.

+ − −

+ + − +

+ + −

− + − −

+ − −

− + − −

+ − −

+ + − +

+ − −

1 Lx· · ·
PBC

1

Ly

...

+ − −

+ + − −

+ + +

− + − +

+ − −

− + − −

+ − −

− + − +

− − −xc

xb

1 Lx· · ·
OBC

1

Ly

...

Figure 9.3.: A sketch of d = 2 (square) lattice, with Lx × Ly plaquettes. Here Lx = 3 and Ly = 4. The
± denote spin components along the z-axis, i.e., in the standard configuration basis. Notice that on many
plaquettes the operator Ẑx∗ has eigenvalues −1: these plaquettes are called frustrated. Left: The PBC case.
The dotted circles denote spins on links on the upper and right boundary, which are also drawn dotted: the
spins, links, and vertices on those dotted boundaries should be identified with the corresponding ones on the
“opposite” lower and left boundaries. Effectively, the model is defined on a 2-torus. All vertices (NV = Lx×Ly
as well) correspond to “stars” with four links. Right: the OBC case. Here the corner vertices have stars
with two links only, and the boundary vertices have stars with three links. Also, the spins on the boundaries
are free. The configuration shown is almost identical to the PBC one on the left, except for the action of two
Ĝx operators: one at the upper corner xc, and one on the right boundary vertex xb. You should remark that
character of the plaquettes is not changed, consistently with gauge invariance. But the parity of the number
on + and − along vertical and horizontal lines is affected.
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The previous construction easily generalizes on higher dimensional hyper-cubic lattices. On a d-
lattice we have d nearest-neighbor vectors eν with ν = 1, · · · , d. Each site x has 2d links (edges)
attached to it, which we denote by x,±ν. As before, x,−ν ↔ (x,x− eν)↔ x− eν , ν. The plaquettes
are always squares bounded by four edges. For each vertex x, you can uniquely define a plaquette
by choosing a direction ν = 1, · · · , d − 1 and a second direction ν′ > ν: hence you can do that in(
d
2

)
= d(d − 1)/2 ways. Boundary vertices in systems with OBC would have a different number of

associated plaquettes, but we write our model for PBC, for simplicity of notation.

Wegner’s Ising lattice gauge theory (LGT). For a hyper-cubic lattice in d-dimension, the
classical Ising LGT model would read:

Ĥ = −J
∑
x

d−1∑
ν=1

d∑
ν′>ν

σ̂z`1 σ̂
z
`2 σ̂

z
`3 σ̂

z
`4 = −J

d−1∑
ν=1

d∑
ν′>ν

∑
xνν′∗

Ẑxνν′∗
(9.8)

where xνν
′

∗ is the center of the square plaquette surrounded by the four links labelled

plaq(xνν
′

∗ ) =
{
`1 = x, ν ; `2 = x + eν , ν′ ; `3 = x + eν + eν′ ,−ν ; `4 = x + eν′ ,−ν′

}
, (9.9)

and the four spin interaction is:

Ẑxνν′∗
= σ̂z`1 σ̂

z
`2 σ̂

z
`3 σ̂

z
`4 =

∏
`∈plaq(xνν′∗ )

σ̂z` . (9.10)

You define the “star” at x to be set of all 2d links touching x:

star(x) =
{
` = x, ν with ν = ±1 · · · ± d

}
. (9.11)

The flip operator which commutes with Ĥ at each vertex x (see Fig. 9.4) is defined as:

Ĝx =

d∏
ν=1

(
σ̂xx,ν σ̂

x
x,−ν

)
=

∏
`∈star(x)

σ̂x` =⇒ [Ĝx, Ĥ] = 0 ∀x . (9.12)

i

y

z

x

+ −

+

+

+

−

x
Ĝx−→ y

z

x

− +

−

−

−

+

x

Figure 9.4: The vertex at x
and its 6 neighboring links in
a d = 3 dimensional cubic lat-
tice, the star(x). The opera-
tor Ĝx flips the 2d = 6 spins
sitting at the blue circles on
the links that touch x, as ex-
emplified with a local config-
uration of spins.

It is worth stressing that the presence of such an extensive set of commuting operators implies an
exponentially large degeneracy of each configuration. On a hyper-cubic lattice with NV vertices x
— hence NL = dNV links (or edges) on which the spins sit — there are NC = 2NL = 2dNV possible
different configurations. Denote by |C〉 any such configurations. 3 You can apply to |C〉 any product
of symmetry operators Ĝx, obtaining symmetry-related configurations |C′〉. More precisely, you can
define an equivalence class of configurations induced by the local symmetries

[C] =
{
|C′〉 =

∏
x∈V

Ĝnx
x |C〉 with nx = 0, 1

}
. (9.13)

3We use a ket notation for the configurations, although they are computational basis states, i.e., eigenstates of σ̂zx,ν ,
hence for all practical purposes classical Ising configurations.
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All such configurations |C′〉 are guaranteed by symmetry to have the same energy, which we denote
as:

H[C] = 〈C′|Ĥ|C′〉 ∀C′ ∈ [C] . (9.14)

It is quite clear that the number of elements Ngauge in the class [C] of gauge-related configurations is
totally independent of the configuration C you started from. 4 Hence, the partition function is given
by

ZILGT =
∑
C

e−β〈C|Ĥ|C〉 = Ngauge

∑
[C]

e−βH[C] . (9.15)

Now consider any (diagonal) operator which is gauge invariant, i.e., such that

O[C] = 〈C′|Ô|C′〉 ∀C′ ∈ [C] . (9.16)

For such gauge-invariant operators, we might just sum over an element of the class, as the common
factor Ngauge cancels off:

〈Ô〉 =

∑
[C]

O[C]e−βH[C]

∑
[C]

e−βH[C]
. (9.17)

9.2. Elitzur theorem: gauge symmetry cannot be spontaneously
broken

Elitzur’s theorem states that the local gauge symmetry cannot be spontaneously broken. This
implies that a local order parameter calculated by the expectation value of local non-gauge-invariant
objects must vanish. We exemplify this with the local magnetization 〈σ̂zx,ν〉 in the Ising LGT case,
indeed the most obvious “candidate” local order parameter.

To calculate it, we use the device of adding a small external longitudinal field h, which is then sent
to zero after the thermodynamics limit is taken. Hence, we take the Hamiltonian to be:

Ĥh = −J
∑
x∗

σ̂z`1 σ̂
z
`2 σ̂

z
`3 σ̂

z
`4︸ ︷︷ ︸

Ĥ0

−h
∑
x

d∑
ν=1

σ̂zx,ν , (9.18)

where Ĥ0 is the gauge-invariant Ising LGT term, and the corresponding partition function is:

Zh =
∑
C

e−βHh[C] with Hh[C] = H0[C]− h
∑
x′,ν′
〈C|σ̂zx′,ν′ |C〉 , (9.19)

where |C〉 denotes computational basis states (eigenstates of σ̂z), hence classical Ising configurations,
to all practical purposes. The expectation value we need is:

〈σ̂zx,ν〉h =
1

Zh

∑
C

〈C|σ̂zx,ν |C〉 e−βHh[C] . (9.20)

4One should be careful in counting this number, since
∏

x∈V Ĝx = 1 for a system with PBC. Hence, for each configu-
ration associated to {nx} we have that

|C′〉 =
∏
x∈V

Ĝnx
x |C〉 =

∏
x∈V

Ĝx
∏
x∈V

Ĝnx
x |C〉 =

∏
x∈V

Ĝ1−nx
x |C〉 .

Indeed the number of different configurations is Ngauge = 2NV−1. What happens in the OBC case?
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Now observe that Ĝ†xσ̂zx,νĜx = −σ̂zx,ν . Hence:

〈σ̂zx,ν〉h =
1

Zh

∑
C

(
− 〈C|Ĝ†xσ̂zx,νĜx|C〉

)
e−βHh[C] =

1

Zh

∑
C

(
− 〈Cx|σ̂zx,ν |Cx〉

)
e−βHh[C] ,

where we defined the “locally (at x) flipped” configuration |Cx〉 = Ĝx|C〉. Recall that star(x) =

{x,±ν} is the set of 2d links around the vertex x, all flipped by Ĝx. It is simple to show that

Hh[C] = Hh[Cx] + 2h〈Cx|m̂x|Cx〉 with m̂x =

star(x)∑
x′,ν′

σ̂zx′,ν′ . (9.21)

Since summing over the configurations C is totally equivalent to summing over the Cx, we can even-
tually write:

〈σ̂zx,ν〉h =
1

Zh

∑
C

(
− 〈C|σ̂zx,ν |C〉

)
e−βHh[C]e−2βh〈C|m̂x|C〉

= −
〈
σ̂zx,νe

−2βhm̂x
〉
h
. (9.22)

Hence, we can finally write the following inequality:

2
∣∣〈σ̂zx,ν〉h∣∣ =

∣∣∣〈σ̂zx,ν(1− e−2βhm̂x
)〉

h

∣∣∣ ≤ ∣∣〈σ̂zx,ν〉h∣∣∣∣(e4βhd − 1
)∣∣ h→0−→ 0 . (9.23)

The importance of local symmetry. Remark the difference with what global symmetries
would do in statistical mechanics. There, a uniform field brings an extensive contribution in the
Boltzmann weights, and the thermodynamical limit might lead to symmetry breaking. Here, the
thermodynamical limit is innocuous, since only a finite (small) number of terms are involved in
the local symmetry transformation.

i

9.3. Gauge invariant objects: the Wilson loops

The plaquette operators Ẑx∗ are not the only gauge-invariant objects you can think of. Indeed, any
product of plaquette operators is also gauge-invariant. Indeed, see Fig. 9.5, take any closed contour
C on the lattice — the contour running along the edges (or links) — and define the following Wilson
loop operator:

ẐC =
∏
`∈C

σ̂z` . (9.24)

The smallest such contour is a plaquette plaq(x∗), and for these, you recognise the well-known pla-
quette operators:

ẐC=plaq(x∗) ≡ Ẑx∗ .

If you keep multiplying by a neighbouring plaquette operator, you notice that the internal links
disappear since (σ̂z)2 = 1, and only the outer contour remains.

The Wilson loop operator. The Wilson loop operator can be equivalently written as:

ẐC =
∏
`∈C

σ̂z` =
∏

x∗ inside C

Ẑx∗ . (9.25)

You can also consider contours C that are made of closed but disconnected pieces, in principle.
As each plaquette can have eigenvalues ±1, the value of ẐC on a given configuration C — or,
better, on the class of gauge-related configurations [C] — is also ±1.

i
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1 · · ·1

...

Figure 9.5: The Wilson loop. The
closed contour C (red thick line) contains
links ` and the Wilson loop operator is
defined by ẐC =

∏
`∈C σ̂

z
` . Equivalently,

ẐC can be seen as the product of all Ẑx∗

plaquette operators where x∗ is inside
the contour C. Here the area inside the
loop is AC = 6, while its perimeter is
PC = 14. Notice, however, that the
generic situation for large loops is pre-
cisely opposite, with AC > PC.

Recall that, so far, the Ising LGT is a classical model, with many degenerate configurations. En-
ergetically, it is favourable to have as many possible plaquettes with eigenvalue +1, as these have
energy −J , while frustrated plaquettes — having Ẑx∗ = −1, due to an odd number of spin ↓ — pay
an energy penalty +J . But entropy plays a role.

We will now show that the classical modal has, for d > 2, two distinguishable phases. We will do
that by analysing the characteristic behaviour of the statistical average of the Wilson loop operator
ẐC.

Area (high-T ) versus perimeter law (low-T ). We can easily convince ourselves that

〈ẐC〉 =

 e−χA(β)AC high T

e−χP (β)PC low T (for d > 2)
(9.26)

where AC is the area (in units of a2) of the minimal surface enclosed by the contour C, and PC is
the perimeter (in units of a) of the contour, i.e., the number of links belonging to C.

i

T
Tc0

〈ẐC〉 = e−χP (β)PC 〈ẐC〉 = e−χA(β)AC

Figure 9.6: The temper-
ature phase diagram of Z2

LGT for d > 2. At T = 0

the Wilson loop is triv-
ially 〈ẐC〉 = 1. Explain
why.

207



Ising lattice gauge theory and beyond (Lecture Notes by G.E. Santoro)

9.3.1. High-T expansion and the area law

The high-T expansion starts from the realisation that, since Ẑx∗ has eigenvalues ±1 you can equiv-
alently write:

eβJẐx∗ =
(
1 + Ẑx∗ tanhβJ

)
coshβJ (9.27)

hence:
e−βĤ = (coshβJ)Nplaq

∏
x∗

(
1 + Ẑx∗ tanhβJ

)
. (9.28)

The thermal average we need, observing that the coshβJ cancels off with the partition function, is
given by:

〈ẐC〉 =

∑
C

〈C|ẐC

∏
x∗

(
1 + Ẑx∗ tanhβJ

)
|C〉∑

C

〈C|
∏
x∗

(
1 + Ẑx∗ tanhβJ

)
|C〉

. (9.29)

For high-T , hence small βJ , the tanhβJ produces small factors. For the partition function in the
denominator, we can evidently set, to lowest order Z = NC(1 + · · · ), where NC is the number of spin
configurations, and the dots (· · · ) indicate terms that vanish for βJ → 0. Looking at the numerator,
the ẐC brings about unpaired σ̂z operators, which give zero contribution upon averaging over the
configurations, 〈σ̂zx,ν〉 = 0. The only escape route is that the plaquette terms contribute σ̂z operators
that can exactly match those appearing in ẐC, since we can then use (σ̂z)2 = 1. But recall that
Eq. (9.25) tells us that:

ẐC =
∏

x∗ inside C

Ẑx∗ .

Hence we need to invoke a factor Ẑx∗ tanhβJ for all x∗ inside C in order for perfectly match the σ̂z

into innocuous (σ̂z)2. Hence, the largest term (with minimal number of tanhβJ) contributing to the
average will be

〈ẐC〉 = (tanhβJ)AC + · · · = e− log(tanh βJ)−1AC + · · · . (9.30)

Convergence of the high-T series. An important point is that the methods typically used
to prove that high-T expansions have a finite radius of convergence do apply for the present case
as well. So, we can safely tell that, for sufficiently large T , the average of the Wilson loop shows
an area law. The leading term of the prefactor function χA(β) in Eq. (9.26) is indeed given by
log(tanhβJ)−1, as predicted by Eq. (9.30).

!

9.3.2. Low-T expansion for d > 2 and the perimeter law

The low-T expansion is slightly more subtle: a naive approach would fail to appreciate that the
d = 2 case is rather special.

We start by noticing that classical ground state is the class of configurations where all plaquettes are
unfrustrated, i.e., they give Ẑx∗ → +1. The large degeneracy associated with the gauge freedom can be
safely organized by working with class representatives, so that [C]gs = |+ · · ·+〉z is the configuration
with all spins pointing up in the z-direction, and

〈ẐC〉 =

∑
[C]

〈C|ẐCe−βĤ |C〉∑
[C]

〈C|e−βĤ |C〉
. (9.31)
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Each frustrated plaquette brings an increase in energy of 2J , so that a reasonable thing to do, at
low-T , is to start considering configurations with a single flipped spin, [C]1−flip, which makes 2(d− 1)

plaquettes to become frustrated, hence:

H[C]1−flip = −
(
Nplaq − 2(d− 1)

)
J + 2

(
d− 1

)
J = Egs + 4(d− 1)J ,

where Egs = −JNplaq is the classical ground state energy. As usual, Egs will drop off from the
calculation of the average, cancelling with the partition function denominator.

The second important fact is that, while the denominator of (9.31) is blind to details, and simply
gives:

Denominator = 1 +NL e−4(d−1)βJ + higher flip contributions ,

where NL, the number of links, simply counts the number of possible configurations [C]1−flip, the
numerator is more subtle: it distinguishes configurations in which the flipped spin is not on C, NL−PC

in number, for which ẐC → +1, from those in which the flipped spin is on C, PC in number, where
PC is the perimeter of the loop. Hence:

Numerator = 1 + (NL − 2PC) e−4(d−1)βJ + higher flip contributions .

Higher-order flip contributions are more difficult to calculate. If the various flip terms were inde-
pendent and we could neglect excluded volume effects, one might write the n-flip contribution to the
numerator simply as

Numeratorn−flips ≈
1

n!

(
(NL − 2PC) e−4(d−1)βJ

)n
,

and similarly for the denominator. Within such approximation, we can sum up all terms by recognising
a Taylor expansion of the exponential:

〈ẐC〉 ≈
e(��NL−2PC)e−4(d−1)βJ

(((
(((eNLe−4(d−1)βJ = e−2e−4(d−1)βJPC , (9.32)

hence the perimeter law. A careful analysis performed by Wortis in 1972 shows that this is indeed
the leading term in the function χP (β) of Eq. (9.26).

The low-T physics. This clearly shows that for d > 2, where the previous analysis applies, the
model must have two phases: a high-T (disordered) phase where the area law applies and larger
loops are less abundant, and a low-T phase where the perimeter law applies. At high-T loops
tend to be more compact: since AC is generally larger than PC, at least for generic large loops,
this makes perfect sense.

i

9.3.3. The peculiar d = 2 case

The d = 2 case is rather peculiar, as you can appreciate also from the energetics of 2 spin flips.
Observing Fig. 9.7 you see that, starting from the reference configuration (all spins up) a string of
flipped parallel links of any length creates only two frustrated plaquettes in d = 2. Even more: if the
system does not have PBC on the y-direction, you can even move the string of flipped spins to the
lower boundary: then, only a single frustrated plaquette survives!

The role of cheap fluctuations. You realise that this low cost of defects compared to the
large entropy gain in creating them anticipates the fact that the model is always disordered at
any T > 0, hence a single phase with area law average Wilson loop should be expected. This is
indeed the case, as one can realise in several instructive ways.

!
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Figure 9.7.: Left: Starting from the reference configuration (all spins up) a string of flipped parallel links
of any length creates only two frustrated plaquettes — denoted by f — in d = 2. Notice that this is peculiar
of the d = 2 case, as the plaquettes coming upward, out of the plane, for instance in d = 3, would still be
frustrated! Right: If the system does not have PBC on the y-direction, you can even move the string to the
lower boundary, and only a single frustrated plaquette survives. The ± denote spin components along the
z-axis, i.e., in the standard configuration basis.

Mapping the d = 2 Ising LGT into uncoupled classical Ising chains. We now show that we can
indeed map the d = 2 classical Ising LGT into a system of uncoupled chains of ordinary classical Ising
models. To do that, we adopt the strategy of fixing a particular gauge for the equivalent configurations.

The temporal gauge. More precisely, we fix all the spins on the vertical links to be +1:

σ̂z` −→ +1 with ` = x, 2 ∀x . (9.33)

This is known as temporal gauge [33]. a

aWe will see later that, for a system with PBC, this implies a precise choice of a topological sector for the model,
more precisely those where the non-contractible Wilson loop operator Ẑγ2 in the “temporal direction” is +1.

i

Consider now the plaquette operators Ẑx∗ . Since the two vertical bonds are fixed to be +1, we can
equivalently write

Ẑx∗ −→ σ̂zx,1σ̂
z
x+e2,1 .

Hence, the plaquette terms reduce to pairs of spins on parallel links in the vertical direction,

Ĥ2d−ILGT = −J
∑
x∗

Ẑx∗ −→ −J
∑
x
σ̂zx,1σ̂

z
x+e2,1 , (9.34)
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...

≡

1 · · ·1

...

Figure 9.8.: Mapping d = 2 Ising LGT into uncoupled d = 1 ordinary Ising chains. Left: Choose a
gauge — the so-called temporal gauge — in which the spins on the vertical links are all fixed to be +1. The
spins on the horizontal links can be anything they want and are not indicated. Right: Ignore the pairs of
parallel +1 spins on the vertical links altogether. The plaquette coupling becomes a simple nearest-neighbour
ferromagnetic coupling −J (denoted by a dashed red line) along all the vertical uncoupled chains.

and we have mapped the d = 2 classical Ising LGT into decoupled classical Ising chains, as shown in
Fig. 9.8.

9.4. Introducing quantum fluctuations

Let us now move to a quantum model, introducing a transverse field term.

The quantum Ising LGT model. For a hyper-cubic lattice in d-dimension, the quantum
Ising LGT model reads:

Ĥ = ĤQ−ILGT = −h⊥
∑
`

σ̂x` − J
∑
x∗

Ẑx∗ (9.35)

Quite importantly, since σ̂x commutes with Ĝx, the model is still gauge-invariant:

[Ĝx, Ĥ] = 0 ∀x . (9.36)

i

We can introduce other gauge invariant objects in the problem, which turn out to be build out of
products of Ĝx.

211



Ising lattice gauge theory and beyond (Lecture Notes by G.E. Santoro)

Contractible ’t Hooft loop operators. Let us define, on the dual lattice defined by the
plaquette centers, a contractible loop γ∗ that cuts orthogonally links on the lattice, and the
associated ’t Hooft loop operator

X̂γ∗ =
∏
` ⊥ γ∗

σ̂x` . (9.37)

You can show that these objects can be written as products of Ĝx, hence they are symmetries,
but not independent from the Ĝx:

X̂γ∗ =
∏

x | star(x) ⊥ γ∗
Ĝx =⇒ [X̂γ∗ , Ĥ] = 0 ∀γ∗ . (9.38)

i

γ∗

Figure 9.9: Two contractible loops γ∗ on the
dual lattice, and the associated ’t Hooft loop
operator cutting orthogonally a number of links
(thick black links). On the right, the smallest
loop, where X̂γ∗ = Ĝx. On the left, a larger
loop where X̂γ∗ is a product of three Ĝx: no-
tice the internal links denoted by dotted thick
lines, which are cancelled due to (σ̂x` )2 = 1. In-
cidentally, you can view the two loops shown as
a single contractible loop γ∗ made of two dis-
joint loops.

Let |ψgs〉 denote a ground state of the model, with energy Egs. Gauge symmetry implies that:

Ĥ
(
Ĝx|ψgs〉

)
= ĜxĤ|ψgs〉 = Egs

(
Ĝx|ψgs〉

)
. (9.39)

Moreover, since Ĝ2
x = 1 you expect that, for a translationally invariant ground state, the eigenvalue

of Ĝx can only be a sign independent of x: Ĝx|ψgs〉 = ±|ψgs〉.

Ground state value of Ĝx. We will now argue that

Ĝx|ψgs〉 = |ψgs〉 ∀x , (9.40)

a condition that defines the ground state sector(s) of the Hilbert space.

i

To begin, we have to discuss possible degeneracies of the ground state in the two possible phases
that we expect to be present in the model. We do so in the two limits h⊥ → 0 and h⊥ →∞.

9.4.1. The small h⊥ phase

For h⊥ = 0 the classical ground states are highly degenerate, due to the large number of ways in
which you can arrange unfrustrated plaquettes. Let us discuss better the question of the boundary
conditions, particularly relevant at this stage.

Classification of topological sectors for PBC systems. For the model with PBC, there is a very
remarkable property that emerges when you try to classify the classical ground state configurations.
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h⊥/J

kBT/J

0 QCP

〈ẐC〉 = e−χPPC

Deconfined

〈ẐC〉 = e−χAAC

Confined

Figure 9.10: The generic
phase diagram of Z2 quantum
LGT for d > 2. The mean-
ing of the words “deconfined”
and “confined” will be clarified
later on: it is related to the
potential energy of two static
excitations implanted on the
ground states. For d = 2 the
deconfined phase is strictly
only at T = 0.

We start from the class representative where all spins on all links are |+〉, which we denote by |C00〉:

|C00〉 = |+〉⊗NL .

The other elements in the class can be obtained by applying elements of Ĝx, as discussed.

But some configurations will never be reached in this way: they are topologically distinct from |C00〉.
To shed light on this fact, let us consider an extension of the Wilson loop operator where the loop is
now non-contractible, i.e., goes around the torus.

Non-contractible Wilson and ’t Hooft loop operators. We define γ2 to be a closed straight
contour of links that goes through the boundary in the direction e2, and define the associated
Wilson loop operator

Ẑ2 ≡ Ẑγ2
=
∏
`∈γ2

σ̂z` . (9.41)

On the dual lattice, we define γ∗2 to be a non-contractible loop that cuts a line of parallel links
along the direction e2 — hence, running on the dual lattice defined by the plaquette centers —
and the associated ’t Hooft loop operator

X̂2 ≡ X̂γ∗2
=
∏
`⊥γ∗2

σ̂x` . (9.42)

In words, see Fig. 9.11: X̂γ∗2
creates a line of spin-flips on all parallel links in the direction e2.

By switching e2 ↔ e1, similar definitions can be given for γ1 and γ∗1 , and associated operators
Ẑ1 ≡ Ẑγ1 and X̂1 = X̂γ∗1

.

i

Since Ĝx always flips spin in pairs along any direction, while obviously commutes with σ̂x, it is
easy to show that:

Ĝ†xẐνĜx = Ẑν and Ĝ†xX̂νĜx = X̂ν ∀x . (9.43)

However, since γ2 and γ∗2 necessarily share a single link ` where σ̂x` σ̂
z
` σ̂

x
` = −σ̂z` (and similarly for γ1

and γ∗1 ) you must have that:

Ẑ2X̂2 = −X̂2Ẑ2 and Ẑ1X̂1 = −X̂1Ẑ1 . (9.44)

On the contrary, γ1 and γ∗2 share no link (and similarly γ2 and γ∗1 ) hence:

Ẑ1X̂2 = X̂2Ẑ1 and Ẑ2X̂1 = X̂1Ẑ2 . (9.45)
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The two non-local Qbit operators. Summarizing, the four operators (Ẑ1, X̂1) and (Ẑ2, X̂2)
both realise the Pauli algebra:

{Ẑ1, X̂1} = 0 {Ẑ2, X̂2} = 0 , (9.46)

while they mutually commute:

[Ẑ1, X̂2] = 0 [Ẑ2, X̂1] = 0 . (9.47)

i

|C01〉 =

↑
γ2

→γ∗2

+ + + +

+ + + + +

+ + + +

− − − − −
+ + + +

+ + + + +

+ + + + +

+

+ + + +

+ + + +

+ − + +

++ + + + +

+ − + +

− − − − −
+ − + +

+ + + + +

+ + + + +

+

+ − + +

+ − + +

|C11〉 =

↑
γ2

↑
γ∗1

→γ1

→γ∗2

Figure 9.11.: The configurations |C01〉 (left) and |C11〉 (right) in a PBC system. On the left, γ2 (red solid
line) is the non-contractible Wilson loop in the direction of e2, associated to Ẑγ2 , and γ

∗
2 (black dashed line)

is the non-contractible t’Hooft loop cutting parallel links in the direction of e2, associated to X̂γ∗2 . On the
right, the corresponding γ1 and γ∗1 in the other direction are shown. Here ± denote spin components along
the z-axis, i.e., in the standard configuration basis. The dotted circles denote spins on links on the boundary.

The 00 sector.) Observe that Ẑ1|C00〉 = |C00〉, and Ẑ2|C00〉 = |C00〉, a property that, by gauge
invariance holds true for all gauge-related configurations:

Ẑ1|C ′00〉 = |C ′00〉 and Ẑ2|C ′00〉 = |C ′00〉 . (9.48)

The 01 sector.) Now apply X̂2 to |C00〉, obtaining a configuration |C01〉 as shown in Fig. 9.11 (left):

|C01〉 = X̂2|C00〉 .

By gauge invariance, the same relationship holds for all gauge-related configurations |C′00〉 and
|C′01〉. Hence, due to Eqs. (9.44)-(9.45):

Ẑ1|C ′01〉 = |C ′01〉 and Ẑ2|C ′01〉 = −|C ′01〉 . (9.49)

The 10 sector.) Similarly, for a configuration

|C10〉 = X̂1|C00〉

with a line of horizontal links all flipped to −1 but going upwards and all gauge-related partners:

Ẑ1|C ′10〉 = −|C ′10〉 and Ẑ2|C ′10〉 = |C ′10〉 . (9.50)
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The 11 sector.) Finally, there is a fourth possible reference configuration

|C11〉 = X̂2X̂1|C00〉 ,

shown in Fig. 9.11 (right), where two lines of parallel flipped spins −1 run along the sample in
the two directions. For this, and its gauge-related partners:

Ẑ1|C ′11〉 = −|C ′11〉 and Ẑ2|C ′11〉 = −|C ′11〉 . (9.51)

This discussion implies that the classically degenerate configurations, on the PBC geometry of a
torus, are divided into four classes which are not related by the application of local gauge-symmetry
elements, and rather distinguished by a non-local quantum number: the eigenvalues of two non-
contractible Wilson loops going through the boundaries, Ẑ1 and Ẑ2.

OBC vs PBC. Notice that this is peculiar of the PBC system. In the OBC case, the presence
of boundary star elements with two or three links allows changing the parity of the number of −1

spins along vertical or horizontal lines! You can convince yourself of that by a close inspection of
Fig. 9.3 (OBC). Moreover, for a system on the sphere, for instance, all loops would be contractible,
and the topological feature we described would not hold.

!

We might think of doing degenerate perturbation theory in the limit h⊥ → 0 within each degenerate
topologically distinct sector of configurations at h⊥ = 0. Notice that a single spin-flip term, for
instance, σ̂xx,2|C00〉, does create two frustrated plaquettes, leaving the sector you started from. But to
4th-order in perturbation theory, you might flip the 4 spins on the links ` ∈ star(x) and return back
to the state Ĝx|C00〉, with a negative off-diagonal matrix element −αh4

⊥/J
3. The calculation is a bit

hard to do in practice. But it suggests that by the Perron-Frobenius theorem, a positive superposition
of all gauge-related states of the form:∑

{nx}

ψ{nx}

( ∏
x∈V

Ĝnx
x

)
|C00〉 with nx = 0, 1 ,

with positive wave-function ψ{nx} > 0 should describe the ground state for finite small h⊥ > 0.
Translational invariance, finally, suggests that the wave-function ψ{nx} > 0 is uniform over all possible
{nx}, hence:

|Ψ00〉 =
1√
2NV

∑
{nx}

( ∏
x∈V

Ĝnx
x

)
|C00〉 =

∏
x∈V

(1 + Ĝx√
2

)
|C00〉

=
1√

2NV−1

contractible∑
γ∗

X̂γ∗ |C00〉 . (9.52)

The equality of these three expressions needs a few comments. The first comes from the simple
relationship: ∏

x∈V

(
1 + Ĝx

)
=
∏
x∈V

( 1∑
nx=0

Ĝnx
x

)
=
∑
{nx}

( ∏
x∈V

Ĝnx
x

)
.

The second, with its conspicuous normalisation coefficient which reminds us that Ngauge = 2NV−1, is
due to the following consideration. For every bipartition V = A + A of the lattice of vertices you have
that: ( ∏

x∈A

Ĝx

)( ∏
x∈A

Ĝx

)
=
∏
x∈V

Ĝx = 1 =⇒
( ∏

x∈A

Ĝx

)
=
( ∏

x∈A

Ĝx

)
.

This implies that, given a configuration with a certain {nx}, with nx = 1 for x ∈ A, the configuration
with {n̄x}, where n̄x = 1−nx is precisely the same, since n̄x = 1 for x ∈ A. Hence the configurations
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are included twice in the first two expressions. Imagine now that you keep only one of those pairs of
identical configurations, pretending that the number of vertices in A is, for instance, not larger than
the complement, |A| ≤ |A|. 5 Observe that∏

x∈A

Ĝx = X̂γ∗ ,

where γ∗ is a contractible ’t Hooft loop, possibly made of several disjoint loops, as in Fig. 9.9.
Summing over all possible contractible γ∗ you get all possible gauge related configurations — notice:
without replicating them twice —, hence the normalisation that you need is now 1/

√
Ngauge, with

Ngauge = 2NV−1.

A similar construction holds for the other topological sectors, leading to 4 possible ground states,
which we could write as follows: 6

|Ψ00〉 , |Ψ10〉 = X̂1|Ψ00〉 , |Ψ01〉 = X̂2|Ψ00〉 , |Ψ11〉 = X̂1X̂2|Ψ00〉 . (9.54)

These four states, totally degenerate in the limit h⊥ → 0, can be distinguished by a non-local order
parameter: the expectation value of non-contractible Wilson loop operators. Indeed, observe that

Ẑ1|Ψ00〉 = |Ψ00〉 and Ẑ2|Ψ00〉 = |Ψ00〉 , (9.55)

simply because Ẑ1 and Ẑ2 commute with every possible Ĝx, and Ẑ1/2|C00〉 = |C00〉. However, recall
that Ẑ1 anticommutes with X̂1, and similarly Ẑ2 anticommutes with X̂2. Hence:

The expectation values of non-contractible Wilson loops. If |Ψv1,v2
〉 with v1, v2 = 0, 1

denotes the four possible ground states, obtained with

|Ψv1,v2
〉 = X̂v1

1 X̂v2
2 |Ψ00〉 , (9.56)

it is simple to show that:

Ẑν |Ψv1,v2
〉 = (−1)vν |Ψv1,v2

〉 =⇒ 〈Ψv1,v2
|Ẑν |Ψv1,v2

〉 = (−1)vν . (9.57)

i

Kitaev (toric code) model. We will later discuss a model, introduced by Kitaev, based on precisely
the ingredients discussed so far, which is exactly solvable. It might be viewed as the effective Hamil-
tonian inside the subsector of unfrustarted plaquettes, obtained for h⊥ → 0 in 4th order perturbation
theory:

Ĥeff = −heff

∑
x
Ĝx − J

∑
x∗

Ẑx∗ . (9.58)

Observe that all individual terms appearing in this Hamiltonian now commute, hence you can find
states that are simultaneous eigenvectors of

Ĝx|ψ〉 = |ψ〉 ∀x and Ẑx∗ |ψ〉 = |ψ〉 ∀x∗ . (9.59)

We will discuss at some length the physics of this model in a short while. For the time being, let us
analyse the other limit h⊥ →∞.
5When |A| = |A|, you decide arbitrarily which of the two you keep.
6The explicit expression in terms of configurations is simple, since X̂1 and X̂2 commute with all Ĝx, hence, for instance,
recalling that X̂1|C00〉 = |C10〉:

|Ψ10〉 = X̂1|Ψ00〉 =
1

√
2NV

∑
{nx}

( ∏
x∈V

Ĝnx
x

)
|C10〉 =

∏
x∈V

(1 + Ĝx√
2

)
|C10〉

=
1

√
2NV−1

contractible∑
γ∗

X̂γ∗ |C10〉 . (9.53)
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9.4.2. The large h⊥ phase

The ground state for h⊥ → ∞ is the simple product state with all spins now aligned in the x-
direction:

|Ψgs〉h⊥→∞ =
∏
`

|+, x〉` with |+, x〉` =
1√
2

(
|+〉` + |−〉`

)
. (9.60)

It is evidently non-degenerate. Since σ̂x` |+, x〉` = |+, x〉`, you deduce that, as anticipated:

Ĝx|Ψgs〉h⊥→∞ = |Ψgs〉h⊥→∞ . (9.61)

Obviously, on such a state, the expectation value of any Wilson loop operator vanishes exactly:

〈Ψgs|ẐC|Ψgs〉h⊥→∞ = 0 . (9.62)

We will adopt a convenient graphical representation for links in the states |±, x〉` of σ̂x: We denote
by a dotted line a link in |+, x〉`, and by a solid line a link in |−, x〉`.

Let us consider now excited states in the limit h⊥ → ∞ (or, equivalently, putting the plaquette
coupling J = 0). The lowest excited state has a single link (anywhere in the lattice) in the state
|−, x〉`, shown in Fig. 9.12 (right), with an energy cost ∆E = 2h⊥. Notice that σ̂z` |+, x〉` = |−, x〉` is
the operator that creates such an excitations.

x1

x2

Figure 9.12: Left: The
ground state |Ψgs〉h⊥→∞
with all links in state
|+, x〉 (dotted lines).
Right: The lowest-energy
excited states where two
violations of Ĝx = 1

appear at the vertices
denoted as x1 and x2,
and a single link (the full
blue line) is in the state
|−,x〉 = σ̂z` |+, x〉`.

One might analise all possible vertex configurations, 24 = 16 in total, to quickly discover that 8

of them indeed satisfy Ĝx = 1 because an even number of full lines enter the vertex. The 8 vertices
satisfying Ĝx = 1 are shown in Fig. 9.13.

Figure 9.13.: The 8 vertices for which the constraint Ĝx = 1 is satisfied.

One might further consider excited states where the vertices with Ĝx = −1 —which we will consider
are charge excitations on the background of vertices all satisfying Ĝx = 1 — are placed further apart,
at two distant points x1 and x2, as in Fig. 9.14. To create such an excitation, one just needs to
consider a Wilson open string γ(x1,x2) connecting the two points, applying the operator

Ẑγ(x1,x2) =
∏

`∈γ(x1,x2)

σ̂z` . (9.63)

The energy cost of such configurations (still assuming h⊥/J →∞) over the ground state is now:

V (x1,x2) = Ex1,x2 − Egs = 2h⊥||x2 − x1||Manh (9.64)
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where ||x2 − x1||Manh denotes the Manhattan distance between the two points. 7

γ

x1

x2

Figure 9.14: The excited state where two violations of Ĝx = 1

appear at the vertices denoted as x1 and x2, with the Wilson open
string γ(x1,x2) containing the links joining these two points in the
state |−,x〉 (full blue line). Here ||x2−x1||Manh = 4, and the energy
cost of such a configuration is V (x1,x2) = 8h⊥.

Confinement. The fact that two excitations (charges) placed at two points x1 and x2 pay an
energy cost

V (x1,x2) = α||x2 − x1|| (9.65)

proportional to the distance between the two points is a phenomenon known as confinement.
In the simple case shown above, a string of reversed links |−, x〉 (full blue lines) joins the two
excitations, and the energy cost scales linearly with the length of the string.

i

9.5. Kitaev’s Toric code model

Toric code model. On a d = 2 square lattice with PBC in both directions, Kitaev’s toric code
model reads: a

ĤK = −hK

∑
x
Ĝx − JK

∑
x∗

Ẑx∗ (9.66)

aKitaev calls As our Ĝx, s being a “star” associated to a site (or vertex) of the lattice, and Bp our Ẑx∗ , p being
a “plaquette” associated to the center of the lattice squares. Since the two terms commute a common choice of
parameters is to set hK = JK = 1, the energy unit.

i

We will now describe the ground states of Kitaev’s model, in a way that will provide an alternative
route to the description of the four topological states, see Eq. (9.56), discussed in Sec. 9.4.1.

9.5.1. The ground states

As observed several times, [Ĝx′ , Ẑx∗ ] = 0 for every possible x′ and x∗. This means that the ground
states correspond to finding the common eigenstates of Ĝx and Ẑx∗ with eigenvalues +1:

Ĝx|ψgs〉 = |ψgs〉 ∀x and Ẑx∗ |ψgs〉 = |ψgs〉 ∀x∗ . (9.67)

7Recall that if x = (x, y), then
||x||Manh = |x|+ |y| ,

a particular case of a larger classes of distances ||x||n = (|x|n + |y|n)
1
n which includes the Euclidean distance for

n = 2 and the Manhattan distance for n = 1. In the limit n→∞ we would obtain ||x||∞ = max(|x|, |y|).
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Constraints and counting of ground states. Since Ĝ2
x = 1 and Ẑ2

x∗ = 1, clearly both
operators can have only eigenvalues ±1. The total number of states in the Hilbert space is
22L2

= 4NV , where NV = L2 is the number of vertices, the factor 2 coming from the two links at
each vertex. Imposing each of the constraints, for instance Ĝx|ψ〉 = |ψ〉, reduces by a factor 2

the number of states. One might think that there are 2NV constraints implied by Eq. (9.67), one
for each vertex x and one for each plaquette x∗ (the number of plaquettes is equal to NV in two
dimensions). But in reality, since

∏
x Ĝx = 1 and

∏
x∗
Ẑx∗ = 1 we have only (NV−1) constraints

for the vertices and (NV − 1) constraints for the plaquettes. Hence, we expect

4NV

2NV−1 2NV−1
= 4 ground states .

i

To write the ground states explicitly, we start from the reference state |+, x〉 =
∏
` |+, x〉` with all

links on the spin state |+, x〉. As remarked, it satisfies Ĝx|+, x〉 = |+, x〉, but there are many more
configurations that satisfy such constraints everywhere. Indeed, you can “glue together” the 8 types
of vertices in Fig. 9.13 in such a way that no vertex of the wrong type, with an odd number of solid
lines, is present. A moment’s reflection should convince you that we need to impose that full lines
always close into loops C. Since a full-line link is created by the application of σ̂z` on the state |+, x〉`
you immediately realise that such a closed-loop of full lines is precisely associated with the Wilson
loop operator ẐC.

States satisfying Ĝx = 1 everywhere. You immediately conclude that any state

|C〉 = ẐC|+, x〉 =⇒ Ĝx|C〉 = |C〉 (9.68)

where C is a closed loop of full lines on the lattice, possibly made of several disconnected sub-loops.
The simple reason for this result is that, as previously remarked, the Wilson loop operators are
gauge invariant, [Ĝx, ẐC] = 0, and, trivially, Ĝx|+, x〉 = |+, x〉. All these states |C〉 are completely
degenerate, for JK = 0, and have energy −NVhK.

i

Let us now consider the effect of the other term, −JKẐx∗ . As discussed, Ẑx∗ ≡ ẐC=plaq(x∗), the
smallest closed loop C in the lattice: the plaquette. Hence, by applying Ẑx∗ to a loop configuration
|C〉 you obtain another loop configuration |C′〉 differing from |C〉 by a single plaquette loop. All in all,
you realise that the best thing you can do to gain energy — recall Perron-Frobenius — is to create a
superposition of all loop configurations with a uniform positive coefficient

|Φ00〉 = N
∑
C

ẐC|+, x〉 =
1√

2NV−1

∑
C

ẐC|+, x〉 , (9.69)

with a suitable normalisation coefficient, which we will soon show is N = 1√
2NV−1

. Let us get to this
result by the following explicit route.

Consider the alternative writing

|Φ00〉 =
∏
x∗

(1 + Ẑx∗√
2

)
|+, x〉 =

1√
2NV

∑
{nx∗}

∏
x∗

Ẑ
nx∗
x∗ |+, x〉 (9.70)

with nx∗ = 0, 1 on each plaquette. Arguments entirely identical to those of Sec. 9.4.1, based on the
fact that

∏
x∗
Ẑx∗ = 1, show that all configurations are indeed included twice. The fact that, given a

bipartition A ∪A of all plaquettes, we have∏
x∗∈A

Ẑx∗ = ẐC
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completes the proof that Eqs. (9.69)-(9.70) are equivalent.

The other ground states are obtained by applying non-contractible Wilson loop operators to |Φ00〉:

The four ground states on the 2-torus. Define, for v1, v2 = 0, 1, the four (degenerate)
ground states

|Φv1,v2
〉 = Ẑv2

2 Ẑv1
1 |Φ0,0〉 . (9.71)

The non-contractible ’t Hooft operators act now as non-local order parameters:

X̂ν |Φv1,v2
〉 = (−1)vν |Φv1,v2

〉 =⇒ 〈Φv1,v2
|X̂ν |Φv1,v2

〉 = (−1)vν . (9.72)

i

As you see, the previous description mirrors that of Sec. 9.4.1, with a rotation from σ̂z to σ̂x.

Obviously, on such states, the expectation value of any Wilson loop operator is exactly 1:

〈Ψgs|ẐC|Ψgs〉h⊥→0 = 〈Ψv1,v2
|ẐC|Φv1,v2

〉 = 1 , (9.73)

for the very simple reason that any ẐC can be written as a product of Ẑx∗ , and all of these have
eigenvalues +1 on the ground states.

9.5.2. The excitations

Let us now discuss the excitations of Kitaev’s toric code model. We will be very sketchy. For a
more in-depth discussion, see the videos of the lectures given at ICTP by Xie Chen (Caltech) Lecture
1, Lecture 2.

Electric (charge) excitations. As before, electric charge excitations are associated with violations
of the vertex constraint Ĝx = 1, at two or more vertices. Consider, for simplicity, the case where
Ĝx = −1 at the two vertices x1 and x2. This excitation is created by a Wilson open string Ẑγ , with
γ(x1,x2) the open string joining x1 to x2. Consider the associated excited state

|Ψe
x1,x2

〉 = Ẑγ(x1,x2)|Φ00〉 .

Evidently, the −JKẐx∗ terms are totally unaffected by the Wilson string (they commute), while the
two vertices with Ĝx = −1 imply an energy cost, over the ground state energy, of:

Ve(x1,x2) = 4hK ∀x1,x2 . (9.74)

Interestingly, this energy cost is totally independent of the distance ||x2−x1|| between the two “charges”.

Deconfinement. The fact that two excitations (charges) placed at two points x1 and x2 pay
an energy cost

lim
||x2−x1||→∞

Ve(x1,x2) = V∞ < +∞ (9.75)

which saturates to a finite value when the distance between the two points goes to infinity is
a phenomenon known as deconfinement. In the Kitaev model, deconfinement is extreme, since
Ve(x1,x2) is totally independent of the distance.

i
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Magnetic (flux) excitations. Symmetrically, one might consider two “magnetic” excitations corre-
sponding to two frustrated plaquettes. The simplest such excitations are created by applying σ̂x` on a
given link, obtaining the state

|Ψm
` 〉 = σ̂x` |Φ00〉

While the −hKĜx is unaffected (because they commute), this makes the two neighbouring plaquettes
x1
∗ and x2

∗, sharing the link `, frustrated because of the anti-commutation:

Ẑx1,2
∗
σ̂x` |Φ00〉 = −σ̂x` Ẑx1,2

∗
|Φ00〉 = −σ̂x` |Φ00〉 .

Hence this excitation costs an energy +4JK (indeed, +2JK for each frustrated plaquette). This can
be easily generalised, once again, by considering an arbitrary ’t Hooft open string γ∗(x1

∗,x
2
∗) joining

two arbitrary plaquettes x1
∗ and x2

∗. The associated excited state is

|Ψm
x1
∗,x

2
∗
〉 = X̂γ∗ |Φ00〉 =

( ∏
`⊥γ∗

σ̂x`

)
|Φ00〉 =⇒ Vm(x1

∗,x
2
∗) = 4JK ∀x1

∗,x
2
∗ . (9.76)

x1
∗

x2
∗

γ∗
Figure 9.15: On the background of the ground state |Φ00〉 (grey
thin lines), the two frustrated plaquettes obtained by applying σ̂x`
on the full (black) links. The dotted line denotes the ’t Hooft open
string γ∗(x1

∗,x
2
∗) connecting the centers of the plaquettes.

Once again, the proof of this is very simple, and relies on the anticommutation of Ẑx1,2
∗

with
X̂γ(x1

∗,x
2
∗)

due to the single link in common between each of the plaquette operators with the ’t Hooft
string. The independence of the energy cost of the excitation from the distance ||x1

∗ − x2
∗|| tells us,

once again, that the toric code ground states show an extreme deconfinement also for the magnetic
excitations.

9.5.3. Summary of the phase diagram for d = 2.

Here is a summary of the phase diagram expected for the d = 2 Ising quantum LGT in a transverse
field. In the limit h⊥/J → 0 the physics is described by the Kitaev model: the deconfined phase has
topological properties, with four ground states on the torus. In the limit h⊥/J → ∞ the physics is
described by the simple product ground state |+, x〉.

h⊥/J

kBT/J

Kitaev limit h⊥ →∞ limit
0 QCP

〈ẐC〉 = e−χPPC

Deconfined

〈ẐC〉 = e−χAAC

Confined

Figure 9.16: The phase dia-
gram of Z2 quantum LGT for
d = 2. From the duality map-
ping we know that the quan-
tum critical point (QCP) has
the exponents of the d = 2

Transverse Field Ising Model:
the best numerical estimates
give (h⊥/J)c ≈ 0.33.
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9.6. Path-integral of quantum Ising LGT model

The quantum Ising LGT model at finite T can be mapped, through the usual Suzuki-Trotter path-
integral, into a classical model in d + 1 dimensions. To simplify the notation we will illustrate the
case for d = 2. Figure 9.17 shows a single plaquette in d = 2 with one its “Trotter replicas” along the
imaginary time direction. Notice that spins are on links that are horizontal, and horizontal plaquettes,
which we denote as x12

∗ , are only involved in the LGT interaction.

Path-integral representation of the quantum Ising LGT in a transverse field. The
effective classical partition sum of the quantum Ising LGT in a transverse field is the following
classical effective action S[σ] in (d+ 1)-dimensions

S[σ] = −εJ
Nt∑
nt=1

∑
x
σ`1,nt σ`2,nt σ`3,nt σ`4,nt −Kt

Nt∑
nt=1

∑
`

σ`,ntσ`,nt+1

ZQ = lim
Nt→∞

∑
σ1···σNt

e−S[σ1,··· ,σNt ] = lim
Nt→∞

∑
σ

e−S[σ]

.

As before the relevant transverse (time-like) coupling Kt is ferromagnetic and is given by:
Kt = −1

2
log tanh

(
εh⊥

)
> 0

ε =
∆τ

~
≡ β

Nt
=

1

kBTNt

. (9.77)

i

Notice that at each x there are vertical links ` = (x,x + e3) on which there are no spins required by
the Trotter path-integral. Such vertical links define two new plaquettes, which we denote as x13

∗ and
x23
∗ . If you introduce the spins on these links ` of the two plaquettes along the temporal directions,

fixing them to σ̂z` → +1, you can promote the two-spin interactions in the temporal direction into
four-spin plaquette interactions.

S[σ] = −
∑
x∗

(
KsẐx12

∗
+KtẐx13

∗
+KtẐx23

∗

)
(9.78)

where the “spatial coupling” Ks = εJ is different from the “temporal coupling” Kt.

y

t

x

x
x12
∗

x13
∗

x23
∗

Figure 9.17: A single plaquette of a d = 2 LGT (spins
on the empty circles), with its “Trotter replica” along the
“imaginary time” direction. Notice that the Suzuki-Trotter
path-integral would couple only pairs of spins along the
imaginary-time directions: the solid circles denote the po-
sitions of spins that are not present in the Suzuki-Trotter
classical model. With the usual trick of “fixing the tempo-
ral gauge” you can introduce σ̂z` → +1 at all such vertical
links `, so that the Suzuki-Trotter classical model becomes a
classical anisotropic LGT in d+ 1 = 3.
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9.7. Duality for the quantum Ising LGT in two dimensions

Consider the quantum Ising LGT in d = 2. We saw that it is “equivalent”, given the path-integral
mapping, to a classical Ising LGT in dimension d+1 = 3. We will now see that, in a specific subsector
where the ground states live — that of states |ψ〉 for which Ĝx|ψ〉 = |ψ〉 for all x — a nice duality
mapping can be shown to exist with an ordinary transverse field quantum Ising model in the same
dimensionality d = 2.

The duality mapping is illustrated in Fig. 9.18. Taking x = n1e1 + n2e2, it is defined as follows:
τ̂zx∗ =

∏
` ⊥ γ∗(x∗)

σ̂x` =

n2∏
n=0

σ̂xx−ne2,1

τ̂xx∗ = Ẑx∗ = σ̂z`1 σ̂
z
`2 σ̂

z
`3 σ̂

z
`4

(9.79)

1

x∗
γ∗

x

· · ·1

...

Figure 9.18: The duality mapping.
In d = 2 the quantum Ising LGT can be
mapped into the transverse field quan-
tum Ising model in the same dimension
d = 2. The mapping is non-local and
requires using a ’t Hooft open string γ∗

starting from the lower edge of the sys-
tem and ending at the centre x∗ of a
plaquette.

Notice the (open) ’t Hooft string γ∗(x∗) on the (dual) lattice going through the centres of the
plaquettes: it starts from the lower horizontal link and goes up to x∗, cutting several horizontal links
below x∗. We start understanding the first equation for τ̂zx∗ . Since (σ̂x)2 = 1, you deduce that

τ̂zx∗ τ̂
z
x∗−e2

= σ̂xx,1 . (9.80)

Less trivial is to understand τ̂zx∗ τ̂
z
x∗−e1

. Let x = n1e1 + n2e2. Then:

Ĝx = 1 =⇒ σ̂xx,2 = σ̂xx,1σ̂
x
x,−1σ̂

x
x,−2 = σ̂xx,1σ̂

x
x,−1σ̂

x
x−e2,2

Similarly:
Ĝx−e2 = 1 =⇒ σ̂xx−e2,2 = σ̂xx,1σ̂

x
x,−1σ̂

x
x−2e2,2
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Assuming open boundary conditions in the y-direction, so that the bottom star contains three links
only and

Ĝx−n2e2 = σ̂xx−n2e2,2σ̂
x
x−n2e2,1σ̂

x
x−n2e2,−1 ,

and proceeding iteratively until the lower edge is reached you deduce that:

σ̂xx,2 =

n2∏
n=0

σ̂xx−ne2,1 σ̂
x
x−ne2,−1 ≡ τ̂zx∗ τ̂

z
x∗−e1

. (9.81)

Hence, we have proved that:  σ̂xx,1 = τ̂zx∗ τ̂
z
x∗−e2

σ̂xx,2 = τ̂zx∗ τ̂
z
x∗−e1

(9.82)

for all x of the lattice. A moment’s reflection shows that all the σ̂x on the independent links of the
PBC lattice have been mapped in this way into products of nearest-neighbour τ̂z on the dual lattice.
Also, our assumption of OBC was not essential at all: indeed, you can prove that Ĝx = 1 at all x,
including the lower edge which, with PBC, has stars with 4 links, including the top vertical link.

Concerning τ̂xx∗ , let us understand why we need the four plaquette σ̂z. The reason is that we need
that τ̂xx∗ anti-commutes with τ̂zx∗ — indeed, they share a single link — but commutes with all the
other τ̂z, notably, with the neighbors: τ̂zx∗−e2

, τ̂zx∗−e1
, τ̂zx∗+e2

, and τ̂zx∗+e1
. 8

Mapping the two models in d = 2. Hence, the mapping tells us that, in the subsector with
Ĝx = 1, the quantum Ising LGT maps as follows:

Ĥd=2−Q−ILGT = −h⊥
∑
x

(σ̂xx,1 + σ̂xx,2)− J
∑
x∗

Ẑx∗

7→ −h⊥
∑
x∗

(τ̂zx∗ τ̂
z
x∗−e2

+ τ̂zx∗ τ̂
z
x∗−e1

)− J
∑
x∗

τ̂xx∗ = Ĥd=2−TFIM . (9.83)

Notice that the couplings have been reversed: J now plays the role of a transverse field, while h⊥
is the nearest-neighbour coupling.

i

Interestingly, as a consequence of PBC:∏
x∗

Ẑx∗ = 1 =⇒
∏
x∗

τ̂xx∗ = 1 . (9.84)

This shows that the d = 2-TFIM has 2NV−1 states: those which are Z2 symmetric. Let us see how
many degrees of freedom we can count for the original spins. Starting from 2NV links, hence 4NV

states, we have imposed NV − 1 constraints due to the Ĝx = 1 — recall that
∏

x Ĝx = 1 reduces by 1

the constraints. Hence, we arrived at:

4NV

2NV−1
= 2NV+1 states .

These two counting of states, for the TFIM on the dual lattice, and the original LGT model with
constraints, differ by a factor of 4. The reason is that there are two extra constraints on the original
LGT which are effectively in place. Indeed, you can show that the mapping implies that the two
non-contractible ’t Hooft loop operators are constrained to be:

X̂γ∗1
=
∏
`⊥γ∗1

σ̂x` = 1 and X̂γ∗2
=
∏
`⊥γ∗2

σ̂x` = 1 , (9.85)

which brings the total number of states, consistently, to 2NV−1.
8It is simple to show that [τ̂zx∗−e2

, τ̂xx∗ ] = 0 (they share no links), [τ̂zx∗+e2
, τ̂xx∗ ] = 0 (they share two links), and

[τ̂zx∗±e1
, τ̂xx∗ ] = 0 (they share no links). Moreover, {τ̂zx∗−e1

τ̂zx∗ , τ̂
x
x∗} = 1, and {τ̂zx∗+e1

τ̂zx∗ , τ̂
x
x∗} = 1 because again

they share a single link (the vertical sides of the plaquette).
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9.8. U(1) lattice gauge theory

We now consider a more general case in which the variables at each link are phase factors eiθ`

rather than Ising spin variables σ̂z` . This changes the symmetry group from Z2 = {1,−1} to U(1).
We will later show, in Secs. 9.8.2 and 9.8.3, the connection of this U(1) lattice gauge theory with
electromagnetism.

x

`1

x + e1

x + e2

`3

x + e1 + e2

`2`4 x∗

eiθx,1

e−iθx+e2,1

e−iθx,2 eiθx+e1,2

Figure 9.19: A portion of a square lattice, with a
plaquette highlighted in red (the meaning of the arrows
will be clarified later on). U(1) variables are sitting on
the edges of the lattice, denoted by circles. The center
of the plaquette is denoted as x∗.

The variables on the link and the plaquette operator. With reference to Fig. 9.19, the
variable we put on each link is a U(1) phase variable eiθ` . Here, the arrows will play a role. On
the two links `3 and `4 the arrows go into direction −e1 and −e2, respectively, so that the system
of arrows around the plaquette forms a closed-loop going counterclockwise. We will assume that:

eiθx+e1+e2,−1 ≡ e−iθx+e2,1 and eiθx+e2,−2 ≡ e−iθx,2 . (9.86)

More generally, link variables going into opposite directions are complex conjugate of each other:

eiθx+eν,−ν ≡ e−iθx,ν . (9.87)

With these definitions, the product of the link variables on the plaquette — the analogue of Ẑx∗

— is take to be:
ei(θx,1+θx+e1,2−θx+e2,1−θx,2) = ei(∆1θx,2−∆2θx,1) = eiF̂

12
x∗ (9.88)

where we introduced, as usual, the discrete lattice derivatives:

∆1θx,2 = θx+e1,2 − θx,2 and ∆2θx,1 = θx+e2,1 − θx,1 , (9.89)

and the discrete curl:
F̂ 12
x∗ = ∆1θx,2 −∆2θx,1 . (9.90)

i

The classical part of the Hamiltonian, in the d = 2 dimensional case, would be obtained by taking
the Hermitian combination of the plaquette variables, involving the cosine:

H = JB
∑
x∗

(
1− cos F̂ 12

x∗

)
. (9.91)

We now have to look for the analogue of σ̂x: an operator that does not commute with the phase
variable eiθ` . A very natural choice is to consider, on each link, the “momentum conjugate” to θ`,
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essentially an angular momentum:

L̂` = −i ∂
∂θ`

=⇒ [θ`, L̂`′ ] = iδ`,`′ . (9.92)

This commutator resembles the canonical commutation rule of position and momentum in one dimen-
sion but is a bit disrespectful of the angular nature of the variable θ` which would better be involved
in the U(1) form eiθ` . A simple calculation, however, shows that:

Canonical commutation relation between phase and momentum.

[L̂`, e±iθ` ] = ±e±iθ` . (9.93)

Quite amusingly, like the z-component of the ordinary angular momentum, L̂` has integer eigen-
values m ∈ Z, with eigenfunctions eimθ, and is such that:

eiφL̂`eiθ`e−iφL̂` = ei(θ`+φ) . (9.94)

Consistently with Eq. (9.87), we will assume that:

L̂x+eν ,−ν ≡ −L̂x,ν . (9.95)

i

Concerning the “local symmetry” Ĝx, it should be an operator built from the “momenta” on the
star at x, the links touching the vertex x. We take, again in d = 2 for simplicity, and recalling that
L̂x,−ν ≡ −L̂x−eν ,ν :

Ĝx = e−iΛx(L̂x,1+L̂x,2+L̂x,−1+L̂x,−2) = e−iΛx(L̂x,1+L̂x,2−L̂x−e1,1
−L̂x−e2,2

)

ĜΛ =
∏
x
Ĝx = e−i

∑
x Λx

∑2
ν=1 ∆̄ν L̂x,ν = ei

∑
x
∑2
ν=1(∆νΛx)L̂x,ν ,

(9.96)

where Λx is an arbitrary real function defined at all the lattice points x, and

∆̄νL̂x,ν = L̂x,ν − L̂x−eν ,ν , (9.97)

denotes the backward finite difference. The last equality expresses the discrete analogue of integration
by parts:∑

x

∑
ν

Λx(∆̄νL̂x,ν) =
∑
x

∑
ν

Λx(L̂x,ν − L̂x−eν ,ν) =
∑
x

∑
ν

ΛxL̂x,ν −
∑
x

∑
ν

Λx+eν L̂x,ν

=
∑
x

∑
ν

(Λx − Λx+eν )L̂x,ν = −
∑
x

∑
ν

(∆νΛx)L̂x,ν . (9.98)

Gauge symmetry. Consider now a link variable, eiθx,ν with ν = 1, 2, and calculate how it is
transformed by the unitary operator ĜΛ. We get, using Eq. (9.96) and (9.94):

ĜΛeiθx,ν Ĝ−1
Λ = ei(∆νΛx)L̂x,ν eiθx,ν e−i(∆νΛx)L̂x,ν = ei(θx,ν+∆νΛx) . (9.99)

We see here the analogue of gauge symmetry in electromagnetism. If we identify θx,ν ←→ Aν(x),
where Aν is the vector potential — more details on this identification later on, in Secs. 9.8.2 and
9.8.3 — the transformation induced by ĜΛ is the discrete analogue of the usual gauge transfor-
mation:

Aν(x)→ Aν(x) + ∂νΛ . (9.100)

i
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As on the continuum, you can immediately verify that the (discrete) curl is left unchanged by the
gauge transformation:

ĜΛeiF̂
12
x∗ Ĝ−1

Λ = eiF̂
12
x∗ . (9.101)

We now introduce the squared momentum term in the Hamiltonian, to get a quantum model:

Ĥ =
JE
2

∑
x

2∑
ν=1

L̂2
x,ν + JB

∑
x∗

(
1− cos F̂ 12

x∗

)
. (9.102)

U(1) lattice gauge theory. The generalisation to a higher-dimensional case is quite clear. For
a hypercubic lattice in d dimensions, we have plaquettes xνν

′

∗ in the planes identified by eν and
eν′ , where it is enough to consider ν′ > ν. We write, taking JE = Jg2 and JB = J/g2:

Ĥ =
Jg2

2

∑
x

d∑
ν=1

L̂2
x,ν +

J

g2

d−1∑
ν=1

d∑
ν′>ν

∑
xνν′∗

(
1− cos F̂ νν

′

x∗

)
. (9.103)

where g2 is a dimensionless coupling constant. This form of the couplings will be clarified later
on. Here F̂ νν

′

x∗ — an antisymmetric tensor — denotes the discrete curl on the plaquette xνν
′

∗ :

F̂ νν
′

x∗ = ∆νθx,ν′ −∆ν′θx,ν . (9.104)

The gauge symmetry is implemented by
Ĝx = e−iΛx

∑d
ν=1(L̂x,ν−L̂x−eν,ν) = e−iΛx

∑d
ν=1 ∆̄ν L̂x,ν

ĜΛ =
∏
x
Ĝx = e−i

∑
x Λx

∑d
ν=1 ∆̄ν L̂x,ν = ei

∑
x
∑d
ν=1(∆νΛx)L̂x,ν

(9.105)

and reads:
eiθx,ν → ĜΛeiθx,ν Ĝ−1

Λ = ei(θx,ν+∆νΛx) . (9.106)

i

9.8.1. Path-integral for U(1) LGT

First of all, notice that we wrote our model as a quantum model in d-dimension. Once again, we
can write an imaginary time path-integral, to map this quantum model into a classical U(1) LGT in
d+ 1 dimensions: as usual, with very anisotropic couplings. I will be very brief, referring to Chap. 6
for most details, concentrating on the essential ingredients, which help understand the curious choice
of the couplings: JE = Jg2 as opposed to JB = J/g2.

The idea is to use a configuration basis for the Hilbert space, expressed in terms of the θ-variables
for which the plaquette terms are “diagonal” (we keep calling them Ẑ), while the L̂2 terms induce off-
diagonal couplings between the various “Trotter replicas”, and we denote them as X̂. Schematically,
Ĥ = X̂ + Ẑ, and we use Nt Trotter replicas, so that ∆τ = β/Nt, and ε = ∆τ/~. The usual lattice
points x =

∑d
ν=1 nνeν are now extended, with an extra vector et ≡ e0 which we associate to the

direction index “0”. The lattice points in the Trotter replica nt = 1, · · · , Nt are associated to x+ntet,
and have link variables eiθx+ntet,ν with ν = 1, · · · , d. We collectively denote by θnt all link variables
in the ntth-Trotter slice. Then the quantum partition function reads:

ZQ = lim
Nt→∞

∫
· · ·
∫

dθ1 · · · dθNt
(
〈θ1|e−

ε
2 Ẑe−εX̂e−

ε
2 Ẑ |θNt〉 · · · 〈θnt+1|e−

ε
2 Ẑe−εX̂e−

ε
2 Ẑ |θnt〉 · · ·

· · · 〈θ2|e−
ε
2 Ẑe−εX̂e−

ε
2 Ẑ |θ1〉

)
. (9.107)
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eiθx+ntet,ν

eiθx+(nt+1)et,ν

temporal gauge
=⇒

eiθx+ntet,ν

e−iθx+(nt+1)et,ν

eiθx+ntet+eν,0 ≡ 1e−iθx+ntet,0 ≡ 1

Figure 9.20.: Left: A single link in the direction eν at site x in the two neighboring Trotter replicas at nt
and nt + 1. Right: The plaquette F ν0 after having inserted link variables in the “time direction” complying
with the temperal gauge prescription.

The plaquette terms in the ordinary “spatial directions”, included in Ẑ, contribute diagonal factors
originating from:

e−
εJ
g2 (1−cos(F νν

′
))|θnt〉 ≡ e

− K
g2
s

(1−cos(F νν
′
))|θnt〉 where

K

g2
s

=
εJ

g2
. (9.108)

Let us now concentrate on the kinetic term propagator 〈θnt+1|e−εX̂ |θnt〉 which involves indepen-
dent links in the two Trotter replicas. The basic ingredient we need to evaluated, for each link, is
〈θ′`|e−

εJg2

2 L̂2
` |θ`〉. Here θ` is a shorthand for the link variable at ` in the Trotter slice nt, θx+ntet,ν → θ`,

and similary, for the neighboring Trotter replica link, θx+(nt+1)et,ν → θ′`. Let us define a shorthand
for the dimensionall coupling b = εJg2, which is supposed to be small. To calculate the propagator,
let us insert the eigenstates |n`〉 of L̂`, with 〈θ|n`〉 = 1√

2π
ein`θ, obtaining:

〈θ′`|e−
b
2 L̂

2
` |θ`〉 =

∑
n`∈Z

〈θ′`|e−
b
2 L̂

2
` |n`〉〈n`|θ`〉 =

1

2π

∑
n`∈Z

e−
b
2n

2
` ein`(θ

′
`−θ`)

≈ 1√
2πb

e−
1
b (1−cos(θ′`−θ`)) , (9.109)

where the last step follows from the discussion on the Villain’s periodic gaussian approximation. 9

To form ordinary plaquette terms involving the Trotter-replicas, we need, as in the Ising LGT case,
to introduce extra link variables on the links going into the imaginary time dimension, for which we
assume the temporal gauge, as indicated in the right part of Fig. 9.20. Denoting by ν = 0 the links in
the imaginary-time (Trotter) direction, we set e−iθx+ntet,0 ≡ 1, where et ≡ e0 is the lattice vector in
the time-dimension, and similarly eiθx+ntet+eν,0 ≡ 1. Then, the imaginary-time propagator generates
a coupling of the form:

〈θx+(nt+1)et,ν |e
− εJg

2

2 L̂2
x,ν |θx+ntet,ν〉 → e−

1
εJg2 (1−cos(F ν0))∣∣

xν0
∗
≡ e
− K
g2
τ

(1−cos(F ν0))∣∣
xν0
∗
, (9.111)

where we introduced the classical coupling K
g2
τ

= 1
εJg2 in the imaginary-time direction. To summarise,

we have: 
ZQ = lim

Nt→∞

∫
· · ·
∫

dθ1 · · · dθNt e
−S[θ1···θNt ]

S =

d−1∑
ν=0

d∑
ν′>ν

K

g2
ν

∑
xνν′∗

(
1− cos F̂ νν

′

x∗

)
.

(9.112)

9You should compare this calculation with the analogue one you would carry out in the case of variables on the real line,
where the result follows from a simple gaussian integral. Indeed, if p̂ = −i∂x denote the dimensionless momentum
operator, then:

〈x′|e−
b
2
p̂2
|x〉 =

∫ +∞

−∞

dk

2π
e−

b
2
k2
eik(x′−x) =

1
√

2πb
e−

1
2b

(x′−x)2 . (9.110)
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where the couplings are highly anisotropic, with g0 = gτ and gν=1···d = gs and: 10


1

εJg2
=

K

g2
τ

εJ

g2
=

K

g2
s

=⇒


1

g2
=

K

gτgs

εJ =
gτ
gs

. (9.113)

9.8.2. Connection with electromagnetism

Let us pursue explicitly the analogy between this U(1) lattice gauge theory and electromagnetism.
At cost of being dismissed as “inelegant”, I will here present a description of how to discretise the
Hamiltonian of a free electromagnetic field in three-dimension in SI units, with all ε0 and ~ explicit.

We start from the quantum Hamiltonian of the electromagnetic fields alone — in absence of charges
— in a volume V of the three-dimensional space, with periodic boundary conditions, for simplicity.
The Hamiltonian is:

Ĥem =
ε0

2

∫
V

dx
(
Ê

2
(x) + c2B̂

2
(x)
)

=
∑
k,s

~ωk

(
â†k,sâk,s +

1

2

)
, (9.114)

where the (transverse) electric and magnetic field operators read:

Ê(x) = i
∑
k,s

√
~ωk

2ε0V

(
εk,seik·xâk,s − ε

∗
k,se
−ik·xâ†k,s

)

B̂(x) = ∇× Â = i
∑
k,s

√
~

2ε0ωkV

(
k× εk,seik·xâk,s − k× ε∗k,se−ik·xâ

†
k,s

) . (9.115)

Here the εk,s denote the two transverse polarisation vectors of the quantum radiation field. With the
same ingredients, you write the transverse vector potential operator as: 11

Â(x) =
∑
k,s

√
~

2ε0ωkV

(
εk,seik·xâk,s + ε∗k,se

−ik·xâ†k,s

)
. (9.118)

The commutation properties of the fields can be written as:[
Êν(x), Âν′(x′)

]
V→∞

= i
~
ε0
δνν′δ(x− x′) , (9.119)

as you can easily verify from the canonical commutations [âk,s, â
†
k′,s′ ] = δk,k′δs,s′ .

10The dimensionless common factor K might be absorbed in gτ and gs, but we keep it there so that you can rescale
both couplings by a common factor, keeping their ratio fixed.

11Observe that the (free) Heisenberg evolution operator ÂH(x, t) is given by:

ÂH(x, t) =
∑
k,s

√
~

2ε0ωkV

(
εk,seik·x−iωktâk,s + ε∗k,se

−ik·x+iωktâ†k,s

)
(9.116)

so that the expression for Ê and B̂ follows from:

Ê = −
∂Â
∂t

and B̂ = ∇× Â . (9.117)
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Now take the U(1) lattice gauge theory, in d = 3, which we rewrite here:

Ĥ =
Jg2

2

∑
x

3∑
ν=1

L̂2
x,ν +

J

g2

∑
ν<ν′

∑
xνν′∗

(
1− cos F̂ νν

′

x∗

)

≈ Jg2

2

∑
x

3∑
ν=1

L̂2
x,ν +

J

2g2

∑
ν<ν′

∑
xνν′∗

(
F̂ νν

′

x∗

)2

. (9.120)

where in the second equation, we expanded the cosine up to the second order. Now consider the
following identification of variables:

eL̂x,ν = −ε0a
2Êx,ν

θx,ν =
ae

~
Âx,ν

=⇒
[
Êx,ν , Âx′,ν′

]
= i

~
ε0
δνν′

1

a3
δx,x′ , (9.121)

which shows that Eq. (9.93) gives the correct discretisation of the canonical commutation relationship
of Ê and Â in Eq. (9.119).

The first equation in Eq. (9.121) suggests, recalling that L̂x,ν has integer eigenvalues 0, ±1, ±2, · · · ,
that the discrete flux of the electric field across a square of area a2 is an integer multiple of e/ε0,
consistently with the Poisson’s equation on the continuum 1

ε0
ρ̂ = ∇ · Ê and Gauss’ law. The second

equation, which will be better understood in Sec. 9.8.3, suggests that:

F̂ νν
′

= ∆νθx,ν′ −∆ν′θx,ν =
ae

~

(
∆νÂx,ν′ −∆ν′Âx,ν

)
−→ a2e

~

(
∂νÂν′ − ∂ν′Âν

)
(9.122)

Hence the natural identification for the anti-symmetric field tensor is: 12

F̂ νν
′

x∗ = ∆νθx,ν′ −∆ν′θx,ν −→
a2e

~
B̂µ(xνν

′

∗ ) µ, ν, ν′ ciclic . (9.124)

Notice that, while the electric field and the vector potential stay on the links, the magnetic field
should be imagined associated, and orthogonal, to the centre of the plaquettes: B̂3 in the centre of
x12
∗ , etc. Notably, in d = 3 the anti-symmetric tensor F̂ νν

′

x∗ has exactly three components, which can
be identified with the three components of the magnetic field. Also, if you recall that φ0 = h/e is
the magnetic flux quantum, you realise that F̂ νν

′

x∗ = 2πφB/φ0, where φB = a2B̂µ is the magnetic flux
through the plaquette.

1

2 3

4

5

6 7

8

Figure 9.21: The basic cube of the 3d lattice with the three plaquettes
centers at x12

∗ (the xy plane), at x13
∗ (the xz plane), and at x23

∗ (the
yz plane), with big arrows denoting the magnetic fields. Notice the
closed loop arrows around the plaquettes, associated to the link vari-
ables eiθ` = ei

ea
~ Â` , which define the antisymmetric tensor F̂ ν,ν

′
with

the convention of Stokes’ theorem. This forces F̂ 31 = a2e
~ B̂2 = −F̂ 13,

as signalled by the red arrow.

12Explicitly, this means:

F̂ 12 =
a2e

~
B̂3 F̂ 23 =

a2e

~
B̂1 F̂ 31 =

a2e

~
B̂2 = −F̂ 13 . (9.123)
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Now take the electromagnetic field Hamiltonian, and discretise it into cubes of volume a3, with
Êx,ν on the links, and B̂µ orthogonal to the plaquette centers:

Ĥem → ε0a
3

2

∑
x

3∑
ν=1

Ê2
x,ν +

ε0c
2a3

2

∑
ν<ν′

∑
xνν′∗

B̂2
µ(xνν

′

∗ )

=
ε0a

3

2

( e

ε0a2

)2∑
x

3∑
ν=1

L̂2
x,ν +

ε0c
2a3

2

( ~
a2e

)2 ∑
ν<ν′

∑
xνν′∗

(F̂ νν
′

x∗ )2

=
e2

2ε0a

∑
x

3∑
ν=1

L̂2
x,ν +

ε0c
2~2

2e2a

∑
ν<ν′

∑
xνν′∗

(F̂ νν
′

x∗ )2 . (9.125)

The couplings in electromagnetism. This shows that the choice for the coupling g2 and
unit J to account for the electromagnetic Hamiltonian is:

g2 =
e2

ε0~c
= 4πα with α =

e2

4πε0~c
≈ 1

137
, (9.126)

where α is the fine-structure constant, and:

J =
~c
a

=⇒ Jg2 =
e2

ε0a
and

J

g2
=
ε0c

2~2

e2a
(9.127)

i

9.8.3. Interaction of em fields with charges

It is interesting to pursue the example of electromagnetism, to understand how the “gauge field” —
out of methaphore, the electromagnetic fields with their gauge freedom — interacts with the charge
of electrons. We start again from the continuum description, writing the full Hamiltonian in the
transverse gauge we have used so far, as:

Ĥ = Ĥmatter+em + Ĥem

Ĥmatter+em =
1

2m

∑
σ

∫
dx
(

(p̂ + eÂ)Ψ̂σ(x)
)†
·
(

(p̂ + eÂ)Ψ̂σ(x)
)

=
1

2m

∑
σ

∫
dx
(
p̂Ψ̂σ(x)

)†
·
(
p̂Ψ̂σ(x)

)
−
∫

dx Â(x) · Ĵ(x)

. (9.128)

Here the kinetic coupling involves the kinetic momentum inside the current operator Ĵ:

Ĵ(x) = − e

2m

∑
σ

(
Ψ̂†σ(x)

(
(p̂ + eÂ)Ψ̂σ(x)

)
+
(

(p̂ + eÂ)Ψ̂σ(x)
)†

Ψ̂σ(x)

)

= Ĵ0(x) +
e

m
Â(x) ρ̂(x)

, (9.129)

where Ĵ0 and ρ̂(x) are the electronic current and charge density operators:
Ĵ0(x) = − e

2m

∑
σ

(
Ψ̂†σ(x)

(
p̂Ψ̂σ(x)

)
+
(
p̂Ψ̂σ(x)

)†
Ψ̂σ(x)

)

ρ̂(x) = −e
∑
σ

Ψ̂†σ(x)Ψ̂σ(x)

. (9.130)
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The previous coupling term, written for simplicity in the non-relativistic approximation, involves the
substitution of p̂→ (p̂ + eÂ) in the kinetic momentum, and is known as minimal coupling. Its great
virtue is that of respecting gauge invariance. Indeed, by transforming together the vector potential Â
and the electron field operator Ψ̂σ:

Gauge transformation :


Â → Â(x) + ∇Λ(x)

Ψ̂σ → Φ̂σ(x) = e−i
e
~ Λ(x)Ψ̂σ(x)

(9.131)

you immediately verify, using p̂ = −i~∇, that:

(p̂ + eÂ)Ψ̂σ → (p̂ + e(Â + ∇Λ)) e−i
e
~ ΛΨ̂σ = e−i

e
~ Λ(p̂ + eÂ)Ψ̂σ . (9.132)

This immediately implies the gauge invariance of the kinetic coupling Ĥmatter+em, and of the current
operator Ĵ. The gauge invariance of the charge density ρ̂(x) is obvious.

The gauge transformation can be implemented by a unitary operator

ÛΛ = e−
i
~
∫

dx
(

Λ(x)ρ̂(x)+ε0∇Λ·Ê
)

= e−
i
~
∫

dx Λ(x)
(
ρ̂(x)−ε0∇·Ê

)
, (9.133)

where the second form follows from the divergence’s theorem (essentially, integration by parts), as-
suming the boundary term to vanish:

0 =

∫
dx ∇ · (ΛE) =

∫
dx ∇Λ ·E +

∫
dx Λ∇ ·E .

It is simple to show, using the canonical commutation relationship Eq. (9.119), that indeed: 13

ÛΛÂνÛ
−1
Λ = Âν + ∂νΛ . (9.134)

Moreover, one can easily argue that: 14

ÛΛΨ̂σ(x)Û−1
Λ = e−i

e
~ Λ(x)Ψ̂σ(x) . (9.135)

Let us now discretise the coupling term, assuming the usual tight-binding approximation. For
simplicity, we assume a lattice describing a crystal, with a single electronic (Wannier) orbital at each
lattice site. 15 We denote by ĉ†x,σ the operator that creates an electron with spin σ in the orbital
localised at lattice site x, and by wx(y) the corresponding Wannier’s orbitals. This amounts to
approximating the field operator as:

Ψ̂σ(y)→
∑
x
wx(y) ĉx,σ . (9.136)

In this rather drastically restricted basis set, we would express the Hamiltonian

Ĥmatter+em →
∑
σ

∑
x

d∑
ν=1

(
hx,νe

−i ea~ Âx,ν ĉ†x+eν ,σ ĉx,σ + H.c.
)
, (9.137)

13The ρ̂ term has no influence. As for the other term, consider the first form Û† = e
i
~
∫

dx ε0∇Λ·Ê = eÔ, and observe
that the CCR Eq. (9.119) implies (by induction):

[Âν(x), Ôn] = n(∂νΛ)Ôn−1 =⇒ [Âν(x), f(Ô)] = (∂νΛ)f ′(Ô) ,

for any f(◦) that can be Taylor expanded. Applying this to f(Ô) = eÔ, you immediately deduce the result
e−ÔÂνeÔ = Âν + ∂νΛ.

14Avoid trying the commutator route. Rather, verify that the equality is satisfied on any Fock state where the state
|x, σ〉 is occupied or not.

15The orbitals are assumed to be orthogonal, which makes the second quantisation formalism easier.
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where hx,ν represents the amplitude for the electron to hop, conserving its spin, from orbital wx to
some neighbour wx+eν on the lattice, the so-called hopping integral. 16 The phase factor containing
the vector potential is perfectly gauge-invariant. If you change the vector potential with the discrete
analogue of the gauge transformation:

aÂx,ν → aÂx,ν + ∆νΛx =⇒ e−i
ea
~ Âx,ν → e−i

ea
~ Âx,ν e−i

e
~ (Λx+eν−Λx) ,

then the hopping Hamiltonian is gauge invariant provided you perform a gauge transformation on the
electronic operator as well:

ĉx,σ → e−i
e
~ Λx ĉx,σ ,

equivalent to reabsorbing the gauge phase factor in the Wannier orbital wx.

Peierls’ substitution. This way of introducing the vector potential in a tight-binding Hamil-
tonian by modifying the hopping amplitudes with a phase factor is known in the literature as
Peierls’ substitution:

hx′,x → hA
x′,x ≡ hx′,x e−i

e
~
∫ x′
x A·dl , (9.139)

where the line-integral is calculated on a straight line connecting x to x′. a

aFor an elementary justification of the Peierls’ substitution, see for instance Feynman’s Lectures on Quantum
Mechanics, Chapter 21.

i

Very often, the Peiers’ substitution is used in a context where the magnetic fields are assumed to
be classical fields. This is the case, for instance, in the Hofstadter model, or Haldane’s model. Here,
we are considering models in which the gauge field has its dynamics, and responds to the motion of
the electrons: a much more difficult problem.

The Peierls’ minimal coupling phase factors shed light on the identification θx,ν = ae
~ Âx,ν discussed

in Eq. (9.121). As a consequence, the gauge transformations for θx,ν and that for Âx,ν are related by
a factor e

~ :

Λθx =
e

~
Λx . (9.140)

Also in the lattice case, the gauge transformation can be implemented by a unitary operator,
obtained by discretising the continuum ÛΛ:

ÛΛ → e−
i
~
∑

x

(
Λx(−e)n̂x+ε0a

2∑
ν(∆νΛx)Êx,ν

)
= e

ie
~
∑

x Λxn̂x e−
iε0
~ a2∑

x
∑
ν(∆νΛx)Êx,ν

= ei
∑

x Λθxn̂x e−
iε0
e a2∑

x
∑
ν(∆νΛθx)Êx,ν

= ei
∑

x Λθxn̂x ei
∑

x
∑
ν(∆νΛθx)L̂x,ν

= ei
∑

x Λθxn̂x ĜΛθ , (9.141)

where we used the identification of variables in Eq. (9.121). This shows the explicit connection between
the gauge transformation unitary operator and the gauge symmetry ĜΛθ discussed previously.

Notice that, in presence of charges, the extra term ei
∑

x Λθxn̂x appears, responsible for enforcing the
Gauss’ law: the electric field flux through a closed surface has to match the charges inside the surface.

16For reference, when a one-body potential v(y) is present:

hx,ν =

∫
dy w∗x+eν (y)

( p̂2

2m
+ v(y)

)
wx(y) . (9.138)

In the main text, we considered only kinetic energy, v ≡ 0, and the hopping integral is independent of the site x and
link direction.
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9.8.4. A few extra remarks

Elitzur’s theorem and Wilson loops First of all, Elitzur’s theorem can be generalised: gauge sym-
metry cannot be spontaneously broken. The Wilson loops also have a very obvious counterpart: for
the U(1) case, you define the Wilson loop operator as:

ŴC =
∏
`∈C

eiθ` = ei©
∑

C θ` . (9.142)

As before, the generic situation is that two different phases are present: a phase where the area law
applies and one in which the perimeter law holds. In turn, this is connected with the concept of
confinement: charges are bound by a linear potential in the confined phase.

g2

kBT/J

0 QCP

〈ŴC〉 = e−χPPC

Deconfined

〈ŴC〉 = e−χAAC

Confined

Figure 9.22: The generic phase
diagram of U(1) quantum LGT
for d > 2. For d = 2 the de-
confined phase is strictly only at
T = 0.

Connection between area law and confinement This connection is described by Kogut [33][Sec. VIB,
p. 693]. The basic idea is simple to understand in the strong coupling limit g2 → ∞. There, the
ground state has L̂`|n` = 0〉 = 0 on all links. The subsector where the ground states live is that in
which ĜΛ|ψ〉 = |ψ〉. The presence of two (static) extra charges of opposite sign forces a violation of
the ĜΛ|ψ〉 = |ψ〉 constraint, as implied by Gauss’ law. In the g2 → ∞, this requires a line where
L̂`|n` = 1〉 = |n` = 1〉 on all links between the two opposite charges, hence an extra energy:

V (x2,x1) =
Jg2

2
||x2 − x1||Manh . (9.143)

More generally, one can show a connection between the potential between the two charges and the area
law, see Kogut [33][Sec. VIB, Eqs. 6.37-6.42, p. 693]. When the perimeter law holds, the potential
between two opposite charges saturates to a finite value as ||x2 − x1|| → ∞. The approach to that
limit is exponential if the propagator of the gauge field is gapped, while a Coulomb’s law emerges for
a gapless propagator, as appropriate for QED in d = 3.

The special d = 2 case. One can prove that the classical U(1) LGT in d = 2 is always disordered
(confining), as equivalent to one-dimensional XY models. See Kogut [33][Sec. VIB, p. 693].

From U(1) to Zn. There are several special cases where the full U(1) symmetry is made discrete,
and the basic group is that of a “clock” with n states: the angles θ` on each link are restricted to
the n independent multiples of 2π

n on the unit circle. The Z2 case is equivalent to the Ising case we
described previously.

234



Part III.

Appendices

235





A. Problems and complements:
Introduction

A.1. The Galton’s board and the binomial distribution

p+p-

p+p+p- p-

p- p- p- p+p+p+

p- p- p- p-p+ p+ p+ p+

Figure A.1.: (Left) A Galton board at the Mathematikum exhibit in Giessen. (Right) A scheme of the game.
At the apex of each hexagon, where the red dots are shown, the ball can go to the right (with probability p+)
or to the left (with p−). The red path with an arrow (and the red letters p±) indicate a possible path (and a
choice of where to turn) for a ball entering the board from the top.

Problem A.1. Consider the Galton board in Fig. A.1. A ball inserted at the top has a probability
p+ = 1/2 of going to the right, at the top hexagon bifurcation, and p− = 1/2 of going to the left. We
assign a variable σ1 = +1 to the event “going to the right”, and σ1 = −1 to “going to the left”. The next
level has two hexagons. Whatever was the path followed in the first level, there is again a probability
p+ of “going to the right” (here we say that σ2 = +1), and p− of “going to the left” (σ2 = −1). And so
and so forth at each of the “levels” below, until level N , with the corresponding σN = ±1. Below the
last row of N hexagons, there are N + 1 final long tubes collecting the various balls that are inserted
in the board from the top. Let us number the tubes with an integer N+ = 0, · · · , N , where N+ = 0

denotes the one at the extreme left, and N+ = N that at the extreme right. A ball ends-up in the
N+ = 0 tube only if the path it follows is all made of left turns, i.e., σi = −1 for i = 1 · · ·N : this will
happen with probability pN− . Similarly, the ball ends-up in the N+ = N tube by making only right
turns, i.e., σi = +1 for i = 1 · · ·N , which happens with probability pN+ .

Show that the ball ends-up in the generic N+-tube with probability:

P (N+, N) =

(
N

N+

)
p
N+

+ p
N−N+

− .

Indeed, you recognise that the board has exactly the structure of a Pascal triangle.1 Correspondingly,
1To the Italian students this is better known as Triangolo di Tartaglia.
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the Newton’s binomial formula would tell us that this probability is correctly normalised :

1 = (p+ + p−)N =

N∑
N+=0

(
N

N+

)
p
N+

+ p
N−N+

− .

A moment’s reflection will convince you that you can think of the successive σi = ± at each of
the levels i = 1, · · · , N of the board, as a flip of a coin. The “path” (σ1, · · · , σN ) can be seen as the
outcome of an experiment consisting of a sequence of N coin-flips, and N+ is the number of times
you got Head (σi = +1). In a totally equivalent way, you can think of this problem has a Drunkard’s
walk in one dimension, σi = +1/ − 1 meaning a step to the right/left. There is no reason to restrict
ourselves to p+ = p− = 1/2, as you can always think of having a “bias” in the game, making p+ 6= p−.

Let us formalise the problem in terms of probability distributions. Call P1(σi) the probability
distribution of each single σi:

P1(σi) = p+δσi,+1 + p−δσi,−1 . (A.1)

A full “configuration” (a “microstate”) (σ1, σ2, · · · , σN ) has a probability distribution

P(σ1, · · · , σN ) = P1(σ1)P1(σ2) · · ·P1(σN ) , (A.2)

where this factorisation follows from the fact that the σi are independent and identically distributed
(i.e., the same P1 for all σi).

Since there is an extremely large number of microscopic configurations, 2N , one is usually interested
in the probability distribution of appropriate “macroscopic observables”. In the present problem,
macroscopic “observables” might be

N± =
1

2

N∑
i=1

(1± σi) and M =

N∑
i=1

σi = N+ − N− . (A.3)

It is simple to realise that the distributions for the observables are obtained from the full distributions
of configurations by imposing a “constraint” in the form of a Kröneker (of Dirac, in the continuum
case) “delta”. 2 In the present case, show that you can write: 3

PN+
(N+, N) =

∑
σ1,··· ,σN

P(σ1, · · · , σN ) δN+,
1
2

∑
i(1+σi)

=

(
N

N+

)
p
N+

+ p
N−N+

− . (A.4)

The reason why we insist in writing the binomial distribution in an apparently more complicated
way, in terms of a constrained sum, will be apparent in a short while, when we will discuss how to
deal with such “delta-functions” by Fourier/Laplace transforms.

A.2. From the binomial distribution to the Gaussian

Problem A.2. Consider the binomial coefficient:(
N

N+

)
=

N !

N+!(N −N+)!
= elogN !−logN+!−log(N−N+)! ≡ Ω(N+, N) .

2In general, the probability distribution of an observable A(x1, · · · , xN ) will be given by

PA(A) =

∫
dx1 · · · dxNP(x1, · · · , xN ) δ(A(x1, · · · , xN )−A) .

3We used here a slightly pedantic notation which distinguishes the “observable” N+ from the values N+ it can attain,
and indicates that the distribution depends also on N . Often, when no ambiguity arises, we will simplify the notation
to P (N+, N).
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Here we introduced the notation Ω(N+, N) to refer to the “number of available microstates” with a
given value of N+. It is known that a good approximation for the factorial is given by the Stirling
formula:

logN ! = N logN −N + log
√

2πN +O

(
1

N

)
. (A.5)

By defining N+ = Nn+, where n+ ∈ [0, 1] is the “fraction” (or density) of σi = +1 spins, show that:

log Ω(N+, N) ' N [−n+ log n+ − (1− n+) log(1− n+)]︸ ︷︷ ︸
S

− log
√

2πNn+(1− n+) . (A.6)

Here, we have stressed that there is an “extensive” part of the log Ω, proportional to N , and much
smaller corrections. 4 The extensive part of log Ω will be defined to be the statistical entropy, here
simply:

S(n+, N) = N [−n+ log n+ − (1− n+) log(1− n+)] . (A.7)

Using this, show that the full binomial distribution can be approximated as:

P (N+, N) ' 1√
2πNn+(1− n+)

eN [−n+ logn+−(1−n+) log(1−n+)]

︸ ︷︷ ︸
Ω(N+,N)

e−N [−n+ log p+−(1−n+) log p−]︸ ︷︷ ︸
p
N+
+ p

N−N+
−

. (A.8)

Analyse the maximum of this probability distribution, and argue that it comes from a competition

0
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0 0.25 0.5 0.75 1

NP(n+,N)

n+=N+/N

0

20

40

60

80

0 0.25 0.5 0.75 1

NP(n+,N)

n+=N+/N

Figure A.2.: Plot of NP (n+, N) versus n+ = N+/N for N = 102, 103, 104. Left: p+ = p− = 1
2
; Right:

p+ = 0.6.

between the entropy contribution, which would favour n+ = 1/2, and an “energy-related” term (more
about this later on) which depends on the possible bias for p+. To find the maximum, simply calculate
the derivative with respect to n+ of the quantity appearing in the exponential, and show that:

nmax
+ = p+ , (A.9)

which is quite simple to understand: the most probable number of occurrences of +1 spins is Np+.
Calculating the second derivative, one can actually provide an expansion around the maximum. Show
that this leads to the following Gaussian form:

P (N+, N) ' 1√
2πNp+(1− p+)

e
− (n+−p+)2

2σ2
N , (A.10)

4The term − log
√

2πNn+(1− n+) plays a role in the normalisation of the distribution, but is not important in
determining neither the peak nor the width of the distribution.
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where the width of the Gaussian is given by 5

σ2
N =

p+(1− p+)

N
.

Do some plots and reproduce the results shown in Fig. A.2.

This result — originally derived for the binomial distribution, I believe, by de Moivre — represents
an instance of a very important and general law of statistics, known as the strong form of the law of
large numbers.

If you think that a relative error scaling like 1/
√
N is not that impressive, think a bit about what

happens when N = 1024. By making a coin flip experiments with that value of N you would determine
that the average number of Tails is

n+ ' 0.5±O(10−12) ,

a rather fantastic precision, don’t you agree? 6 Statistical mechanics lives on such large numbers.

A.3. Fourier and the strong form of the law of large numbers

Problem A.3. Let us see how the strong form of the law of large numbers emerges in the limit
of N → ∞. The calculation we are going to perform uses Fourier transforms, but it is also very
instructive to rederive similar things by using Laplace transforms, as shown below. Consider, again
in the binomial case, the distribution for the magnetisation M =

∑
i σi, which we can write as:

PM(M,N) =
∑

σ1,··· ,σN

P1(σ1) · · ·P1(σN ) δM,
∑
i σi

. (A.11)

Let us generalise this expression a little bit, and imagine that P1(xi) is an arbitrary probability
distribution for the single variable xi, which could be a continuous variable (the discrete case is easily
recovered from the continuous one). Let us call X =

∑
i xi the observable related to the sum of the

independently distributed measurements of the variables xi. We can write its distribution as:

PX(X,N) =

∫ +∞

−∞
dx1 · · · dxN P1(x1) · · ·P1(xN ) δ(X −

∑
i

xi) , (A.12)

where the δ(·) denotes the Dirac’s delta. To cope with the Dirac’s delta, take the Fourier transform
of the distribution, and show that:

P̂X(k,N) =

∫ +∞

−∞
dXe−ikXPX(X,N)

=

[∫ +∞

−∞
dx1P1(x1) e−ikx1

]N
=
[
P̂1(k)

]N
. (A.13)

5Note that, as it is, this distribution is approximately normalised as

N∑
N+=0

P (N+, N) ' 1 .

To make it approximately normalised in terms of the continuous variable n+, and with integrals instead of discrete
sums, you need to multiply it by N , writing:

P̃ (n+, N) ' NP (Nn+, N) '
1√

2πσ2
N

e
−

(n+−p+)2

2σ2
N .

6Atomic clocks have precisions ranging from 10−10 to 10−14.
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Notice how simple is the Fourier transform of the distribution for the sum of the variables: due to
the factorisation of the probabilities, and taking advantage of the Dirac’s delta function, you simply
get the Fourier transform of the single-variable distribution P1(x1), to the power N . If you want to
recover the original distribution, you simply have to Fourier transform back:

PX(X,N) =

∫ +∞

−∞

dk

2π
eikX

[
P̂1(k)

]N
=

∫ +∞

−∞

dk

2π
eN [log P̂1(k)+ikx] , (A.14)

where we have introduced the rescaled variable x = X/N , related to the average of the individual
measurements (

∑
i xi)/N , in order to single-out a common (and large) factor N in the exponential.

Show that:
∂nP̂1

∂kn

∣∣∣∣∣
k=0

= (−i)n
∫ +∞

−∞
dx xn P1(x) = (−i)n〈xn〉 .

which justify the name of moment generating function for P̂1(k).

Even more remarkable is the action of log P̂1(k), which is known to generate the so-called cumulants
of the distribution (do a search on the web for the linked cluster theorem). Show that ∂k log P̂1(0) =

−i〈x〉, while the second and third derivatives indeed give the variance σ2 and the skewness γ3 of the
distribution P1(x):

∂2 log P̂1

∂k2

∣∣∣∣∣
k=0

= (−i)2[〈x2〉 − 〈x〉2] = −σ2

∂3 log P̂1

∂k3

∣∣∣∣∣
k=0

= i[〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3] = iγ3 . (A.15)

Expand now the log P̂1(k) around k = 0, and change variable to q = kσ
√
N to show that cumulants

higher than the second become irrelevant for N →∞, and conclude that:

PX(Nx,N) ' 1√
2πNσ2

e
− (x−〈x〉)2

2σ2
N , (A.16)

i.e., once again a Gaussian of width σN = σ√
N

decreasing as 1/
√
N . 7

A.4. The Energy comes into the game

Problem A.4. A simple rewriting of the ingredients of our binomial distribution shows that indeed
the probabilities p± are related to the “energy” of a configuration, while the “entropy” takes care of
the binomial coefficient. Let us see why. Since p+ and p− are such that p+ + p− = 1, show that you
can always parameterise them by

p± =
e±βh

Z1
with Z1 =

∑
σ=±

e−βhσ .

Next, show that you can rewrite:

P(σ1, · · · , σN ) = p
N+

+ p
N−
− =

e−βH(σ1,··· ,σN )

Z
, (A.17)

7Recall that, once again, as a function of the rescaled variable x we would require the normalisation 1 =

N
∫

dxPX(Nx,N). Hence the properly normalised distribution, as a function of x, would be:

P̂X(x,N) = NPX(Nx,N) =
1√

2πσ2
N

e
− (x−〈x〉)2

2σ2
N .
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where

H(σ1, · · · , σN ) = −h
N∑
i=1

σi = −hM

Z = ZN1 =
∑

σ1,··· ,σN

e−βH(σ1,··· ,σN ) . (A.18)

We could go on and reformulate the whole problem of the Galton’s board and the binomial distribution
in terms of non-interacting Ising spins in a magnetic field.

A.5. Laplace and the saddle-point method

Problem A.5. Here we will learn a third way of approaching the calculation of the binomial distri-
bution P (N+, N), which illustrates the use of the Laplace transform and gives a rather clean example
of the use of the saddle-point technique. Many of the steps we will do are almost identical to those
taken in the derivation of the law of large numbers, but the use of Laplace transform is rather ideal
for later purposes, as well as the discussion of the saddle-point method. Start again from the binomial
distribution function

P (N+, N) =
∑

σ1,··· ,σN

δN+,
1
2

∑
i(1+σi) P1(σ1) · · ·P1(σN ) , (A.19)

and perform a discrete Laplace transform 8

P̂ (s,N)
def
=

∞∑
N+=0

e−sN+ P (N+, N) =

=
∑

σ1,··· ,σN

N∏
i=1

[
P1(σi) e−s

1+σi
2

]
=

N∏
i=1

[ ∑
σi=±1

P1(σi) e−s
1+σi

2

]
=

=

N∏
i=1

[
p+e−s + p−

]
= eN log(p+e−s+p−) . (A.20)

Here s is the Laplace variable, complex in general: Laplace transforms are usually very generously
analytic functions in the complex half-plane to the right of any singularity. In the discrete case we
have here, there is has a peculiarity. Indeed, you can verify that

P̂ (s,N) = P̂ (s+ 2πi,N) ,

hence we can restrict s to the complex strip with Ims ∈ [−π, π] and even identify the two sides of
the strip, i.e., we have a “cylinder” rather than a plane. Now we should return back by taking an
inverse Laplace transform. Here, at variance with the Fourier transform which is very symmetric, the
inverse Laplace transform requires an integral in the complex plane. In the general case of continuous
variables this is known as Mellin’s or Bromwich integral (see for instance Wikipedia), and we will
encounter it explicitly when discussing the ideal gas case. Here we must use its discrete variant, which

8The Krönecker deltas would require that I calculate the transform as a sum, rather than an integral. Alternatively,
you can transform all the discrete variables, σi and N+, into continuous variables, all

∑
σi

into integrals, and all
Krönecker deltas, including those in the P1(σi), into Dirac deltas.
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has the form: 9

P (N+, N) =

∫ c+iπ

c−iπ

ds

2πi
esN+ P̂ (s,N)

=

∫ c+iπ

c−iπ

ds

2πi
eN

g(s)︷ ︸︸ ︷
[sn+ + log(p+e−s + p−)] , (A.22)

where, as usual, we have introduced the rescaled variable n+ = N+/N ∈ [0, 1]. The contour of
integration deserves some comments. As usual with complex integral (recall Cauchy theorem), the
shape of the contour can be very flexibly changed, as long as you do not cross any singularity. Here
the contour should start at a point c− iπ and end at c+ iπ, where c is such that you stay to the right
of any singularity, in the strip-region where the Laplace transform is analytic. For arbitrary contours,
and large N , the integrand oscillates in a tremendous way. Consider the function g(s) multiplying N
in the exponential:

g(s) = sn+ + log(p+e−s + p−) . (A.23)

Show that it has a horizontal branch-cut at (x,±iπ) with x ∈ (−∞, sc) where

sc = log
p+

1− p+
,

is the end-point of the branch cut. You better never cross it with your contour. But the interesting
feature is that g(s) has also a stationary point where g′(s0) = 0. Since

g′(s) = n+ −
p+e−s

p+e−s + p−
,

a simple calculation shows that the stationary point is located at: 10

es0 =
1− n+

n+

p+

1− p+
=⇒ s0 = log

1− n+

n+

p+

1− p+
= sc + log

1− n+

n+
. (A.24)

An important property is that this stationary point cannot be a maximum (or a minimum) of g(s),
because analytic functions cannot have maxima or minima. Hence, the stationary point must be a

9The discrete Laplace (DL) transform is a close relative of the Z-transform (see Wikipedia) so defined

fZ(z)
def
=

∞∑
n=0

f(n)z−n

Indeed, by setting z = es you get:

fZ(es) =

∞∑
n=0

e−ns f(n)
def
= f̂DL(s) ,

and quite generally you have that f̂DL(s + 2πi) = f̂DL(s). Hence you can restrict s to the “cylinder strip” with
Ims ∈ [−π, π]. The inverse of the Z-transform follows quite easily from the Cauchy residue theorem:

f(n) =

∮
C

dz

2πi
fZ(z) zn−1 ,

where C is a circle enclosing the origin and staying in the region of convergence. Indeed, the factor zn−1 is such that
f(n) appears as a residue, in the form f(n)

z
. The “shape” of the circle C can be deformed at will, within the region

of convergence. The transformation s = log(z), which results in ds = dz
z
, is such that you can write the inverse

Laplace formula as:

f(n) =

∫ c+iπ

c−iπ

ds

2πi
esnf̂DL(s) , (A.21)

where c is related to the real part of the logarithm of the radius of the “circle” C. Again, there is a large freedom in
the choice of c and in the shape of the contour connecting the two points c− iπ and c+ iπ on the “cylinder”.

10Notice that the stationary point is to the right of the branch-cut end-point for n+ < 1/2, and to the left of it for
n+ > 1/2
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saddle-point. 11 Consider now the behaviour of g(s) close to its stationary point at s0. Show that:

g′′(s0) = n+(1− n+) ,

and, hence, expand

g(s) = g(s0) +
n+(1− n+)

2
(s− s0)2 + · · · ,

from which you appreciate that the saddle point is a minimum when approached along the Re s-
direction, but a maximum along the Im s-direction. Notice also the remarkable fact that

g(s0) = [−n+ log n+ − (1− n+) log(1− n+)]︸ ︷︷ ︸
S/N

+[n+ log p+ + (1− n+) log p−] , (A.26)

which should ring a bell, if you go back and look at Eq. (A.8). Now split the contour γ into three
pieces: the all-important central part γ0 going straight-up across the saddle-point, parameterized by
s(t) = s0 + it with t ∈ [−t0, t0] (take t0 < π so that you do not hit the branch cut), plus two other
L-shaped little pieces γe and γc joining γ0 to the points c− i∞ (below) and c+ i∞ (above). 12 Show
that the part going straight-up through the stationary point contributes:∫

γ0

ds

2πi
eNg(s) =

∫ t0

−t0

dt

2π
eNg(s0)−N n+(1−n+)

2 t2+O(t3)

=
eNg(s0)

√
2πN

∫ √Nt0
−
√
Nt0

dy√
2π

e−
n+(1−n+)y2

2 +O(1/
√
N) , (A.27)

where we have changed variable to y =
√
Nt. In the limit of large N , when the limits of integration

are extended to ±∞ and the Gaussian integral explicitly performed, show that you get:∫
γ0

ds

2πi
eNg(s) ' eNg(s0)√

2πNn+(1− n+)

(A.8)
≡ P (N+, N) (A.28)

So, our beloved Stirling-generated expression for P (N+, N) in Eq. (A.8) comes straight from the
saddle-point integral! The two other contributions to the integral,

∫
γc+γe

eNg(s), with their wildly
oscillating phase for N →∞ must give very small corrections to the inverse Laplace transform!

11A simple way to appreciate this is that the very fact that the derivative g′(s) exists, and is independent of the
direction, implies that if you write g(s) = u(x, y) + iv(x, y), then u and v verify the Cauchy-Riemann conditions{

∂u
∂x

= + ∂v
∂y

∂v
∂x

= − ∂u
∂y

. (A.25)

These conditions, in turn, imply that both u(x, y) and v(x, y) have zero Laplacian: ∇2u = ∇2v = 0.
12If n+ < 1/2 you have that s0 > sc hence you do not cross the branch cut even if you set t0 = π. In this case the

extra contour pieces γe and γc are not necessary, as you can set c = s0.
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B. Problems and complements:
Thermodynamics

B.1. Convexity and concavity: a few ideal gas calculations.

It is appropriate to collect here a few basic facts about convexity, which are somewhat useful. First,
the general definition. A real function F (x) is convex (^-convex) if, for any two points x1 and x2 in
its domain,1 and any λ ∈ [0, 1], we have that:

F (λx2 + (1− λ)x1︸ ︷︷ ︸
x1+λ(x2−x1)

) ≤ λF (x2) + (1− λ)F (x1)︸ ︷︷ ︸
F (x1)+λ(F (x2)−F (x1)

. (B.1)

The function is strictly convex if the equality occurs only at the two end-points. These definitions
apply both in the one-dimension case, as well as for x ∈ Rn, as long as the domain in which F is
defined is itself a convex set. In the one-dimensional case, applying Taylor’s theorem one can show
that convexity is equivalent, 2 if the function is continuously differentiable, to F ′′(x) ≥ 0. Consider
now the n-dimensional case. Let gx1,x2

(λ) be the one-dimensional restriction of F to the segment
joining any two points x1 and x2:

g(λ) = F (λx2 + (1− λ)x1) ,

where we have shortened the notation to g(λ). Quite clearly g(λ) is convex in [0, 1] because F is
convex:

g(λ) ≤ λg(1) + (1− λ)g(0) .

Hence it must be true that g′′(λ) ≥ 0. By calculating the second-derivative explicitly we get:

g′′(λ) =
∑
ij

[
∂2F (y)

∂yi∂yj

]
y=λx2+(1−λ)x1

(x2 − x1)i (x2 − x1)j ≥ 0 .

This means that the Hessian of F (x) must be (semi)-positive definite. Notice that a strictly convex
function has F ′′(x) > 0 but the converse is not true: for instance, F (x) = x4 is strictly convex, but
F ′′(0) = 0.

A very important property of (continuously differentiable) convex functions is that they “stay above”
their tangent at every point. To show this, simply expand the definition for small λ, obtaining

F (x1) + λF ′(x1) · (x2 − x1) +O(λ2) ≤ F (x1) + λ(F (x2)− F (x1)) .

Hence, we get that
F ′(x1) · (x2 − x1) +O(λ) ≤ F (x2)− F (x1) .

But since this is true for arbitrary small λ, then we conclude that:

F (x2) ≥ F (x1) + F ′(x1) · (x2 − x1) . (B.2)
1Notice that the domain itself must be a convex set, i.e., it must contain λx2 + (1− λ)x1
2In the proof one uses Taylor’s theorem on the remainder.
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Notice that, for fixed x1, the right-hand side expresses the tangent (more generally, the tangent plane)
at x1. Notice also that if F ′(x1) = 0, then F (x2) ≥ F (x1), i.e., for a convex function, a stationary
point is automatically a minimum.

Finally, it is worth mentioning that convex functions satisfy a useful inequality, known as Jensen’s
inequality, which “generalises” the defining property of convexity: given N points xi and “probability
weights” pi ≥ 0 with

∑
i pi = 1, then

F (
∑
i

pixi) ≤
∑
i

piF (xi) . (B.3)

The proof is quite simple: try it. Finally, a function F (x) is concave (or _-convex) if the function
−F (x) is convex. For concave functions the various inequalities have a reversed direction.

Problem B.1. The ideal gas entropy and energy.

1) Calculate the Hessian matrix of Sideal(E, V,N), in particular the 2 × 2 Hessian with respect to
(E, V ), and interpret the various derivatives in terms of physical quantities.

2) Calculate the Hessian matrix of Eideal(S, V,N), in particular the 2 × 2 Hessian with respect to
(S, V ), and interpret the various derivatives.

Problem B.2. Equilibrium in ideal gases.
Consider two ideal gases making up the two subsystems 1 and 2 in the previous thermal equilibrium
problem, and take the entropy of each subsystem to be given by the ideal gas entropy in Eq. (1.66)
which I rewrite below with the standard factor of kB in front:

S(E, V,N) = NkB log
eV
N

(
4πmeE
3h2N

) 3
2

. (B.4)

Do a 3D plot the total entropy as a function of the two variables E1 and E2 keeping all the other
variabels fixed:

Stot(E1, E2) = S1(E1, V1, N1) + S2(E2, V2, N2) .

Consider now the constraint E1 + E2 = E and draw the restriction of Stot to such a line in the
(E1, E2)-plane. Find the maximum. Verify that it is exactly what the Lagrange method tells us.
Consider some explicit numerical cases, to practice a bit: for instance, you could take Argon particles
(Ar mass is 40 times the proton mass) to constitute the two ideal gases, 1 mole in system 1 and, say,
2 moles in system 2, while h in the previous entropy formula is taken to be Planck’s constant (this is
not really relevant for most of the exercise, but useful if you want to calculate actual total entropies).
We will later on derive the ideal gas equations of state from the entropy function, but for the purpose
of this exercise, I assume you already now everything about ideal gases. Argon boils at 87.3 K, so
let us stay away from such “low temperatures”, and assume that initially system 1 has a temperature
of T in

1 = T0 = 273.15 K, while system 2 is at T in
2 = 373.15 K. (You can choose whatever values you

want, as long as you stay, realistically, much above 87.3 K: this is just to fix some numbers.) What
is the total energy E of the system (in Joules)? Take the (fixed) volume of the contaniner 1 to be
V1 = V0 = 22.717 dm3: if you calculate the corresponding pressure using the ideal gas equation of
state pV = NkBT you should find that system 1 has an initial pressure p0 = 105 Pa (slightly below
atomsferic pressure). For simplicity, assume that V2 = V1: what is the initial pressure of system 2?
Now let thermal equilibrium to be established: calculate the final common temperature T fin of the
two gases, the final total energy of each of the two parts, as well as their (unequal) final pressures.
Calculate the initial and final entropy of the system.
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Problem B.3. In the same setting of Problem B.2, assume that the system has reached thermal
equilibrium, and now allow the piston separating the two containers to move. What are the final
pressures and volumes of the two containers? Did the final temperature change? What is the final
total entropy at equilibrium?

B.2. The van der Waals equation of state

Recall that, as said mentioned in the lecture notes, one can invent an entropy function of the form:

SvdW(E, V,N) = NkB log
[
Ac(v − b)

(
ε+

a

v

)c]
(B.5)

whose equations of state lead to the van der Waals isotherms:

p =
kBT

v − b
− a

v2
. (B.6)

Here, as usual, v = V/N and ε = E/N , while Ac is a constant with dimensions [Length]−3[Energy]−c.
For a monoatomic gas you can take c = 3

2 and an explicit form of A 3
2
can be obtained in terms of the

mass m of the atoms and Planck’s constant h form the ideal gas limit:

A 3
2

= e
5
2

(
4πm

3h2

) 3
2

.

b and a are the van der Waals constants, which have been measured by fitting experimental data on
many gases (see Wikipedia page). The values usually reported are referred to a mole of gas, N = NA,
and are more precisely given by am and bm in:

p =
RT

V − bm
− am
V 2

,

where V = Nav is the molar volume, R = kBNA the ideal gas constant, am = N2
Aa and bm = NAb. I

report in the following table the molar van der Waals constants for He, Ne, and Ar.

Gas am (in Pa m6) bm (in m3)
He 0.00346 23.7 ·10−6

Ne 0.0215 17.1 ·10−6

Ar 0.1373 32.0 ·10−6

In the first problem below, more traditional, you should start practicing with the form of the
isotherms predicted by Eq. (B.6). In particular, you should find that there is a temperature, the
critical point temperature Tc, in which the high-temperature ever-decreasing isotherms first develops
an inflection point:

∂p

∂v

∣∣∣∣
Tc

= 0
∂2p

∂v2

∣∣∣∣
Tc

= 0 ,

which physically signals that the isothermal compressibility κT diverges.

Problem B.4. The van der Waals isotherms.

1) Solve the equations for the inflection point of the critical isotherm to find Tc, pc, and vc in terms
of a and b.
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2) Make a small table showing the numerical values of the critical parameters for He, Ne, Ar. Add
to the table, for later use, the numerical value (in eV) of the energy-scale parameter ε0 = pcvc.

3) Switch to dimensionless variables p̃ = p/pc, ṽ = v/vc and T̃ = T/Tc and re-express the vdW
isotherms in terms of the dimensionless variables.

Answer: You should get: p̃= 8T̃
3ṽ−1−

3
ṽ2 .

4) Determine the lowest temperature T̃low at which the isotherms predict a non-negative pressure.
For T̃ < T̃low the van der Walls isotherms make non sense at all. Plot a few isotherms in the
range T̃ ∈ [T̃low, 1], including 0.9 and 0.95.

We want now to understand how to make sense of the isotherms below Tc, which show unphysical
regions of negative compressibility. The procedure outlined below leads to the well-known Maxwell
construction, in a way that clearly shows the role of the convex envelope of tangents in the relevant
thermodynamic potential. For that purpose, we will make use of the Ansatz for S(E, V,N) which we
have presented above (see Callen’s book for an explanation of how to get to that form). We should
make clear that this form is far from perfect (we will see that it leads to several inconsistencies, in
particular the absence of latent heat) but still useful to practice with. To start with, let us rewrite
the expression for SvdW(E, V,N) in terms of the entropy per particle s = S/N :

s(ε, v) = kB log
[
Ac(v − b)

(
ε+

a

v

)c]
.

Obviously, we always assume that v > b. Next, proceed us suggested below.

Problem B.5. The van der Waals potentials.

1) Invert the expression for s(ε, v) to express ε(s, v). Calculate the two equations of state

T (s, v) =
∂ε

∂s
p(s, v) = −∂ε

∂v
,

and re-derive the van der Walls isotherms. Notice that T as a function of s shows no sign of a
phase transition (latent heat).

2) Invert T (s, v) to find s(T, v) and then the free-energy per particle f(T, v) = F/N :

f(T, v) = ε(s(T, v), v)− Ts(T, v) .

Answer: You should get: f=ckBT− av−ckBT log
(
ckBT [Ac(v−b)]

1
c

)
.

3) Express f(T, v) in terms of dimensionless variables T̃ = T/Tc and ṽ = v/vc, with the overall
energy-scale ε0 = pcvc, and plot the result versus ṽ for the same temperatures T̃ ∈ [T̃low, 1] used
previously. Notice that f(T, v) is not convex in v (as it should), while it is concave in T .

Answer: A convenient form is: f=
ε0
3

{
8cT̃

(
1−log

8cε0
3 [Acb]

1
c

)
− 9
ṽ−8T̃ log T̃ (3ṽ−1)

}
.

4) To make f(T, v) convex in v, we should construct the convex envelops of the tangents to the curve.
This implies drawing a common tangent to f(T, v) through two appropriate points v1(T ) and
v2(T ). Show that the two points v1 and v2 > v1 should satisfy the two equations:

−p =
∂f

∂v

∣∣∣∣
v1

=
∂f

∂v

∣∣∣∣
v2

and f(T, v1)− f(T, v2) = p(v2 − v1) .

Justify geometrically the reason why these conditions univocally define the common tangent
which makes the function convex.

248



(Lecture Notes by G.E. Santoro) B.3 The Clausius-Clapeyron equation

5) Consider the function Φ(T, p, v) = f(T, v) + pv and show that the conditions for the common
tangent to f(T, v) can be conveniently rewritten as:

∂Φ

∂v

∣∣∣∣
v1

=
∂Φ

∂v

∣∣∣∣
v2

= 0 and Φ(T, p, v1) = Φ(T, p, v2) . (B.7)

In other words, v1(T, p) and v2(T, p) are two minima of the function Φ(T, p, v) for fixed T and
p, and the correct values of v1 and v2 are obtained for the unique value of p(T ) for which the
corresponding minimal values of Φ coincide.

6) The function Φ(T, p, v) = f(T, v) + pv can be regarded as a kind of generalized Gibbs potential,
with a typical double-well structure when you plot it versus v: the actual Gibbs potential per-
perticle is µlow(T, p) = Φ(T, p, vlow(T, p)) corresponding to the absolute minimum of Φ(T, p, v).
One could even think of the other minimum of Φ as the Gibbs potential of the metastable phase
µhigh(T, p) = Φ(T, p, vhigh(T, p)). If we denote by µ1(2)(T, p) = Φ(T, p, v1(2)(T, p) the chemical
potentials of the two “phases”, we can say that the transition point p(T ) is such that:

µ1(T, p) = µ2(T, p) . (B.8)

This uniquely defines the phase-transition line p(T ) in the (T, p) plane, a line terminating at the
critical point (Tc, pc). Determine numerically the phase-transition line p(T ). Convince yourself
that the isotherms of the resulting convex f(T, v) show now a plateau region where p = p(T ) is
independent of v in the whole interval [v1(T, p(T )), v2(T, p(T ))].

7) Draw the vdW isotherm for T̃ = 0.95 together with the thermodynamically stable isotherm con-
structed as indicated above, and show that the construction indeed guarantees that the stable
isotherm determines two regions of equal area in the unstable isotherm.

One final comment before we finish: unfortunately our Ansatz for SvdW has lead to an entropy
which shows no latent heat across the p(T ) line. This is an inconsistency of the Ansatz.

B.3. The Clausius-Clapeyron equation

The phase diagram of a substance can be quite complex. Fig.B.1 shows a sketch of the equation of
state of a substance showing solid, liquid and vapour phases, with projections of the relevant lines on
the (T, p), (p, v) and (T, v) planes. Fig. B.2 below shows more realistic (p, T ) phase diagrams for CO2

Figure B.1.: Sketch of the equation of state f(T, v, p) = 0 of a substance showing solid, liquid and vapour
phases. Figures taken from Arovas.

and water. A remarkable feature that you should notice is that the slope of the p(T ) transition line
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Figure B.2.: Phase diagrams in the (p, T ) plane for CO2 and water (figures taken from the web).

for the liquid-gas transition is similar in both cases, while the corresponding line for the solid-liquid
transition is different. Fig. B.3 below makes the point more clear.

Figure B.3.: Phase diagrams in the (p, T ) plane for CO2 and water, showing in more detail the different
slope of the p(T ) line for the solid-liquid transition (figure taken from the web).

Now question is what determines the details of the slope of the p(T ) transition line. We will see that
the answer to that question involves the concept that at the transition line, the chemical potentials
of the two phases coincide, µ1(T, p) = µ2(T, p). Consider now the sketch of p(T ) in Fig.B.4, with the

Figure B.4.: A sketch of the p(T ) line (figure taken from Callen).

two points A−B on the coexistence line belonging to phase “1”, while A′ −B′ are the corresponding
points at the same p and T , but for phase “2”. We distinguish those points because, while the intensive
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parameters are the same, both the entropy s and the volume v are discontinuous across the transition
line, indicate them by si(TA(B), pA(B)) and vi(TA(B), pA(B)) with i = 1, 2. Let ∆p = pB − pA and
∆T = TB − TA, which we assume to be very small.

Problem B.6. Show that the slope of the coexistence line p(T ) is given by:

dp

dT
= lim

∆T→0

∆p

∆T
=
s2(T, p(T ))− s1(T, p(T ))

v2(T, p(T ))− v1(T, p(T ))
=

∆s

∆v
=

1

T

∆Q

∆v
, (B.9)

where ∆Q is the latent heat at point (T, p(T )), and ∆v the corresponding discontinuity in the molar
volume.

B.4. Manipulating partial derivatives in thermodynamics

The algebraic manipulations involving partial derivatives are particularly nasty in thermodynamics,
essentially because all variables can be promoted to become functions, and the resulting transformation
of derivatives can be non-trivial. These manipulations are greatly simplified by using the following
results on Jacobeans. Let fi(x) with i = 1 · · ·n be functions of the n variables x = x1 · · ·xn. We
denote the following Jacobean determinant as:

∂(f1, f2, · · · , fn)

∂(x1, x2, · · · , xn)
= det


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
... · · ·

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 . (B.10)

We assume that such a determinant is different from zero, which guarantees a non-singular nature of
the mapping x→ f(x). The Jacobean determinant has the following three basic properties:

∂(f1, f2, · · · , fn)

∂(x1, x2, · · · , xn)
=
∂(f1, f2, · · · , fn)

∂(y1, y2, · · · , yn)

∂(y1, y2, · · · , yn)

∂(x1, x2, · · · , xn)
(J1)

∂(f1, f2, · · · , fn)

∂(x1, x2, · · · , xn)
=

(
∂(x1, x2, · · · , xn)

∂(f1, f2, · · · , fn)

)−1

(J2)

∂(f1, f2, f3, · · · , fn)

∂(x1, x2, x3, · · · , xn)
= − ∂(f2, f1, f3, · · · , fn)

∂(x1, x2, x3, · · · , xn)
(J3)

(B.11)

J1 follows from the chain rule of calculus and from the fact that the determinant of a product of
two matrices is the product of their determinants. J2 follows from the inverse function theorem. J3,
finally, follows from the alternating nature of the determinant, and can be generalised to an arbitrary
permutation of the fi, or of the xi. The properties that make this concept particularly useful in the
calculations are the following two (convince yourself of them) :(

∂f1

∂x1

)
x2···xn

=
∂(f1, x2, · · · , xn)

∂(x1, x2, · · · , xn)
(P1)

∂(f1, f2)

∂(x1, x2)
=
∂(f1, f2, x3, · · · , xn)

∂(x1, x2, x3, · · · , xn)
(P2)

(B.12)

P1 allows to transform a single partial derivative into a Jacobean, so as to be able to apply J1-J3.
P2, similarly, allows to add other variables to a smaller Jacobean, to be used in the calculations.

Let us apply these mathematical results to thermodynamics. The first simple application is the
relationship between inverse functions:(

∂f1

∂x1

)
x2···xn

P1
=

∂(f1, x2, · · · , xn)

∂(x1, x2, · · · , xn)

J2
=

(
∂(x1, x2, · · · , xn)

∂(f1, x2, · · · , xn)

)−1
P1
=

(
∂x1

∂f1

)−1

x2···xn
. (B.13)
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Next, we show how to get the triply product identity:(
∂f1

∂x1

)
f2

P1
=

∂(f1, f2)

∂(x1, f2)

J1
=

∂(f1, f2)

∂(f1, x1)

∂(f1, x1)

∂(x1, f2)

J3
= − ∂(f1, f2)

∂(f1, x1)

∂(x1, f1)

∂(x1, f2)

P1
= −

(
∂f2

∂x1

)
f1

(
∂f1

∂f2

)
x1

. (B.14)

Contrast this non-trivial identity with the more standard chain-rule result:(
∂f1

∂x1

)
x2,··· ,xn

P1
=

∂(f1, x2, · · · , xn)

∂(x1, x2, · · · , xn)

J1
=

∂(f1, x2, · · · , xn)

∂(y1, x2, · · · , xn)

∂(y1, x2, · · · , xn)

∂(x1, x2, · · · , xn)

P1
=

(
∂f1

∂y1

)
x2,··· ,xn

(
∂y1

∂x1

)
x2,··· ,xn

. (B.15)

To get a feeling for the power of the technique, consider the following problem. Suppose someone
asks you to show that: (

∂E

∂T

)
S

=

(
∂E

∂T

)
V

−
(
∂E

∂V

)
T

(
∂S

∂T

)
V

(
∂S

∂V

)−1

T

. (B.16)

How would you do that?

Problem B.7. By using the Jacobean properties show that:(
∂f1

∂x1

)
f2

=
∂(f1, f2)

∂(x1, x2)

(
∂f2

∂x2

)−1

. (B.17)

Apply the identity with f1 = E, f2 = S, x1 = T , x2 = V to establish the previous non-trivial
relationship.

Assume that you have a thermodynamical potential E(x) and write its differential as:

dE = f1 dx1 + f2 dx2 + · · · =
n∑
i=1

fi(x) dxi , (B.18)

where fi(x) = ∂xiE(x). If you consider

∂(f1, f2)

∂(x1, x2)
= det

(
∂2
x1x1

E ∂2
x2x1

E

∂2
x1x2

E ∂2
x2x2

E

)
, (B.19)

you recognise that this is simply the determinant of the (partial) Hessian of E. A remarkable and
incredibly useful identity emerges if we interchange x1 and f2:

∂(f1, x1)

∂(f2, x2)
= −1 . (B.20)

To prove this identity, we apply the Jacobean machinery as follows:

∂(f1, x1)

∂(f2, x2)

J1
=

∂(f1, x1)

∂(x1, x2)

∂(x1, x2)

∂(f2, x2)

J3
= − ∂(x1, f1)

∂(x1, x2)

∂(x1, x2)

∂(f2, x2)

J2
= − ∂(x1, f1)

∂(x1, x2)

(
∂(f2, x2)

∂(x1, x2)

)−1

P1
= −∂x2

f1

∂x1f2
= −

∂2
x2x1

E

∂2
x1x2

E
= −1 , (B.21)

where the last equality follows from the equality of mixed second derivatives of E, which we assume
to hold, given a sufficient regularity of E(x).
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Let us apply this identity to the case of a simple homogenous fluid, where dE = T dS− p dV + · · · .
Hence, we get:

∂(T, S)

∂(−p, V )
= −1 =⇒ ∂(T, S)

∂(p, V )
= 1 . (B.22)

If you recall that the Maxwell relations originate from the equality of the mixed second derivatives of
a thermodynamical potential, you should not be surprised to learn that the identity just shown leads
directly to the Maxwell relation for the energy (ME). Indeed:

1 =
∂(T, S)

∂(p, V )
=
∂(T, S)

∂(S, V )

∂(S, V )

∂(p, V )
= − ∂(S, T )

∂(S, V )

(
∂(p, V )

∂(S, V )

)−1

= −
(
∂T
∂V

)
S(

∂p
∂S

)
V

,

from which you easily derive:

ME:
(
∂p

∂S

)
V

= −
(
∂T

∂V

)
S

. (B.23)

Similar techniques will lead to the Maxwell relations for the other thermodynamic potential.

Problem B.8. Try to prove the following identities:

1. Show that (
∂E

∂V

)
T

= T

(
∂p

∂T

)
V

− p , (B.24)

which requires the Maxwell relation for the free-energy F = E − TS.

2. Show that (
∂E

∂p

)
T

= −T
(
∂V

∂T

)
p

− p
(
∂V

∂p

)
T

, (B.25)

which requires the Maxwell relation for the Gibbs free-energy G = E − TS + pV .

3. Show that, if H = E + pV is the Entalpy:(
∂H

∂V

)
T

= T

(
∂p

∂T

)
V

+ V

(
∂p

∂V

)
T

, (B.26)

which requires the Maxwell relation for the free-energy.

4. Show that (
∂H

∂p

)
T

= −T
(
∂V

∂T

)
p

+ V . (B.27)

Which Maxwell relation is behind this identity?

Finally, let us consider an application of these techniques to show the following relationship between
specific heats.

Problem B.9. Consider the specific heat at constant p, Cp = T
(
∂S
∂T

)
p
, and that at constant V ,

Cv = T
(
∂S
∂T

)
V
. Show that:

Cp − Cv = −T

(
∂V
∂T

)2
p(

∂V
∂p

)
T

= V T
α2
p

κT
, (B.28)

where αp = 1
V

(
∂V
∂T

)
p
is the coefficient of thermal expansion (at constant pressure), and κT =

− 1
V

(
∂V
∂p

)
T
is the coefficient of isothermal compressibility.
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C. Problems and complements: Statistical
Mechanics

C.1. A micro-canonical master equation: the approach to
equilibrium

Rather than going through the Boltzmann’s equation and H-theorem, a traditional topic which you
can find in many books (see for instance Huang), I prefer to illustrate to you a somewhat related
micro-canonical master equation approach that sheds some light on some of the issues involved in the
way a system approaches its “equilibrium” and maximizes entropy. For that, I took inspiration from
some remarks contained in the final chapter of Callen [3], with appropriate modifications.

I must stress that, while the usual Boltzmann equation addressed the distribution f(q,p, t) in the
single-particle phase space (q,p) ∈ R6: 1

(
∂

∂t
+

p
m
· ∂
∂q

+ F · ∂
∂p

)
f(q,p, t) =

(
∂f

∂t

)
coll

, (C.1)

we will rather start directly from the Liouville’s equation for the distribution ρ(q,p, t) in the many-
particle phase space (q,p) = (q1, · · · ,qN ,p1, · · · ,pN ) ∈ R6N :

∂

∂t
ρ(q,p, t) = {H(q,p), ρ(q,p, t)}

PB
, (C.2)

where {f, g}
PB

= ∂qf · ∂pg − ∂pf · ∂qg denotes the Poisson’s brackets. To make the notation more
compact we will again use the abbreviation x = (q,p) for the generic point in phase-space. One should
observe that, while the Boltzmann equation contains non-linearities through the so-called collision
term, the Liouville’s equation is linear in the distribution ρ(x, t), with all non-linearities appearing
through the Hamiltonian H(x). Let us coarse-grain the micro-canonical phase space Ω(E) into a very
large number Nc ∼ eNs(E) of small phase-space cells (e.g., of volume h3N ) Cj , with j = 1 ·Nc. Let

Pj(t) =

∫
dµρ(x, t)χCj (x) , (C.3)

be the probability of finding a many-particle trajectory in cell Cj at time t: here χCj (x) is the char-
actheristic function of the cell Cj . It is physically reasonable, although mathematically not rigorous,

1Notice that the non-linearities enter in the Boltzmann equation through the collision term, see Huang for a detailed
exposition. F is the external force acting on the system, which you might include, if it can be derived from a
potential, in the Hamiltonian of the system.
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that we can write a first-order-in-time (linear) master equation for the Pj(t) in the following form: 2

Ṗi(t) =
∑
j T̃ij Pj(t)−

(∑
j′ T̃j′i

)
Pi(t)

=
∑
j Tij Pj(t)

or
Ṗ = T ·P

. (C.4)

where the second form uses a shorter vectorial notation. Here T̃ij = T̃i←j > 0 is the (positive) rate of
making a transition from cell j to cell i 6= j, and you should observe that the diagonal term T̃ii gives
contributions that cancel and can be set to zero without loss of generality, T̃ii = 0. In the second
form, we have grouped the two terms, describing transitions into Ci and transitions out of Ci into a
single matrix Tij defined in this way:

Tij = T̃ij − δij
∑
j′

T̃j′i =


T̃ij i 6= j

−
6=i∑
j′

T̃j′i i = j
. (C.5)

One very general property of the matrix T, which is required by the fact that the total probability
has to be conserved (i.e.,

∑
i Ṗi = 0) is that:∑

i

Tij = 0 ∀j . (C.6)

A real matrix with positive off-diagonal elements such that, for each column, the sum over the rows
vanishes, as expressed by Eq. (C.6), is called a stochastic matrix. 3 One further property which we
will require is that the matrix T does not single-out invariant subspaces: it has no invariant cycles
and is irreducible. 4 Technically, starting from any cell j you can reach any cell i by an appropriate
power of T:

∀ i, j ∃ k such that
[
Tk
]
ij
6= 0 .

Notice that, in general,
∑
j Tij 6= 0, and the matrix T is not symmetric. Recall that all the cells

corresponds to the same energy: they live in the micro-canonical shell. 5 Suppose that the Hamiltonian
dynamics of our system is time-reversal invariant, which is rather generally true in absence of external
magnetic fields. Recall that time-reversal invariance leaves the positions unchanged, but reverses the
momenta. A standard Hamiltonian with quadratic momenta would hence be time-reversal invariant:
H(q,−p) = H(q,p).
2Since the resulting master equation is in essence Markovian, what is implied is some time-coarse-graining and a
Markovian assumption on the dynamics. Notice, however, that the usual Markovian nature of similar master
equations originates from having integrated away other degrees of freedom in a stochastic framework. Here, we are
just coarse-graining in space the Liouville’s equation of a closed dynamical system. These aspects are rather subtle.
If you consider the entropy of the phase-space distribution ρ(x, t), you can easily show that the Liouville’s equation
conserves such an entropy. This is the classical analogue of the fact that S = −kB Tr[ρ̂(t) log ρ̂(t)] is constant (does
not depend on t) if ρ̂(t) evolves unitarily according to the von Neumann equation. Matteo Wauters tells us that the
procedure of coarse-graining a partial differential equation to transform into a set of ordinary differential equations
is well known in mathematics, and introduces subtle “diffusive terms” that make the coarse-grained time-evolution
of the system non equivalent to the continuous one: even non-ergodic problems might be transformed, in that way,
into completely “mixing” master equations. This, I believe, is at the roots of the fact that the entropy associated to
the Markovian master equation we will write increases with t.

3One often deals with discrete-time processes, for which we would write:

P(t+ ∆t) = (1 + ∆tT)︸ ︷︷ ︸
M

·P(t) = M ·P(t) .

Clearly, the ∆t can be chosen in such a way that M has non-negative elements. The stochasticity condition reads
now

∑
i Mij = 1.

4For a short introduction to the theory of Markov chains see Sethna [4] or the book by van Kampen.
5Callen states that time-reversal invariance in the micro-canonical shell implies that Tij = Tji, but that is too swift a
conclusion, I believe.
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Figure C.1.: Figure taken from Sakurai’s book Modern Quantum Mechanics, illustrating the idea behind
Time Reversal (TR) invariance, with a classical-like trajectory picture. (a, Left) The TR operation (inversion
of momenta/spins) is applied at time t = 0 to a state, and then the system is evolved for a time +δt. (b,
Right) The system is propagated backward in time, up to time −δt, and then the TR operation (inversion of
momenta/spins) is applied. The two states coincide if the system is TR-invariant.

We therefore make a specific choice of our phase-space cells which is “time-reversal compliant”, by
splitting the phase space into two big regions, R+ ∪ R−, and imposing that for every cell i ∈ R+,
there is a time-reversed cell iR with reversed momenta belonging to R−, and viceversa. The crucial
consequence that time-reversal implies for our transition-rate matrix is that

Tij = TjRiR . (C.7)

With the splitting of cells we have chosen, we can rewrite our master equation Eq. (C.4) as follows:
Ṗi =

∑
j∈R+

(TijPj + TijRPjR)

ṖiR =
∑
j∈R+

(TiRjPj + TiRjRPjR)
. (C.8)

If you define the two block matrices Aij = Tij and Bij = TijR , where i, j ∈ R+, then you immediately
realize that time-reversal invariance, via Eq. (C.7), implies that:(

Ṗ
ṖR

)
=

(
A B
C AT

)
·
(

P
PR

)
= K ·

(
P
PR

)
(C.9)

The notation we have used is as follows: P and PR are two L = Nc
2 -dimensional vectors with elements

(P)i = Pi and (PR)i = PiR , for i ∈ R+; the matrices A, B = BT and C = CT are Nc
2 ×

Nc
2 = L × L

square matrices with elements Aij = Tij , Bij = TijR , Cij = TiR,j , for i, j ∈ R+. The matrix K is
Nc ×Nc = 2L × 2L, with the blocks written in terms of A, B and C. It is straightforward to realize
that the matrix K is stochastic, exactly as the general matrix T must be: 6∑

i

Kij = 0 ∀j . (C.10)

6Indeed, if j ∈ R+ then ∑
i

Kij =
∑
i∈R+

([A]ij + [C]ij) =
∑
i∈R+

(
Tij + TiRj

)
=
∑
i

Tij = 0 ,

and similarly for jR ∈ R−. These requirements fix some constraints on A, C, and B.
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Notice that this implies that K has the vector (1, · · · , 1) as left eigenvector, with eigenvalue 0:

(1, · · · , 1) · K = 0 ,

a property generally shared by all master equations (recall that it is related to the conservation of the
total probability). The non-trivial consequence of time-reversal symmetry, is that the matrix K has
also a vanishing sum-of-columns, for each row, while still being non-symmetric in general:∑

j

Kij = 0 ∀i . (C.11)

To prove this, simply observe that for i ∈ R+:∑
j

Kij =
∑
j∈R+

(Tij + TijR) =
∑
j∈R+

(TjRiR + TjiR) =
∑
j

TjiR = 0 .

Notice that in the second equality we have used the time-reversal property Tij = TjRiR and TijR =

TjiR . The final equality follows from the fact that sum-of-rows
∑
j TjiR = 0, because T is stochastic.

A similar conclusion holds for i ∈ R−. Hence a stochastic K which respects Time-Reversal-Invariance
(TRI) is automatically doubly stochastic, that is also the sum-of-colums is zero. Here is an explicit
example with a 4× 4 matrix: 7

K =


−14 7 4 3

2 −21 3 16

3 9 −14 2

9 5 7 −21

 (C.12)

Notice that K is non-symmetric, but doubly stochastic. 8

The remarkable consequence of Eq. (C.11) is that K has the right eigenvector (1 · · · 1)T with zero
eigenvalue:

K ·

 1
...

1

 = 0 .

My guess (I still do not have a full proof of this statement, see discussion and problem below) 9 is
that the equal-population vector

Peq =
1

Nc

 1
...

1

 ,

is the t → ∞ limit of the solution of our micro-canonical time-reversal-invariant master equation for
any initial Pi(0).

The difficulty I still have is that, while (1, · · · , 1) is both a left and a right eigenvector, the matrix
K is still non-symmetric. The standard approach to such master equations is to assume what is called
the detailed balance condition

KijP
eq
j = KjiP

eq
i ∀i, j . (C.13)

Detailed balance is a sufficient condition to reach equilibrium, which is also very useful to reduce
yourself to a standard symmetric eigenvalue problem. In our case, detailed balance would imply
7You realize that the number of parameters in the choice of A, B and C is L(2L + 1), and the number of constraints
for imposing stocasticity is 2L, hence the number of free parameter for a TRI stochastic matrix is L(2L − 1). For
L = 2 you get a 6-dimensional space.

8A symmetric stochastic matrix is automatically (trivially) doubly stochastic.
9Sethna in [4][p.170] says that there is a proof also for the general non-symmetric case, but he does not give a reference
for that.
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that the matrix K is symmetric, Kij = Kji, which is not our case. Hence, we cannot assume
detailed balance. 10 To show the simple consequences of having a symmetric K, let us assume
for a while that this is indeed the case. Then, the Perron-Frobenius theorem [4], see for instance
https://en.wikipedia.org/wiki/Perron-Frobenius_theorem, would imply that the equal popu-
lation vector we have discovered (which has all positive components) is the unique eigenvector with
maximum eigenvalue E0 = 0, all the other eigenvectors Pλ having negative eigenvalues −Eλ. Hence,
if you expand your initial vector P(0) in terms of the eigenvectors:

P(0) = Peq +
∑
λ>0

cλPλ ,

you can immediately solve the master equation as:

P(t) = Peq +
∑
λ>0

cλe−EλtPλ .

Hence, we would immediately conclude that, indeed, the final t → ∞ probability distribution is the
one associated to the E0 = 0 eigenvalue (equal population over all cells). A similar result should hold
for the general non-symmetric K we are dealing with, but I do not have a reference for that.

Returning to Boltzmann, you might have heard about his famous H-theorem. Essentially, Boltz-
mann introduced a function, which is strictly related to the entropy of a probability distribution which
we have already encountered, which would read in the present case as:

H(t) =
∑
i

Pi(t) logPi(t) = −S[{Pi(t)}] . (C.16)

The content of Boltzmann’s H-theorem is that H is a non increasing function of time:

dH

dt
≤ 0 . (C.17)

Let us see how this result comes about. Take the derivative of H(t):

dH

dt
=

∑
i

Ṗi (logPi + 1))
∑
i Ṗi=0

=
∑
i

Ṗi logPi

=
∑
ij

KijPj logPi

∑
i Kij=0

=
∑
ij

KijPj (logPi − logPj)

=
1

2

∑
ij

KijPj (logPi − logPj) +
1

2

∑
ij

KjiPi (logPj − logPi)

= −1

2

∑
ij

(KjiPi − KijPj) (logPi − logPj)

= −1

2

∑
i 6=j

(KjiPi − KijPj) (logPi − logPj) . (C.18)

10The detailed balance assumption is very often adopted in the theory of Markov chains and is at the basis of the proof
that, for instance, a Metropolis Monte Carlo will sooner or later sample the correct equilibrium distribution. To see
how detailed balance allows symmetrization, observe that the new matrix:

[H]ij = −
1√
P eq
i

Kij
√
P eq
j , (C.14)

is symmetric, as implied by Eq. (C.13). Hence, by working with the new vector ψi such that Pi =
√

Peq
i ψi, you

transform the master equation into an imaginary time Schrödinger equation of the form:

− ψ̇i =
∑
j

[H]ij ψj . (C.15)

You can prove that the spectrum of H is reversed with respect to that of K, in particular H has eigenvalues Eλ ≥ 0,
while the eigenvectors are related in a very simple way.
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And now comes the final part of the proof, which is I still miss in the general case of a non-symmetric
Kij . Indeed, if we have a symmetric Kij = Kji, then you can rewrite:

dH

dt
= −1

2

∑
i 6=j

Kij (Pi − Pj) (logPi − logPj) ≤ 0 , (C.19)

where the final result follows from the fact that (x − y)(log x − log y) ≥ 0 and Kij ≥ 0 for i 6= j. At
equilibrium H(t → ∞) would then attain its minimum value given by H = − logNc. Once again, a
crucial missing step is to prove that the same result holds even when K is not symmetric, as in our
case.

Assuming that the result holds true, which I am quite convinced, notice how the microscopic
reversibility of the motion implied by time-reversal invariance, is in no way in contradition with the
fact that H(t) is a decreasing function — or, equivalently, that entropy is an increasing function — of
time.

Problem C.1. A micro-canonical time-reversal invariant master equation without detailed
balance. Generate three random L × L (L an integer parameter of your choice) matrices A, B =

BT , C = CT non-negative elements except for the diagonal elements of A, impose the stochasticity
constraints such that in such a way that the 2L× 2L matrix K

K =

(
A B
C AT

)
,

is stochastic:
∑
i Kij = 0. Verify that the resulting K is automatically doubly-stochastic, i.e.,

∑
j Kij =

0. Verify that (1, · · · , 1) is both right and left eigenvector of K with eigenvalue 0. Show that, starting
from any initial condition P(0), the master equation

Ṗ(t) = K ·P(t) ,

converges towards the equilibrium solution Peq = 1
2L (1, · · · , 1)T . Try different choices of A, B, C.

Verify if and when the Boltzmann H-theorem holds.
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